Основы теории однофазных и несимметричных двухфазных микромашин переменного тока

Намагничивающие силы и магнитные поля несимметричных однофазных и двухфазных микромашин. Особенность частоты вращения эллиптического фона. Метод симметричных составляющих применительно к асимметричным двигателям переменного тока с двумя обмотками.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 25.07.2015
Размер файла 219,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основы теории однофазных и несимметричных двухфазных микромашин переменного тока

Введение

Характерная особенность микромашин переменного тока заключается в том, что в подавляющем большинстве случаев они являются несимметричными двухфазными машинами. Причиной несимметрии могут быть разные числа витков в обмотках статора, сдвиг намагничивающих сил в пространстве и во времени на углы, отличные от 90о, неравномерные воздушные зазоры и некоторые другие обстоятельства.

Однофазными принято называть микромашины не только с одной обмоткой на статоре, но и с двумя обмотками, сдвинутыми на 90 электрических градусов, но питающимися от однофазной сети. И хотя машины с одной обмоткой на статоре встречаются крайне редко, рассмотрение теории начнем с этих машин.

1. Намагничивающие силы и магнитные поля однофазных микромашин

Известно, что при питании однофазной распределенной обмотки статора переменным током возникает пульсирующая намагничивающая сила (НС), первая гармоника которой в каждой точке воздушного зазора изменяется по следующему закону:

где: - амплитуда намагничивающей силы; - координата времени (фаза); - координата по расточке статора; - полюсное деление.

Магнитное поле такой обмотки неподвижно в пространстве, но изменяется во времени с частотой сети от до , т.е. пульсирует. Используя тригонометрические преобразования, выражению (1.1) можно придать вид:

Каждое слагаемое (1.2) представляет волну НС по величине равную половине амплитуды исходной НС, но в отличие от (1.1) не пульсирующую, а вращающуюся в пространстве с синхронной угловой частотой . Одна из них вращается согласно с ротором и называется прямой, другая вращается встречно ротору и называется обратной.

Волны НС создают свои магнитные поля.

Таким образом, пульсирующее магнитное поле можно представить двумя круговыми, вращающимися в разные стороны одинаковыми магнитными полями.

Задача 1.1. построить и определить длину вектора пульсирующей НС как результат сложения двух векторов , вращающихся в разные стороны, в моменты времени где период (время одного оборота). В момент времени НС совпадают.

1.1 Намагничивающие силы и магнитные поля несимметричных двухфазных микромашин

Рассмотрим машину с двумя обмотками на статоре А и В, числа витков которых не равны друг другу . Обмотки сдвинуты в пространстве на угол , токи в обмотках сдвинуты во времени на угол (рис.1.1.).

диаграмма НС несимметричной двухфазной микромашины переменного тока.

При питании обмоток переменными токами и возникают пульсирующие НС и , каждую из которых можно представить в виде двух половинок

и

вращающихся в разные стороны. При этом и вращаются в одном направлении, а и - в противоположном.

В момент времени, когда и совпадают с осью обмотки А, и будут сдвинуты относительно оси обмотки В на угол , так как на такой же угол сдвинуты токи и .

Составляющие и , вращаясь с синхронной скоростью, остаются неподвижными друг относительно друга, поэтому их можно сложить и получить результирующую прямовращающуюся НС

Поступая аналогично для обратновращающихся НС, получим

По правилам тригонометрии сумма углов, прилежащих к одной стороне параллелограмма равна , поэтому

Тогда с учетом (1.3) формулы (1.4) и (1.5) принимают вид

Поскольку , можно сделать вывод о том, что изменение пространственного или временного углов сдвига НС в одинаковой мере сказывается на величине и характере магнитного поля машины.

Намагничивающие силы F1 и разные, но неизменные по величине, вращаются с угловой частотой в противоположных направлениях. В любой момент времени эти силы можно сложить и получить результирующую НС , которая, очевидно, вращается в сторону большей НС и при этом изменяется по величине. Построив траекторию, описываемую концом вектора , получим эллипс.

Следовательно, в несимметричных двухфазных микромашинах в общем случае образуются эллиптические намагничивающие силы и эллиптические вращающиеся магнитные поля. Эти поля можно заменить двумя круговыми, разными по величине полями, вращающимися во встречных направлениях.

Задача 1.2. Построить вектор НС, получаемый как сумму двух вращающихся в разные стороны НС и = в моменты времени: . При и совпадают.

2. Частота вращения эллиптического поля

На рис. 2.1 показаны векторы прямо и обратно вращающихся НС ( или ), а также вектор результирующей НС в различные моменты времени. Из рисунка видно, что большая ось эллипса равна удвоенной сумме, а малая ось удвоенной разности намагничивающих сил и :

.

Из последнего выражения легко увидеть, что при равенстве нулю одной из НС ( или ), поле становится круговым, а при равенстве НС друг другу () оно превращается в пульсирующее, т.е. эллипс вырождается в линию.

К вопросу о частоте вращения эллиптического поля

Будем фиксировать через каждые прямо и обратно вращающиеся НС , и их сумму . За одно и то же время векторы и каждый раз будут поворачиваться на углы , а их сумма первый раз повернется на угол, второй раз на угол и т. д. Из рис. 1.2 видно, что , а поскольку временные отрезки одинаковые, это означает, что вращается с переменной частотой.

Следовательно, эллиптическое магнитное поле вращается с переменной угловой частотой: большей возле малой оси эллипса и меньшей возле большой оси эллипса. магнитный микромашина симметричный ток

Исследованиями установлено [1], что

,

где: - коэффициент формы эллипса.

Осциллограмма мгновенной скорости эллиптического поля.

Используя формулу (2.1), найдем максимальные и минимальные значения мгновенной скорости вращения эллиптического поля.

Если , то , , , а поскольку коэффициент меньше 1, . Если , то , , , а поскольку коэффициент меньше 1, .

На рис. 2.2 показана осциллограмма мгновенной скорости вращения эллиптического поля.

Эллиптическое поле вызывает неодинаковое насыщение участков магнитной цепи (где поле больше, там и насыщение больше), неодинаковые потери в стали, неодинаковые нагревы этих участков, магнитострикционные шумы.

Задача 2.1. Определите во сколько раз и отличаются от синхронной , если?

2.1 Получение кругового вращающегося магнитного поля в несимметричных двухфазных микромашинах

Эллиптическое магнитное поле станет круговым, если одна из составляющих, например , будет равна 0:

Формула (2.2) справедлива, если:

1.

2. .

Отсюда вытекают два условия получения кругового магнитного поля в несимметричных двухфазных микромашинах:

1. амплитуды намагничивающих сил должны быть равны по величине, т.е.

2. сумма углов их пространственного и временного сдвига должна быть равна , т.е. .

Так как , то в формуле (1.5) или . Тогда величина круговой НС будет

Анализ формулы (1.9) показывает, что магнитное поле хотя и круговое, но не максимальное, если углы и каждый в отдельности не равен .

Задача 2.1. Определить, во сколько раз величина круговой НС при и отличается от значения при .

3. Пусковые моменты несимметричных двухфазных микромашин

Известно, что пусковые моменты асинхронных и синхронных двигателей Известно, что пусковые моменты асинхронных и синхронных двигателей при асинхронном пуске пропорциональны квадрату фазного напряжения, т.е. . Поскольку , то при отсутствии насыщения магнитной цепи , следовательно, , где - коэффициент пропорциональности.

.

Подставляя (1.5), (1.6) в последнее равенство, получим:

С учетом того, что

окончательно будем иметь:

Следовательно, пусковой момент несимметричного двухфазного двигателя пропорционален произведению амплитуд намагничивающих сил и синусам углов их пространственного и временного сдвигов. Важно отметить, что максимум момента будет при и .

4. Метод симметричных составляющих применительно к несимметричным двухфазным микромашинам

Для исследования несимметричных двухфазных микромашин могут использоваться различные методы.

1. Метод двух реакций. Суть метода заключается в том, что намагничивающие силы, поля и потокосцепления обмоток статора и ротора раскладываются по двум взаимно перпендикулярным осям. Метод особенно эффективен при анализе явнополюсных синхронных микромашин с неравномерным воздушным зазором.

2. Метод вращающихся полей. Он основан на представлении любой m - фазной машины суммой m однофазных машин, в каждой из которых имеются прямо и обратно вращающиеся поля.

3. Метод симметричных составляющих. По существу сводится к тому, что двухфазная несимметричная система токов или НС раскладывается на две симметричные системы: прямую и обратную, каждая из которых создает свое круговое магнитное поле, вращающееся в прямом или обратном направлении. Метод получил наибольшее признание в трудах Ю. С. Чечета и его учеников Ф. М. Юферова, Е. М. Лопухиной и др.

Подавляющее большинство современных микромашин переменного тока имеют на статоре две обмотки, сдвинутые в пространстве на 90 эл. градусов, что продиктовано стремлением получить максимальное круговое поле при минимальных токах в обмотках. Вместе с тем, редко удается сдвинуть токи в обмотках на угол, равный во времени. Поэтому на практике чаще приходится иметь дело с несимметричными временными системами токов, намагничивающих сил, магнитных потоков и т.д.

Согласно методу симметричных составляющих любую систему двух векторов и разных по величине, сдвинутых во времени на произвольный угол, можно разложить на две симметричные составляющие системы равных по величине векторов и сдвинутых во времени на .

Несимметричная система векторов (а) и ее симметричные
составляющие (б, в, г).

Одна из симметричных систем имеет порядок чередования векторов, совпадающий с исходной, и называется прямой последовательностью, другая имеет обратный порядок чередования векторов и называется обратной последовательностью.

Выразим заданные векторы и через симметричные составляющие

;

Как видно из рис. 1.4, симметричные составляющие связаны между собой соотношением:

,

Подставляя (2.6) в (2.5) и решая уравнения с двумя неизвестными, получим выражения симметричных составляющих через векторы исходной системы [1]:

; .

На рис. 2.4 выполнено графическое разложение несимметричной системы векторов и B на симметричные составляющие с использованием уравнений и.

На практике при анализе двухфазных микромашин в качестве векторов A и B используют векторы НС и, потоков и , токов и и т. д.

Графическое разложение несимметричной системы векторов на симметричные составляющие

Метод симметричных составляющих пригоден не только для анализа несимметричных двухфазных микромашин, но и как предельный случай несимметрии - однофазных микромашин, полагая, что ток и его симметричные составляющие в одной из обмоток, которой фактически нет, равен нулю.

Задача 2.2. Разложить графически несимметричные системы векторов на симметричные составляющие.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет электрических цепей переменного тока и нелинейных электрических цепей переменного тока. Решение однофазных и трехфазных линейных цепей переменного тока. Исследование переходных процессов в электрических цепях. Способы энерго- и материалосбережения.

    курсовая работа [510,7 K], добавлен 13.01.2016

  • Классификация и основные принципы действия магнитных усилителей. Двухтактные магнитные усилители. Управление величиной переменного тока посредством слабого постоянного тока. Схемы автоматического регулирования электродвигателей переменного тока.

    курсовая работа [1,6 M], добавлен 01.06.2012

  • Анализ состояния цепей постоянного тока. Расчет параметров линейных и нелинейных электрических цепей постоянного тока графическим методом. Разработка схемы и расчет ряда показателей однофазных и трехфазных линейных электрических цепей переменного тока.

    курсовая работа [408,6 K], добавлен 13.02.2015

  • Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.

    реферат [122,8 K], добавлен 27.07.2013

  • Сила тока в резисторе. Действующее значение силы переменного тока в цепи. График зависимости мгновенной мощности тока от времени. Действующее значение силы переменного гармонического тока и напряжения. Сопротивление элементов электрической цепи.

    презентация [718,6 K], добавлен 21.04.2013

  • Изучение особенностей соединения фаз приемников по схеме "звезда". Опытное исследование распределений токов, линейных и фазных напряжений при симметричных и несимметричных режимах работы трехфазной цепи. Выяснение роли нейтрального провода в цепи.

    лабораторная работа [89,6 K], добавлен 22.11.2010

  • Особенности управления электродвигателями переменного тока. Описание преобразователя частоты с промежуточным звеном постоянного тока на основе автономного инвертора напряжения. Динамические характеристики САУ переменного тока, анализ устойчивости.

    курсовая работа [619,4 K], добавлен 14.12.2010

  • Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях, содержащих конденсатор и сопротивление.

    курсовая работа [4,4 M], добавлен 14.05.2010

  • Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа [685,5 K], добавлен 28.09.2014

  • Явление резонанса в цепи переменного тока. Проверка закона Ома для цепи переменного тока. Незатухающие вынужденные электрические колебания. Колебательный контур. Полное сопротивление цепи.

    лабораторная работа [46,9 K], добавлен 18.07.2007

  • Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Определение токов во всех ветвях методом контурных токов. Расчет однофазных цепей переменного тока. Уравнение мгновенного значения тока источника, баланс мощности.

    реферат [1,3 M], добавлен 05.11.2012

  • Исследование процессов, происходящих в простейших электрических цепях переменного тока, содержащих последовательное соединение активных и индуктивных сопротивлений. Измерение общей силы тока, активной и реактивной мощности; векторная диаграмма напряжений.

    лабораторная работа [79,2 K], добавлен 11.05.2013

  • Расчет несимметричных режимов в трехфазных схемах с помощью метода симметричных составляющих. Вычисление токов и напряжений при несимметричных КЗ. Построение векторной диаграммы по месту КЗ. Этапы преобразования схемы замещения прямой последовательности.

    курсовая работа [991,2 K], добавлен 31.03.2012

  • Анализ и расчет линейных электрических цепей постоянного тока. Первый закон Кирхгоффа. Значение сопротивления резисторов. Составление баланса мощностей. Расчет линейных электрических однофазных цепей переменного тока. Уравнение гармонических колебаний.

    реферат [360,6 K], добавлен 18.05.2014

  • Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях. Комплектующие персонального компьютера.

    курсовая работа [393,3 K], добавлен 10.01.2016

  • Появление идеи индукционного генератора переменного тока. Работа Николая Теслы в компании Эдисона. Совершенствования системы переменного тока. Открытие явления вращающегося магнитного поля. Тайна электромобиля Теслы. Отказ от Нобелевской премии.

    презентация [956,5 K], добавлен 14.01.2015

  • Приведение параметров сети к базисным условиям. Расчет тока трехфазного короткого замыкания методом аналитическим и расчетных кривых. Определение несимметричных и симметричных составляющих токов и напряжений в месте двухфазного короткого замыкания.

    курсовая работа [933,8 K], добавлен 21.10.2011

  • Разработка схемы электропитания группы однофазных потребителей от цепи трехфазного тока. Выбор сечения проводов с проверкой по потере напряжения. Упрощённый расчет трехфазного трансформатора необходимой мощности. Схема включения измерительных приборов.

    курсовая работа [211,0 K], добавлен 19.02.2013

  • Расчет линейных и нелинейных электрических цепей постоянного тока. Анализ состояния однофазных и трехфазных электрических цепей переменного тока. Исследование переходных процессов, составление баланса мощностей, построение векторных диаграмм для цепей.

    курсовая работа [1,5 M], добавлен 23.10.2014

  • Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ "Расчет линейных цепей постоянного тока".

    методичка [658,2 K], добавлен 06.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.