Двигатели постоянного тока

Пуск двигателей постоянного тока. Регулирование скорости вращения в промышленном оборудовании. Характеристики двигателей постоянного тока. Принципы регулирования частоты моторного вращения. Пуск двигателя с параллельным и последовательным возбуждением.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 23.07.2015
Размер файла 458,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Двигатели постоянного тока

1. Пуск двигателей постоянного тока

Общие сведения о двигателях постоянного тока. Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т.д.)

По способу возбуждения двигатели постоянного тока подразделяются аналогично генераторам на двигатели независимого, параллельного, последовательного и смешанного возбуждения.

При пуске двигателя в ход необходимо: 1) обеспечить надлежащую величину пускового момента и условия для достижения необходимой скорости вращения; 2) предотвратить возникновение чрезмерного пускового тока, опасного для двигателя.

Для двигателей постоянного тока могут быть применены три способа пуска:

1) прямой, при котором обмотка якоря подключается непосредственно к сети;

2) реостатный, при котором в цепь якоря включается пусковой реостат для ограничения тока;

3) путем плавного повышения питающего напряжения, которое подается на обмотку якоря.

Прямой пуск. Обычно в двигателях постоянного тока падение напряжения IHOMУRa во внутреннем сопротивлении цепи якоря составляет 5..10% от UЗПМ, поэтому при прямом пуске ток якоря Iп= Uном/УRа = (10...20)Iном, что создает опасность поломки вала машины и вызывает сильное искрение под щетками. Поэтому прямой пуск применяют в основном для двигателей малой мощности (до нескольких сотен ватт), в которых сопротивление УRa относительно велико, и лишь в отдельных случаях для двигателей с последовательным возбуждением мощностью в несколько киловатт. При прямом пуске таких двигателей IП = (4...6)IНОМ.

Переходный процесс изменения частоты вращения з и тока якоря ia в процессе пуска определяется нагрузкой двигателя и его электромеханической постоянной времени Тм.

Время переходного процесса при пуске принимается равным (3...4)ТМ. За это время частота вращения з достигает (0,95...0,98) от установившегося значения пн, а ток якоря 1а также приближается к установившемуся значению.

Реостатный пуск. Этот способ получил наибольшее применение. В начальный момент пуска при п = 0 ток Iп= U/(УRa+Rn). Максимальное сопротивление пускового реостата Rї подбирается так, чтобы для машин большой и средней мощности ток якоря при пуске IП = (1,4...1,8)IНОМ, а для машин малой мощности Iп = (2...2,5)Iном ..

Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением. В начальный период пуск осуществляется по реостатной характеристике 6 (рис. 1,а), соответствующей максимальному значению сопротивления Rn пускового реостата; при этом двигатель развивает максимальный пусковой момент Мпmах. Регулировочный реостат Rp.B в этом случае выводится так, чтобы ток возбуждения Iв и поток Ц были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением частоты вращения возрастает ЭДС Е и уменьшается ток якоря 1а = (U-Е)/(УRа + RП). При достижении некоторого значения Mnmin часть сопротивления пускового реостата выводится, вследствие чего момент снова возрастает до Mпmах. При этом двигатель переходит на работу по реостатной характеристике 5 и разгоняется до значения Mnmin.

Рис. 1 Графики изменения частоты вращения, момента и тока якоря при реостатном пуске двигателя с параллельным и последовательным возбуждением

Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатных характеристик 6, 5, 4, 3 и 2 (см. жирные линии на рис.1,а) до выхода на естественную характеристику 1. Средний вращающий момент при пуске Мп.ср = 0,5(Mnmax + Mnmin) = const, вследствие чего двигатель разгоняется с некоторым постоянным ускорением. Таким же способом пускается в ход двигатель с последовательным возбуждением (рис.1,б). Количество ступеней пускового реостата зависит от жесткости естественной характеристики и требований, предъявляемых к плавности пуска (допустимой разности Mnmax -- Mnmin). Пусковые реостаты рассчитывают на кратковременную работу под током.

При выводе отдельных ступеней пускового реостата ток якоря 1а достигает некоторого максимального значения (рис.1,в), а затем уменьшается до минимального значения. В соответствии с изменением тока якоря изменяется и электромагнитный момент М. Заштрихованная на рис. 1,в область соответствует значениям динамического момента МДИН = М-Мн, обеспечивающего разгон двигателя до установившейся частоты вращения.

Пуск путем плавного изменения питающего напряжения. При реостатном пуске возникают довольно значительные потери энергии в пусковом реостате. Этот недостаток можно устранить, если пуск двигателя осуществить при пониженном напряжении с последующим плавным повышением напряжения, подаваемого на его обмотку. Однако для этого необходимо иметь отдельный источник постоянного тока с регулируемым напряжением (генератор или управляемый выпрямитель). Такой источник используют также для регулирования частоты вращения двигателя.

Свойство саморегулирования. Двигатели постоянного тока, как впрочем, и двигатели переменного тока, обладают при соблюдении условий устойчивости замечательной способностью автоматически, без внешнего регулирующего воздействия, приспосабливаться без внешнего регулирующего воздействия, приспосабливаться к изменившимся условиям работы. В этом смысле можно сказать, что электрические двигатели обладают свойством саморегулирования. Проиллюстрируем сказанное на примере двигателя параллельного возбуждения.

Допустим, что такой двигатель работает при U=const, iв=const и, следовательно, Фд?const и статический момент сопротивления Мст, развиваемый рабочей машиной, увеличивается. Тогда М<Мст, возникает динамический момент Мдин<0, исходя из равенства М=Мст+Мдин. Также n начинает уменьшаться. Но при этом будет уменьшаться также Еа, ток Iа (из уравнения скоростной характеристики двигателя)

и момент М согласно выражению

М=смФдIа

начнут увеличиваться, причем это будет происходить до тех пор, пока снова не наступит равновесие моментов М=Мст. Аналогичным образом изменяется также режим, если Мст уменьшится, причем в этом случае n и Еа начнут увеличиваться, а Iа и М - уменьшаться до тех пор, пока снова будет М=Мст и Мдин=0.

Изменение направления вращения (реверс). Чтобы изменить направление вращения двигателя, необходимо изменить направление электромагнитного момента М, действующего на якорь. Это можно осуществить двумя способами: путем изменения направления тока 1а в обмотке якоря или изменения направления магнитного потока Ф, т. е. тока возбуждения. Для этого переключают провода, подводящие ток к обмотке якоря или обмотке возбуждения.

2. Характеристики двигателей постоянного тока

Двигатель с параллельным возбуждением. В этом двигателе (рис.2,а) обмотка возбуждения подключена параллельно с обмоткой якоря к сети. В цепь обмотки возбуждения включен регулировочный реостат RpB, а в цепь якоря--пусковой реостат Rn. Характерная особенность двигателя-- его ток возбуждения Iв не зависит от тока якоря

Рис. 2 Схема двигателя с параллельным возбуждением (а) и его моментная и скоростная характеристики (б)

1а (тока нагрузки), так как питание обмотки возбуждения по существу независимое. Следовательно, пренебрегая размагничивающим действием реакции якоря, можно приближенно считать, что и поток двигателя не зависит от нагрузки. При этом условии, согласно E=ceФn и M=cMФIa, получаем, что зависимости M=f(Ia) и n = f(la) (моментная и скоростная характеристики) линейные (рис.2,б). Следовательно, линейная и механическая характеристика двигателя n = f(M) (рис.3,а).

Если в цепь якоря включен добавочный резистор или реостат Rn, то

п = [U-Iа(УRа + RП)]/(сеФ) = п0-Дп, (1)

по=U/(сеФ)

-- частота вращения при холостом ходе;

Дп = (УRа + Rп)1а/(сеФ)

-- снижение частоты, обусловленное суммарным падением напряжения во всех сопротивлениях, включенных в цепь якоря двигателя.

Величина Дn, зависящая от суммы сопротивлений УRа+RП, определяет наклон скоростной n = f(Iа) и механической n = f(M) характеристик к оси абсцисс. При отсутствии в цепи якоря добавочного сопротивления Rn указанные характеристики жесткие (естественные характеристики 1 на рис.2,б и 3,а).

Рис. 3 Механические (а) и рабочие (б) характеристики двигателя с параллельным возбуждением

При включении добавочного реостата угол наклона этих характеристик возрастает, вследствие чего образуется семейство реостатных характеристик 2, 3, 4, соответствующих различным сопротивлениям реостата Rnl, Rn2 и Rn3. Чем больше сопротивление Rn, тем больший угол наклона имеет реостатная характеристика, т. е. тем она мягче.

Реакция якоря, уменьшая несколько поток машины Ц при нагрузке, стремится придать естественной механической характеристике отрицательный угол наклона, при котором частота вращения з возрастает с увеличением момента М. Однако двигатель с такой характеристикой в большинстве электроприводов устойчиво работать не может. Поэтому современные двигатели большой и средней мощностей с параллельным возбуждением часто имеют небольшую последовательную обмотку возбуждения, которая придает механической характеристике необходимый наклон. МДС этой обмотки при токе Iном составляет около 10% от МДС параллельной обмотки.

Регулировочный реостат Rp.B позволяет изменять ток возбуждения двигателя Iв и его магнитный поток Ф. При этом изменяется и частота вращения п. В цепь обмотки возбуждения выключатели и предохранители не устанавливают, так как при разрыве этой цепи и небольшой нагрузке на валу частота вращения двигателя резко возрастает (двигатель идет в «разнос»). При этом сильно увеличивается ток якоря и может возникнуть искрение щеток.

Рабочие характеристики рассматриваемого двигателя (рис.3,б) представляют собой зависимости потребляемой мощности С1, тока ЙбIн, частоты вращения n, момента М и КПД з от отдаваемой мощности Р2 на валу двигателя при U=const и IB = const. Характеристики n = f(Р2) и М = f(Р2) являются линейными, а зависимости Сй = f(С2), Ia = f(P2) и з = f(P2) имеют характер общий для всех электрических машин. Иногда рабочие характеристики строят в зависимости от тока якоря 1а.

Если в двигателе обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, то его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание обмотки якоря осуществляется от генератора или полупроводникового преобразователя. Механические и рабочие характеристики двигателя с независимым возбуждением аналогичны характеристикам двигателя с параллельным возбуждением, так как у них ток возбуждения Iв также не зависит от тока якоря 1а.

Двигатель с последовательным возбуждением. В этом двигателе (рис.4,а) ток возбуждения Iв = Iа, поэтому

Рис. 4 Схема двигателя с последовательным возбуждением (а) и его моментная и скоростная характеристики (б)

магнитный поток Ф является некоторой функцией тока якоря 1а. Характер этой функции изменяется в зависимости от нагрузки двигателя. При Iа<(0,8...0,9)Iном, когда магнитная система машины не насыщена, Ф = kфIа, причем коэффициент пропорциональности kф в значительном диапазоне нагрузок остается практически постоянным. При дальнейшем возрастании тока якоря поток Ф возрастает медленнее, чем Iа, при больших нагрузках (Iа>IНОМ) можно считать, что Фconst. В соответствии с этим изменяются зависимости

n = f(Ia) и M = f(Ia).

При /а<(0,8...0,9)/ном скоростная характеристика двигателя n = f(la) (рис.4,б) имеет форму гиперболы, так как частота вращения

(2)

где С1 и С2 -- постоянные.

При 1а > Iном скоростная характеристика становится линейной, так как частота вращения

(3)

где С'1 и С'2 -- постоянные.

Аналогично можно получить зависимость электромагнитного момента от тока якоря M=f(la). При Iа<(0,8...0,9)Iн* *Iном моментная характеристика M=f(Ia) имеет форму параболы (рис.4,б), так как электромагнитный момент

М=смФIа = смкф12а = С312а, (4)

где С3 -- постоянная.

При Ia>IHOM моментная характеристика линейная, так как

Рис. 5 Механические (а) и рабочие (б) характеристики двигателя с последовательным возбуждением

М=смФ1а = С'31а, (5)

где С'з -- постоянная.

Механические характеристики n = f(M) (рис.5,а) можно построить на основании зависимостей n = f(la) и М= f(la). При Iа<(0,8...0,9)Iном частота вращения изменяется по закону

(6)

где С4 -- постоянная.

При Ia>Iном зависимость n = f(M) становится линейной.

Включая в цепь якоря пусковые реостаты с сопротивлениями Rnl9 Rn2 и Rn3 кроме естественной характеристики 1 можно получить семейство реостатных характеристик 2, 3 и 4, причем, чем больше Rn, тем ниже располагается характеристика.

Рабочие характеристики двигателя с последовательным возбуждением приведены на рис.5,б. Зависимости n = f(P2), M=f(P2) являются нелинейными; зависимости P1 = f(P2)' Ia = f(P2) и з = f(P2) имеют примерно такой же характер, как и у двигателя с параллельным возбуждением.

Из рассмотрения рис.5,а следует, что механические характеристики рассматриваемого двигателя (естественная и реостатные) являются мягкими и имеют гиперболический характер. При малых нагрузках частота вращения п резко возрастает и может превысить максимально допустимое значение (двигатель идет «в разнос»). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода или при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка составляет (0,2...0,25)IНОМ; только двигатели малой мощности (десятки ватт) используют для работы

Рис. 6 Характеристики двигателей с последовательным и параллельным возбуждением

в устройствах, где возможен холостой ход. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко; применение ременной передачи или фрикционной муфты для включения недопустимо.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.). Это объясняется тем, что мягкая характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем жесткая характеристика двигателя с параллельным возбуждением.

Мощность Р1 и ток 1а у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением; кроме того, они лучше переносят перегрузки. Двигатель с последовательным возбуждением развивает больший пусковой момент.

На рис.6 показаны для сравнения характеристики двигателей с последовательным (индексы «1») и параллельным (индексы «2») возбуждением.

Двигатель со смешанным возбуждением. В этом двигателе (рис.7,а) магнитный поток Ц создается в результате совместного действия двух обмоток возбуждения -- паралельной и последовательной. Поэтому его механические характеристики (рис. 7,б, кривые 3 и 4) располагаются между характеристиками двигателей с параллельным (прямая 1) и последовательным (кривая 2) возбуждением. В зависимости от соотношения МДС параллельной и последовательной обмоток при номинальном режиме можно приблизить характеристики двигателя со смешанным возбуждением к характеристике 1 (при малой МДС последовательной обмотки) или к характеристике 2 (при малой МДС параллельной обмотки). Одним из достоинств двигателя со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе, так как его частота вращения п0 может быть ограничена на допустимом уровне.

Рис. 7 Схема двигателя со смешанным возбуждением (а) и его механические характеристики (б)

3. Принципы регулирования частоты вращения двигателей

Возможны три способа регулирования скорости вращения.

Полюсное регулирование. Наиболее распространенным и экономичным является способ регулирования скорости путем изменения потока Фд, т.е. тока возбуждения iв.

С уменьшение Фд, согласно выражению

,

скорость возрастает. Двигатели рассчитываются для работы при номинальном режиме с наибольшим значением Фд, т.е. с наименьшей величиной n. Поэтому практически можно только уменьшить Фд.

Следовательно, рассматриваемый способ позволяет регулировать скорость вверх от номинальной. При таком регулировании КПД двигателя остается высоким, так как мощность возбуждения мала, в частности мала мощность реостатов для регулирования тока возбуждения. К тому же при уменьшении iв мощность возбуждения U iв уменьшается.

Верхний предел регулирования скорости вращения ограничивается механической прочностью машины и условиями ее коммутации.

Рис. 8 Механические и скоростные характеристики двигателя параллельного возбуждения при разных потоках возбуждения

Для увеличения диапазона регулирования n посредством ослабления поля в машинах малой и средней мощности с волновой обмоткой якоря иногда применяют раздельное питание катушек возбуждения отдельных полюсов. При этом в одной группе полюсов сохраняют iв=const и большой поток со значительным насыщением участков магнитной цепи, а в другой группе полюсов iв и поток уменьшают. Искажающее влияние поперечной реакции якоря под первой группой полюсов в этом случае будет проявляться значительно слабее. Так как в волновой обмотке напряжение между соседними коллекторными пластинами складывается из ЭДС секций, расположенных под всеми полюсами, то в результате такого регулирования потока полюсов распределение напряжения между пластинами будет более равномерным.

Данный вид регулирования применяется при параллельном возбуждении обычно с помощью реостата в цепи возбуждения. При отсутствии добавочного сопротивления в цепи якоря и постоянном напряжении характеристики n=f(Ia) и n=f(M) для разных значений Rp.в, iв или Фд имеют вид, показанный на рис.8. Все характеристики n=f(Ia) сходятся на оси абцисс при весьма большом токе, который согласно выражению

равен .

Реостатное регулирование. Другой способ регулирования скорости заключается во включении последовательно в цепь якоря реостата или регулируемого сопротивления Rpa. Вместо выражения

при этом имеем

. (7)

Этот способ дает возможность регулировать скорость вниз от номинальной и связан со значительными потерями в сопротивлении Rpa и понижением КПД.

По этой причине данный способ применяется в основном для двигателей небольшой мощности, а для более мощных двигателей используется редко и только кратковременно (пуско-наладочные режимы и т.д.).

Основной недостаток данного метода регулирования - возникновение больших потерь энергии в реостате (особенно при низких частотах вращения).

Данный способ позволяет только уменьшать частоту вращения (по сравнению с частотой при естественной характеристике). Иногда существенным является то обстоятельство, что при включении в цепь якоря значительного сопротивления характеристики двигателя становятся крутопадающими (мягкими), вследствие чего небольшие изменения нагрузочного момента приводят к большим изменениям частоты вращения.

Якорное регулирование. Регулирование скорости осуществляется также путем регулирования напряжения цепи якоря. Так как работа двигателя при U>Uн недопустима, то данный способ, согласно выражениям

и ,

дает возможность регулировать скорость также вниз от номинальной. КПД двигателя при этом остается высоким, так как никаких добавочных источников потерь в схему двигателя не вносится.

Однако в этом случае необходим отдельный источник тока с регулируемым напряжением, что удорожает установку.

Отметим, что регулирование скорости путем изменения Iа невозможно, хотя такая возможность на первый взгляд вытекает из равенства

постоянный ток двигатель вращение

.

Дело в том, что согласно равенству для установившегося режима работы, двигатель при каждой скорости вращения должен развивать определенный момент М, равный моменту сопротивления приводимого механизма Мст при данном значении n. Но при этом в соответствии с выражением при данном значении Фд величина Iа в двигателе будет при каждом значении М тоже вполне определенной.

Данный способ применяется в основном для двигателей с независимым возбуждением.

Размещено на Allbest.ru

...

Подобные документы

  • Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения. Максимально-токовая защита электропривода. Скоростные характеристики двигателя. Схемы силовых цепей двигателей постоянного тока и асинхронных двигателей.

    курсовая работа [2,5 M], добавлен 30.03.2014

  • Двигатели постоянного тока, их применение в электроприводах, требующих широкого плавного и экономичного регулирования частоты вращения, высоких перегрузочных пусковых и тормозных моментов. Расчет рабочих характеристик двигателя постоянного тока.

    курсовая работа [456,2 K], добавлен 12.09.2014

  • Расчет естественных электромеханической и механической статистических характеристик краново-металлургического тихоходного двигателя постоянного тока с последовательным возбуждением. Сопротивление пускового реостата, характеристики при пуске двигателя.

    контрольная работа [477,7 K], добавлен 19.03.2014

  • Изучение механических характеристик электродвигателей постоянного тока с параллельным, независимым и последовательным возбуждением. Тормозные режимы. Электродвигатель переменного тока с фазным ротором. Изучение схем пуска двигателей, функции времени.

    лабораторная работа [1,3 M], добавлен 23.10.2009

  • История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.

    курсовая работа [1,3 M], добавлен 14.01.2018

  • Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

    реферат [166,2 K], добавлен 11.12.2010

  • Двигатели с независимым и с параллельным возбуждением и с постоянными магнитами. Скоростные и механические характеристики. Свойство саморегулирования вращающего момента в соответствии с противодействующим моментом. Способы регулирования частоты вращения.

    контрольная работа [262,8 K], добавлен 25.07.2013

  • Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.

    реферат [3,2 M], добавлен 12.11.2009

  • Расчет пусковых характеристик двигателя постоянного тока с параллельным возбуждением. Определение сопротивления включаемого в якорную цепь и дополнительного сопротивления динамического торможения. Расчет и схема пускового реостата асинхронного двигателя.

    задача [260,0 K], добавлен 30.01.2011

  • Основные принципы построения электропривода, предназначенного для регулирования скорости вращения двигателя постоянного тока. Функциональная схема однофазного однополупериодного нереверсивного управляемого выпрямителя, работающего на активную нагрузку.

    курсовая работа [1,7 M], добавлен 06.12.2012

  • Расчет механических характеристик двигателей постоянного тока независимого и последовательного возбуждения. Ток якоря в номинальном режиме. Построения естественной и искусственной механической характеристики двигателя. Сопротивление обмоток в цепи якоря.

    контрольная работа [167,2 K], добавлен 29.02.2012

  • Электрический привод с тиристорными преобразователями и двигателями постоянного тока как основной тип привода станков с ЧПУ. Основные характеристики электропривода и тип двигателя постоянного тока. Достоинства и недостатки высокомоментных двигателей.

    курсовая работа [1,5 M], добавлен 14.12.2012

  • Изучение принципа работы электропривода постоянного тока и общие требования к функционированию контроллера. Разработка микропроцессорной системы управления электродвигателем постоянного тока, обеспечивающей контроль за скоростью вращения вала двигателя.

    курсовая работа [193,7 K], добавлен 14.01.2011

  • Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.

    презентация [4,9 M], добавлен 09.11.2013

  • Питание двигателя при регулировании скорости изменением величины напряжения от отдельного регулируемого источника постоянного тока. Применение тиристорных преобразователей в электроприводах постоянного тока. Структурная схема тиристорного преобразователя.

    курсовая работа [509,4 K], добавлен 01.02.2015

  • Отображение двигателя в режиме динамического торможения. Расчет пускового реостата и построение пусковых характеристик для двигателя постоянного тока с параллельным возбуждением. Запись уравнения скоростной характеристики с учетом требуемых параметров.

    контрольная работа [1002,6 K], добавлен 31.01.2011

  • Особенности расчета двигателя постоянного тока с позиции объекта управления. Расчет тиристорного преобразователя, датчиков электропривода и датчика тока. Схема двигателя постоянного тока с независимым возбуждением. Моделирование внешнего контура.

    курсовая работа [1,2 M], добавлен 19.06.2011

  • Основные способы пуска двигателя постоянного тока. Схема пуска в функции времени. Главные способы управления током. Порядок расчёта сопротивлений ступеней пуска и выдержек реле времени. Определение сопротивления первой ступени пускового реостата.

    лабораторная работа [329,7 K], добавлен 01.12.2011

  • Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа [1,6 M], добавлен 25.02.2010

  • Двигатель постоянного тока. Усилитель для астатической системы. Расчет передаточных функций блоков структуры системы. Условия селективной инвариантности. Распределение нулей и полюсов замкнутой системы. Последовательно включенное корректирующее звено.

    курсовая работа [1,7 M], добавлен 21.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.