Двигатели постоянного тока

Структурная схема, принцип действия и основные элементы бесконтактного двигателя постоянного тока. Назначение и принцип работы тихоходных двигателей. Принцип действия и принципиальные особенности двигателей с катящимся ротором, их достоинства, недостатки.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 25.07.2015
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Бесконтактные двигатели постоянного тока

Двигатели постоянного тока обычного исполнения имеют ценное качество - возможность широко и плавно регулировать скорость вращения. Вместе с тем они обладают существенным недостатком, обусловленным щеточно-коллекторным узлом. Вполне естественно, что появилась мысль создать двигатели, обладающие достоинствами двигателей постоянного тока и свободные от их недостатков. Такие двигатели называются бесконтактными двигателями постоянного тока.

Рис.5.1. Структурная схема бесконтактного двигателя постоянного тока

Бесконтактные двигатели постоянного тока состоят из трех элементов (рис. 5.1):

1) бесконтактного двигателя с -фазной обмоткой на статоре и возбужденным ротором обычно в виде постоянного магнита;

2) датчика положения ротора (ДПР), выполненного в одном корпусе с двигателем и предназначенного для выработки сигналов управления моментами времени и последовательностью коммутации токов в обмотках статора;

3) коммутатора, как правило, транзисторного, осуществляющего по сигналам ДПР коммутацию токов в обмотках статора.

Принцип действия бесконтактного двигателя рассмотрим на примере упрощенной схемы (рис. 5.2). В ее состав входит двигатель с тремя обмотками на статоре, сдвинутыми в пространстве на 120 градусов и соединенными в звезду, ДПР с одним сигнальным элементом (СЭ) и тремя чувствительными элементами (ЧЭ) (их число равно числу обмоток статора), коммутатор, выполненный на трех транзисторах, работающих в ключевом режиме, т.е. в режиме "закрыт" или "открыт".

Рис. 5.2. Упрощенная принципиальная схема бесконтактного двигателя постоянного тока

В положении, показанном на рис. 5.2, сигнальный элемент через чувствительный элемент "А" открывает транзистор . По обмотке А протекает ток . Намагничивающая сила обмотки взаимодействует с потоком постоянного магнита ротора. Возникает вращающий момент, и двигатель приходит во вращение (1-й такт на рис. 5.3). Вместе с ротором поворачивается и СЭ ДПР. При повороте ротора на угол чуть больший СЭ будет воздействовать сразу на два ЧЭ: на "А" и на "В". Это значит, что будут открыты сразу два транзистора: и . Ток будет протекать по обеим обмоткам А и В. Появится результирующая НС статора , которая повернется на по сравнению с первым положением (2-й такт на рис. 5.3).

Рис. 5.3. Первых 3 такта в работе бесконтактного двигателя постоянного тока

Эта НС продолжает взаимодействовать с полем постоянного магнита; двигатель продолжает развивать вращающий момент.

Когда угол поворота станет чуть больше , транзистор закроется, ток будет проходить только по обмотке В. Поле ротора будет взаимодействовать только с НС этой обмотки, однако вращающий момент по-прежнему будет воздействовать на ротор двигателя и вращать его в том же направлении (3-й такт на рис. 5.3). В конечном итоге двигатель разовьет такую скорость, при которой его момент будет уравновешиваться моментом нагрузки. двигатель ток бесконтактный тихоходный ротор

Если бы бесконтактный двигатель имел обмоток, чувствительных элементов и транзисторов столько же, сколько обычный двигатель имеет коллекторных пластин, то по своим свойствам и характеристикам они ничем бы не отличались друг от друга. Однако увеличение числа элементов сильно усложняет конструкцию машины. Поэтому в реальных двигателях число обмоток, а соответственно, и число чувствительных элементов и транзисторов не превышает 3-4.

Малое число обмоток обусловливает ряд особенностей работы бесконтактного двигателя постоянного тока.

1. Пульсация вращающего момента - возникает вследствие скачкообразного перемещения НС статора (см. положения 1,2,3 рис. 5.3). В соответствии с общими законами электромеханического преобразования энергии момент бесконтактного двигателя может быть определен как скалярное произведение магнитного потока ротора и НС взаимодействующих обмоток статора

(5.1)

где - постоянный коэффициент; - угол между потоком ротора и НС статора.

Так как при вращении двигателя угол непрерывно меняется, то и момент двигателя не остается постоянным.

2. Реакция якоря периодически изменяется, становясь то поперечной, то продольно намагничивающей, то продольно размагничивающей (рис. 5.4). Объясняется это опять-таки скачкообразным перемещением НС статора (якоря). Размагничивающее действие поля статора особенно сильно при пуске двигателя, т.к. при этом противо-ЭДС равна 0, а ток - наибольший. С этим необходимо считаться при выборе постоянных магнитов, стабилизация которых происходит в режиме короткого замыкания.

Рис. 5.4. Реакция якоря в бесконтактном двигателе постоянного тока

3. Пульсация токов в обмотках статора и суммарного тока двигателя объясняется дискретным питанием обмоток (в тот момент, когда открыты два транзистора, потребляемый ток вырастает в два раза по сравнению с режимом, когда открыт только один транзистор).

4. Влияние индуктивности обмоток статора. В обычном двигателе секции якоря маловитковые, поскольку общее число витков якоря делится на большое число секций. Индуктивность таких секций сравнительно небольшая. В бесконтактном двигателе общее число витков якоря разбивается на 3-4 обмотки (секции). В результате секции получаются многовитковыми, а, следовательно, обладающими большой индуктивностью т.к.

С учетом ряда допущений уравнение напряжения для якоря можно записать в виде

(5.2)

Решая его относительно тока, получим

, (5.3)

где - электромагнитная постоянная времени.

Выражение перед круглой скобкой есть ток якоря при отсутствии индуктивности. Тогда

. (5.4)

При больших скоростях, когда время коммутации невелико, ток в обмотках не успевает достигать установившегося значения. Его эффективное значение становится меньше, чем при .

Вращающий момент прямо пропорционален току якоря, поэтому

(5.5)

или

(5.6)

Анализ выражения (5.6) показывает, что момент имеет две составляющие. Первую - не зависящую от времени. Она равна моменту при отсутствии индуктивности. Вторую - переменную. Она появляется из-за индуктивности обмоток. Эта составляющая при всех скоростях имеет отрицательное значение . Поэтому можно утверждать, что, как и ток, вращающий момент бесконтактного двигателя меньше, чем вращающий момент обычного коллекторного двигателя.

Подставим значение ЭДС в формулу (5.6), получим механическую характеристику бесконтактного двигателя

(5.7)

Выразим эту характеристику в относительных единицах, приняв за базисный момент пусковой момент (, ), а за базисную скорость - скорость холостого хода (, ). Время

; .

Рис. 5.6. Механические характеристики бесконтактного двигателя постоянного тока при разных значения и :

Разделим обе части уравнения (5.7) на :

. (5.8)

Обозначим . С учетом получим

, (5.9)

где - относительная скорость двигателя.

На рис. 5.6 показаны механические характеристики бесконтактного двигателя при разных индуктивностях обмоток статора L. Видно, что с увеличением L нелинейность характеристик увеличивается.

Частоту вращения бесконтактных двигателей можно регулировать в широких пределах путем изменения напряжения питания.

Однако на практике чаше применяется импульсный способ, сущность которого заключается в изменении не величины постоянно подводимого напряжения, а длительности питания двигателя номинальным напряжением.

Датчики положения ротора. Датчики положения ротора определяются их чувствительными элементами, которые могут быть построены с использованием ЭДС Холла, фотоэффекта и т.д.

Рис. 5.7. Датчик положения ротора трансформаторного типа

Достаточно широкое распространение получили датчики электромагнитного - трансформаторного типа. На рис. 5.7. показан один из них.

Чувствительными элементами датчика являются три трансформатора (, , ), сдвинутыми в пространстве на 120 эл. град. Сердечники трансформаторов выполняются из быстронасыщающихся материалов - феррита, пермалоя и тр. Первичные обмотки трансформаторов (I) питаются напряжением высокой частоты (порядка нескольких килогерц) от маломощного источника. Вторичные обмотки через диоды включаются в базы соответствующих транзисторов.

Ротор датчика состоит из постоянного магнита 1, полюсного наконечника 2, выполненного из магнитомягкого материала, и немагнитного полуцилиндра 3.

Элементам конструкции датчика придаются такие формы и они располагаются так, чтобы сердечники трансформаторов, перекрытые полюсным наконечником 2, были насыщенными. В этом случае ЭДС вторичных обмоток трансформаторов (II) практически равны нулю и сигналы на базы транзисторов не поступают. Управляющие сигналы поступают только от тех трансформаторов, сердечники которых не насыщены.

Вопросы:

1) Нарисуйте диаграмму НС обмоток статора (подобную положениям 1,2,3 на рис. 5.3) при условии, что дуга чувствительного элемента не 180° , а 120° .

2) Чему равна величина суммарного тока, потребляемого двигателем из сети, при различных углах поворота ротора и дуге ЧЭ в ?

Тихоходные двигатели

В технике часто возникает потребность в двигателях с низкими скоростями вращения (от единиц до нескольких десятков оборотов в минуту) без использования механических редукторов. Применение редукторов нежелательно по причинам их повышенного шума, значительных масс и габаритов, люфтов и ряда других отрицательных последствий. Малые скорости вращения микродвигателей можно получить следующими принципиально разными способами:

1) выполнением дробных обмоток, т.е. обмоток с числом пазов на полюс и фазу ;

2) использованием принципа электромагнитной редукции;

3) выполнением двигателей с катящимся или волновым ротором.

Дробные обмотки. Получение малых скоростей путем увеличения числа пар полюсов (при ) в микромашинах невозможно из-за ограниченных габаритов последних. Это тем более затруднительно, что во многих случаях они выполняются на повышенные частоты (200, 400 и более герц). Использование обмоток с позволяет решить задачу. Однако не всякое значение q даст положительный результат.

В нашем случае число пазов на полюс и фазу можно записать в виде

, (6.1)

где: - число пазов статора; - число пар полюсов; - число фаз; и - положительные числа.

Для того чтобы получить удовлетворительные обмотки, надо выполнить ряд условий:

1) и должны быть несократимыми числами;

2)знаменатель дроби не должен быть кратным числу фаз. Другими словами, для трехфазных обмоток не должно быть кратным 3, а для двухфазных - четным числом;

3) и связаны соотношением , где - целое число.

Иногда возникает задача выполнить обмотку с максимальным числом пар полюсов в статоре с заданным числом пазов . Тогда

. (6.2)

В этом случае числитель дроби выбирается из условия

(6.3)

Кривая НС обмоток с дробным содержит большое число высших гармоник. Причем, чем ближе к предельному значению, тем ярче выражены эти гармоники. Поэтому значительная часть момента двигателя теряется на преодоление тормозных составляющих. Энергетические показатели таких двигателей, как правило, невысокие.

В качестве примера выполним двухфазную обмотку с числом пазов и максимально возможным числом пар полюсов.

Решая (6.2), получаем

.

Из условия (6.3) находим числитель дроби :

, т.е. .

Следовательно .

Шаг обмотки по пазам

Рис. 6.1. Звезда пазовых ЭДС

Находим угол сдвига пазовых ЭДС в электрических градусах

.

Строим звезду пазовых ЭДС (рис. 6.1) и разбиваем ее на фазные зоны (в нашем случае на

4) Рисуем пазы, указываем направление токов, приняв, что в зонах Y, A они текут вверх, а в зонах B, X - вниз (рис. 6.2)

Рис. 6.2. Схема дробной обмотки ()

Наконец соединяем катушки наиболее короткими перемычками и получаем нужную обмотку.

На рис. 6.3 для момента времени, когда ток в фазах А и Y равен , построена диаграмма НС. Видно, что кривая намагничивающих сил далеко не синусоидальная, т.е. она содержит большое число ярко выраженных гармоник. Однако обмотка все-таки создает магнитное поле с 10 полюсами.

Задачи:

1) Построить кривую НС для момента времени, когда ток в фазе А максимальный, а в фазе В равен нулю.

2) Перечислить все возможные значения дробного , если , . При каком гармонический состав поля будет наиболее благоприятным?

Рис. 6.3. Кривая намагничивающих сил дробной обмотки ()

ДВИГАТЕЛИ С ЭЛЕКТРОМАГНИТНОЙ РЕДУКЦИЕЙ

Индукторные машины известны более 100 лет, однако, применялись они в основном в качестве высокочастотных генераторов. Очевидно, что, используя свойство обратимости электрических машин, можно в двигательном режиме получить весьма низкие скорости вращения.

Принцип работы и основные соотношения параметров двигателей с электромагнитной редукцией (в дальнейшем будем называть индукторными) рассмотрим на основе метода гармонических зубцовых проводимостей, предложенного профессором А.И. Вольдеком для исследования полей в асинхронных машинах.

Пусть на статоре и на роторе имеют место открытые пазы, а левые грани 1-го зубца статора и 1-го зубца ротора совпадают (рис.6.4,а). Этому положению соответствует диаграмма удельной магнитной проводимости зазора (проводимости на единицу длины машины), изображенная в виде прямоугольников с шириной, равной зубцовым перекрытиям (рис. 6.4,б). Повернем ротор на угол , при котором совпадут левые грани двух следующих зубцов статора и ротора (рис. 6.4, а'). Диаграмм проводимости сместится на угол (рис. 6.4,б'), который может быть значительно больше угла поворота ротора. Таким образом, мы получили двигатель, скорость вращения которого значительно меньше скорости вращения магнитного поля статора.

Проведя огибающую усредненных значений проводимостей (штриховые линии на рис. 6.4,б и б'), получим периодическую кривую, содержащую постоянную составляющую и переменную с числом периодов (пар полюсов) . Если разложить кривую в ряд Фурье, ограничиться постоянной составляющей ld0 и первой зубцовой гармоникой проводимости (рис. 6.4,в), то удельную проводимость можно представить в следующем виде [6]:

Рис. 6.4. К вопросу о принципе электромагнитной редукции

. (6.4)

где - удельная магнитная проводимость равномерного воздушного зазора; - амплитуда первой зубцовой гармоники проводимости при двухсторонней зубчатости статора и ротора; - угол смещения ротора; - угловая координата.

При равномерном вращении ротора с угловой скоростью угол смещения . Для определения угловой скорости вращения гармоники проводимости приравняем к постоянной величине аргумент тригонометрической функции

Продифференцировав это равенство по t и принимая во внимание, что , получим

. (6.5)

При гармоника вращается согласно с ротором, при - встречно ротору.

В общем случае индукторные двигатели имеют две обмотки: обмотку возбуждения и рабочую обмотку. Различают двигатели с осевым и радиальным возбуждением.

Осевое возбуждение (рис. 6.5). Тороидальная обмотка возбуждения (роль обмотки могут выполнять постоянные магниты) питается постоянным током; ее намагничивающая сила создает в зазоре униполярное магнитное поле, индукция которого

(6.6)

Видно, что это поле содержит две составляющие: постоянную и переменную, являющуюся зубцовой гармоникой, число пар полюсов и угловая скорость вращения которой следующие:

; . (6.7)

Рис.6.5. Индуктивный двигатель с осевым возбуждением

Рабочая обмотка статора (РО) питается переменным током и создает спектр гармоник намагничивающих сил, порядки и амплитуды которых зависят от схемы обмотки, ее шага, числа пазов:

, (6.8)

где - амплитуда НС n-й гармоники; - угловая частота тока;

- число пар полюсов.

В хорошо спроектированной машине обмоточные гармоники высоких порядков выражены слабо, поэтому будем считать, что в нашем двигателе имеет место лишь первая гармоника НС . Эта НС создает свое магнитное поле. Если ограничиться первой зубцовой гармоникой проводимости (6.4) и учесть, что , то индукция этого поля при двухсторонней зубчатости будет

. (6.9)

Поле рабочей обмотки содержит 3 составляющие: одну, обусловленную постоянной составляющей магнитной проводимости зазора, и две зубцовые гармоники, порядки и скорости вращения которых

; . (6.10)

Магнитные поля обеих обмоток взаимодействуют друг с другом, но только те гармоники образуют однонаправленные моменты, числа пар полюсов и скорости вращения которых одинаковые. Из сопоставления (6.7) и (6.10) получаем соотношения чисел пазов и скорость вращения индукторных двигателей с осевым возбуждением:

; .

Коэффициент редукции (отношение угловой скорости поля основной обмотки к угловой скорости ротора) для указанных двигателей

. (6.12)

Радиальное возбуждение (рис. 6.6). Обе обмотки (возбуждения и рабочую) располагают на статоре. Предположим, что обмотка возбуждения имеет р пар полюсов и питается током частоты f, а рабочая обмотка имеет пар полюсов и питается током частоты . Каждая обмотка создает свой спектр гармоник магнитного поля, причем одна из них - гармоник, связанных с числом зубцов статора, а другая - с числом зубцов ротора.

Рис. 6.6. Индукторный двигатель с радиальным возбуждением

Как и в предыдущем случае, условием создания однонаправленного момента будет равенство чисел пар полюсов и угловых скоростей вращения гармоник полей обеих обмоток. Выполнив соответствующие действия, получим соотношения чисел пазов статора и ротора, а также частоты вращения ротора индукторных двигателей с радиальным возбуждением

; или . (6.13)

Выражение частоты вращения (6.13) свидетельствует о том, что индукторные двигатели повторяют известные двигатели переменного тока, только в новом качестве - в качестве тихоходных. Действительно, если , , то , т.е. двигатель является синхронным. Если , , то , т.е. двигатель работает как асинхронный. При этом скорость вращения двигателя обратно пропорциональна не числу пар полюсов , а числу пазов ротора , которое может быть во много раз большим , что позволяет существенно понизить скорость вращения машины. В таблице 1 приведены основные типы индукторных двигателей.

Таблица 1

Тип двигателя

Число зубцов ротора

Скорость ротора

Коэффициент редукции

Схема обмоток

Синхронный реактивный

Синхронный с осевым возбуждением

Синхронный с радиальным возбуждением

Синхронный двойного питания

Асинхронный

К недостаткам индукторных двигателей следует отнести сравнительно низкие энергетические показатели, что объясняется малой величиной энергии зубцовых гармоник поля.

Двигатели с катящимся ротором

Принципиальной особенностью двигателей с катящимся ротором (ДКР), отличающей их от других машин, является эксцентричное расположение ротора в расточке статора. Вращающий момент здесь создается за счет сил одностороннего магнитного притяжения.

Принцип действия ДКР рассмотрим с помощью рис. 6.7, на котором изображен статор с эксцентрично расположенным ротором. Допустим, что обмотка статора создает несимметричное магнитное поле, максимум которого в данный момент приходится на т.А. Несимметричное поле создает силу одностороннего магнитного притяжения, под действием которой ротор будет соприкасаться со статором в той же т. А (рис.6.7,а). По мере вращения магнитного поля сила одностороннего притяжения перемещается по расточке статора с синхронной скоростью. В любой момент времени ее можно разложить на составляющие и (рис. 6.7,б). Видно, что , притягивая ротор к статору, заставляет его катиться по внутреннему диаметру последнего с синхронной скоростью. Ротор же медленно поворачивается вокруг собственного центра, причем в противоположном направлении. (На рис. 6.7. поле статора повернулось на против часовой стрелки, а точка , принадлежащая телу ротора, повернулась по часовой стрелке на угол , который заметно меньше ). Это вращение и является выходным.

Рис. 6.7. К вопросу о принципе действия ДКР

В конечном итоге при повороте поля статора на один оборот ротор повернется на угол, равный разности длин окружностей статора и ротора, деленной на радиус ротора :

.

Переходя к частоте вращения и учитывая, что , получим

(6.14)

Так как в ДКР , то существенно меньше , т.е. коэффициент редукции здесь весьма значительный:

. (6.15)

В ДКР различают два момента: электромагнитный момент , вызывающий вращение центра ротора вокруг центра статора со скоростью

(6.16)

и момент , приложенный к ротору и вызывающий медленное вращение ротора вокруг собственного центра со скоростью .

(6.17)

где - сила, возникающая в точке касания ротора о статор, равная по значению и противоположно ей направленная.

Выражение зависит от типа двигателя, электромагнитных нагрузок и способа питания. Для большинства из них

, (6.18)

где: - максимальное значение вращающего момента, зависящее от значений магнитного потока статора и эксцентриситета; - угол между вектором НС статора и продольной осью ротора, под которой понимают линию, проходящую через центр ротора и точку касания ротора и статора.

Двигатели с катящимся ротором могут работать в синхронном и асинхронном режимах. Определяется это соотношением силы трения в точке касания и составляющей . Если , проскальзывание невозможно и ДКР работает в синхронном режиме. В противном случае ротор вращается с проскальзыванием и машина переходит в асинхронный режим.

Несимметричное вращающееся магнитное поле может быть получено различными способами, например, наложением униполярного поля, созданного тороидальной обмоткой постоянного тока, на двухполюсное симметричное вращающееся поле обмотки переменного тока (рис. 6.8, а), или наложением вращающегося двухполюсного поля на вращающееся же четырехполюсное поле (рис. 6.8,б). Этот способ основан на том, что сила одностороннего магнитного притяжения пропорциональна квадрату нормальной составляющей индукции: . В ряде современных ДКР несимметричное поле создают с помощью специальных схем обмоток и электронных схем питания их.

Рис. 6.8. Способы получения несимметричного магнитного поля

В настоящее время существует большое количество исполнений ДКР, весьма разнообразных по роду тока, по характеру изменения скорости, по форме обкатываемых поверхностей, по назначению и т.д.

На рис. 6.9 показана конструктивная схема ДКР с униполярным возбуждением. Тот факт, что в этом двигателе не ротор катится по статору, а катокротора катится по катку статора, не меняет сути дела, а лишь повышает надежность машины, поскольку катки можно сделать из износостойкой стали.

рис. 6.9: 1 - корпус; 2 - стальной каток статора; 3 - ферромагнитное кольцо; 4 - тороидальная катушка, питаемая постоянным током и создающая униполярное магнитное поле; 5 - статор с обмоткой, создающей вращающееся магнитное поле; 6 - стальной каток ротора; 7 - магнитопровод, необходимый для замыкания униполярного потока; 8 - сердечник ротора без обмотки.

Достоинства двигателей с катящимся ротором

1) возможность получения очень малых скоростей (коэффициент редукции достигает 1500);

2) хорошее быстродействие (время разгона не превышает 0,01 с);

3) большие пусковые моменты;

4) небольшая кратность пускового тока ;

5) отсутствие подшипников, что обеспечивает работу машины практически без смазки.

Недостатки двигателей с катящимся ротором

1) сложность конструкции звена, обеспечивающего передачу несоосного вращения на вал машины. Требуются механизмы типа кардана, альстома, сешерона;

2) вибрации и шум, обусловленные действием центробежных и аксиальных сил, вызванных несоосным вращением больших масс;

3) неизбежный технологический разброс размеров обкатываемых поверхностей, а следовательно, и разброс выходных скоростей вращения ДКР;

4) сравнительно небольшой срок службы вследствие износа поверхностей катков.

ДВИГАТЕЛИ С ВОЛНОВЫМ РОТОРОМ

Волновые двигатели (ВД) представляют собой конструктивное объединение электрической машины и волновой передачи. Особенностью таких двигателей является гибкий, деформирующийся в радиальном направлении ротор. Одна из возможных конструкций ВД приведена на рис. 6.10.

Рис. 6.10. Двигатель с волновым ротором

1 - корпус; 2 - статор с обмоткой, создающей вращающееся магнитное поле; 3 - жесткий зубчатый венец статора; 4-гибкий зубчатый венец ротора; 5 - ротор, выполненный в виде тонкостенного стакана; 6 - эластичный магнитопровод ротора.

Рис. 6.11. К вопросу о принципе действия двигателя с волновым ротором

При отсутствии питания ротор имеет правильную цилиндрическую форму. Его зубчатый венец не сцепляется с венцом статора.

При подаче питания на обмотки статора возникает вращающееся магнитное поле, в котором на магнитопровод ротора действуют силы магнитного притяжения

, (6.20)

Ротор деформируется, и его зубчатый венец входит в зацепление с венцом статора. Количество точек зацепления равно количеству полюсов машины (рис. 6.11).

Рис.6.11. К вопросу о принципе действия двигателя с волновым ротором

Точки зацепления бегут синхронной скоростью, и гибкий венец катится по поверхности жесткого. При этом он вместе с ротором медленно поворачивается в сторону противоположную вращению поля. Скорость ротора равна

(6.21)

где , - число зубцов гибкого и жесткого венцов.

Достоинства волновых двигателей похожи на достоинства двигателей с катящимся ротором:

1) большие вращающие моменты при относительно малой массе;

2) высокие значения момента самоторможения и практически отсутствие выбега;

3) способность к частым пускам и реверсам.

Недостатком ВД следует считать сложность конструкции и технологии изготовления эластичного ротора.

Размещено на Allbest.ru

...

Подобные документы

  • История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.

    курсовая работа [1,3 M], добавлен 14.01.2018

  • Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа [1,6 M], добавлен 25.02.2010

  • Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

    презентация [1,5 M], добавлен 09.11.2013

  • Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.

    реферат [3,2 M], добавлен 12.11.2009

  • Электрический привод с тиристорными преобразователями и двигателями постоянного тока как основной тип привода станков с ЧПУ. Основные характеристики электропривода и тип двигателя постоянного тока. Достоинства и недостатки высокомоментных двигателей.

    курсовая работа [1,5 M], добавлен 14.12.2012

  • Приведение переменных и параметров рабочего механизма к валу исполнительного двигателя. Основные характеристики и параметры электропривода. Силовые полупроводниковые преобразователи, принцип их действия и структура. Схемы двигателей постоянного тока.

    дипломная работа [1,0 M], добавлен 30.04.2011

  • История создания и принцип работы электродвигателя. Способы возбуждения электрических двигателей постоянного тока. Основные типы двигателей и их разновидности. Конструкция двухтактного двигателя внутреннего сгорания. Принцип работы зажигания двигателя.

    презентация [419,0 K], добавлен 05.05.2011

  • Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

    реферат [166,2 K], добавлен 11.12.2010

  • Исторический обзор путей развития электрического двигателя постоянного тока. Открытие явления электромагнитной индукции М. Фарадеем в 1831 году. Выявление основных направлений и идей, которые привели к созданию современной конструкции двигателя.

    отчет по практике [5,0 M], добавлен 21.11.2016

  • Назначение и принцип работы тахогенератора. Применение устройств, изготовленных по технологии LongLife. Тахогенераторы постоянного тока в схемах автоматики. Конструкция и принцип действия асинхронного тахогенератора. Амплитудная и фазовая погрешность.

    контрольная работа [592,9 K], добавлен 25.09.2011

  • Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.

    презентация [4,1 M], добавлен 03.12.2015

  • Основные типы двигателей: двухтактные и четырехтактные. Конструкция двухтактного двигателя внутреннего сгорания. Принцип зажигания двигателя. История создания и принцип работы электродвигателя. Способы возбуждения электродвигателей постоянного тока.

    реферат [1,1 M], добавлен 11.10.2010

  • Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения. Максимально-токовая защита электропривода. Скоростные характеристики двигателя. Схемы силовых цепей двигателей постоянного тока и асинхронных двигателей.

    курсовая работа [2,5 M], добавлен 30.03.2014

  • Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.

    лабораторная работа [904,2 K], добавлен 09.02.2014

  • Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

    реферат [3,6 M], добавлен 17.12.2009

  • Расчет механических характеристик двигателей постоянного тока независимого и последовательного возбуждения. Ток якоря в номинальном режиме. Построения естественной и искусственной механической характеристики двигателя. Сопротивление обмоток в цепи якоря.

    контрольная работа [167,2 K], добавлен 29.02.2012

  • Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.

    презентация [4,9 M], добавлен 09.11.2013

  • Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.

    учебное пособие [7,3 M], добавлен 23.12.2009

  • Понятие и назначение электронных генераторов, их классификация и разновидности, структура и основные элементы, принцип действия и сферы применения. Характеристика, возможные режимы работы генераторов постоянного тока и автоматического включения резерва.

    шпаргалка [1,1 M], добавлен 20.01.2010

  • Питание двигателя при регулировании скорости изменением величины напряжения от отдельного регулируемого источника постоянного тока. Применение тиристорных преобразователей в электроприводах постоянного тока. Структурная схема тиристорного преобразователя.

    курсовая работа [509,4 K], добавлен 01.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.