Особенности электролиза и его применение

Окислительно-восстановительное действие электрического тока в основе процесса электролиза. Принцип действия электролиза. Основные виды электродов и их характеристика. Практическое применение электролиза, его осуществление с растворимыми анодами.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 07.08.2015
Размер файла 39,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Особенности электролиза и его применение

ученицы 10 кл. "Б"

школы 1257

Масоловой Елены

Применение электролиза

Сущность электролиза.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов.

Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод, а к положительному полюсу - анод, после чего погружают их в электролизер с раствором или расплавом электролита.

Электроды, как правило, бывают металлические, но применяются и неметаллические, например графитовые (проводящие ток).

На поверхности электрода, подключенного к отрицательному полюсу источника постоянного тока (катоде), ионы, молекулы или атомы присоединяют электроны, т.е. протекает реакция электрохимического восстановления. На положительном электроде (аноде) происходит отдача электронов, т.е. реакция окисления. Таким образом, сущность электролиза состоит в том, что на катоде происходит процесс восстановления, а на аноде - процесс окисления.

В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т.п., - так называемые вторичные процессы.

Металлические аноды могут быть: а) нерастворимыми или инертными (Pt, Au, Ir, графит или уголь и др.), при электролизе они служат лишь передатчиками электронов; б) растворимыми (активными); при электролизе они окисляются.

В растворах и расплавах различных электролитов имеются разноименные по знаку ионы, т.е. катионы и анионы, которые находятся в хаотическом движении. Но если в такой расплав электролита, например расплав хлорида натрия NaCl, опустить электроды и пропускать постоянный электрический ток, то катионы Na+ будут двигаться к катоду, а анионы Cl - к аноду. На катоде электролизера происходит процесс восстановления катионов Na+ электронами внешнего источника тока:

Na+ + e - = Na0

На аноде идет процесс окисления анионов хлора, причем отрыв избыточных электронов от Cl - осуществляется за счет энергии внешнего источника тока:

Cl - e - = Cl0

Выделяющиеся электронейтральные атомы хлора соединяются между собой, образуя молекулярный хлор: Cl + Cl = Cl2, который и выделяется на аноде.

Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl - > 2Na+ + 2Cl - электролиз-> 2Na0 + Cl20

Окислительно-восстановительное действие электрического тока может быть во много раз сильнее действия химических окислителей и восстановителей. Меняя напряжение на электродах, можно создать почти любой силы окислители и восстановители, которыми являются электроды электролитической ванны или электролизера. Известно, что ни один самый сильный химический окислитель не может отнять у фторид-иона F - его электрон. Но это осуществимо при электролизе, например, расплава соли NaF. В этом случае на катоде (восстановитель) выделяется из ионного состояния металлический натрий или кальций:

Na+ + e - = Na0

на аноде (окислитель) выделяется ион фтора F-, переходя из отрицательного иона в свободное состояние:

F - e - = F0; F0 + F0 = F20

Продукты, выделяющиеся на электродах, могут вступать между собой в химическое взаимодействие, поэтому анодное и катодное пространство разделяют диафрагмой.

Практическое применение электролиза.

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т.д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т.д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов.

Электролиз может осуществляться с растворимыми анодами - процесс электрорафинирования или с нерастворимыми - процесс электроэкстракции.

Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах.

В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др.

Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов в электролизер. При пропускании тока металл, подлежащий очистке, подвергается анодному растворению, т.е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде, благодаря чему образуется компактный осадок уже чистого металла.

Примеси, находящиеся в аноде, либо остаются нерастворимыми, либо переходят в электролит и удаляются.

Гальванотехника - область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику.

Гальваностегия (от греч. покрывать) - это электроосаждение на поверхность металла другого металла, который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера.

Перед покрытием изделия необходимо его поверхность тщательно очистить (обезжирить и протравить), в противном случае металл будет осаждаться неравномерно, а кроме того, сцепление (связь) металла покрытия с поверхностью изделия будет непрочной.

Способом гальваностегии можно покрыть деталь тонким слоем золота или серебра, хрома или никеля. С помощью электролиза можно наносить тончайшие металлические покрытия на различных металлических поверхностях.

При таком способе нанесения покрытий, деталь используют в качестве катода, помещенного в раствор соли того металла, покрытие из которого необходимо получить. В качестве анода используется пластинка из того же металла.

Гальванопластика - получение путем электролиза точных, легко отделяемых металлических копий относительно значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами.

С помощью гальванопластики изготовляют бюсты, статуи и т.д.

Гальванопластика используется для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование "накладного" слоя никеля, серебра, золота и т.д.).

Кроме указанных выше, электролиз нашел применение и в других областях:

получение оксидных защитных пленок на металлах (анодирование);

электрохимическая обработка поверхности металлического изделия (полировка);

электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);

электролиз анод электрический ток

очистка воды - удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);

электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Размещено на Allbest.ru

...

Подобные документы

  • Открытия явления электролиза. Сравнение первых гальванических элементов с современными батарейками ведущих фирм мира. Процесс электролиза в расплавах электролитов. Механизм электрического тока в жидких проводниках. Основные гальванические элементы.

    отчет по практике [1,5 M], добавлен 27.05.2010

  • Метод осаждения определяемого элемента путем электролиза на предварительно взвешенном электроде. Требования к электродам, применяемым в электрогравиметрии. Подчинение законам Фарадея. Электрохимическая поляризация. Электролиз в кулонометрической ячейке.

    реферат [68,3 K], добавлен 24.01.2009

  • Понятие электрического тока и условия его возникновения. Сверхпроводимость металлов при низких температурах. Понятия электролиза и электролитической диссоциации. Электрический ток в жидкостях. Закон Фарадея. Свойства электрического тока в газах, вакууме.

    презентация [2,9 M], добавлен 27.01.2014

  • Понятие электрического тока. Закон Ома для участка цепи. Особенности протекания тока в металлах, явление сверхпроводимости. Термоэлектронная эмиссия в вакуумных диодах. Диэлектрические, электролитические и полупроводниковые жидкости; закон электролиза.

    презентация [237,4 K], добавлен 03.01.2011

  • Электрический ток в полупроводниках. Образование электронно-дырочной пары. Законы электролиза Фарадея. Прохождение электрического тока через газ. Электрическая дуга (дуговой разряд). Молния - искровой разряд в атмосфере. Виды самостоятельного разряда.

    презентация [154,2 K], добавлен 15.10.2010

  • Изучение сведений об электрической цепи, токе и законах электричества. Характеристика взаимодействия зарядов, источников тока, процесса электролиза. Анализ изобретения первых электрических конденсаторов и их использования, соединения проводников в цепи.

    реферат [26,6 K], добавлен 15.09.2011

  • Электрический ток в металлах, полупроводниках и электролитах. Зонная модель электронной проводимости металлов. Квантово-механическое объяснение сверхпроводимости в полупроводниках. Электрический ток в электролитах. Применение электролиза на производстве.

    презентация [3,8 M], добавлен 13.02.2016

  • Строение полной электрической цепи прибора для электрохимического анализа. Подразделение по признаку применения электролиза. Ионный механизм образования двойного электрического слоя. Назначение гальванического элемента и его электродвижущая сила.

    реферат [55,1 K], добавлен 24.01.2009

  • Характеристика процесса электролиза расплавленных солей. Расчет силовых трансформаторов, щита кранов и щита освещения. Определение токов трехфазного короткого замыкания. Выбор автоматического выключателя для сборных шин и для трансформатора щита кранов.

    курсовая работа [228,7 K], добавлен 28.12.2010

  • Номенклатура силовых трансформаторов. Устройство и принцип действия трансформаторов. Конструкции линий электропередач и их составляющие. Виды и применение счетчиков электроэнергии. Действие электрического тока на организм человека, оказание первой помощи.

    отчет по практике [465,9 K], добавлен 20.11.2013

  • Период школьного обучения Майкла Фарадея, его первые самостоятельные исследования (опыты по выплавке сталей, содержащих никель). Создание английским физиком первой модели электродвигателя, открытие электромагнитной индукции и законов электролиза.

    презентация [383,0 K], добавлен 22.10.2013

  • Химические источники тока как устройства, вырабатывающие электрический ток за счет энергии окислительно-восстановительных реакций химических реагентов, принцип их действия и оценка эффективности. Условия существования постоянного электрического тока.

    презентация [394,1 K], добавлен 28.01.2014

  • Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.

    презентация [2,2 M], добавлен 18.01.2012

  • Особая точность электродинамических приборов, их разновидности и применение для определения тока и напряжения в цепях переменного и постоянного тока. Принцип действия ваттметра, устройство магнитоэлектрического логометра, их распространение и применение.

    реферат [511,9 K], добавлен 25.11.2010

  • Единицы измерения электрического тока. Закон Ома и электрическое сопротивление. Применение Закона Ома при расчетах электрических цепей. Применение анализа цепи к модели мембраны. Свойства конденсатора в электрической цепи. Понятие электрической емкости.

    реферат [1,3 M], добавлен 06.11.2009

  • Тепловое действие электрического тока. Сущность закона Джоуля-Ленца. Понятие теплицы и парника. Эффективность использования тепловентиляторов и кабельного обогрева грунта теплиц. Тепловое воздействие электрического тока в устройстве инкубаторов.

    презентация [50,7 K], добавлен 26.11.2013

  • Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

    презентация [194,6 K], добавлен 15.05.2009

  • Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

    презентация [54,9 K], добавлен 28.01.2011

  • Формула расчета разности потенциалов двух точек электрического поля. Применение электрокардиографии в медицине. Принцип построения электрокардиограмм. Генерация электрических импульсов при работе сердца. Стандартное отведение электродов от конечностей.

    презентация [595,7 K], добавлен 07.04.2013

  • История развития процессов получения и использования энергии. Существующие виды топлива. Технологические свойства жидкого топлива. Применение газообразного топлива в различных отраслях народного хозяйства. Тепловое действие электрического тока.

    реферат [27,1 K], добавлен 02.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.