Введение в кинематику
Исследование геометрического свойства движения тел. Определение скорости точки при координатном способе задания движения. Расчет ускорения при естественном способе задания движения. Касательное и нормальное ускорение точки. Относительность движения.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.08.2015 |
Размер файла | 326,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Кинематика точки
Кинематикой называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил.
Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.
Механическое движение - это изменение положения тел (или частей тела) относительно друг друга в пространстве с течением времени.
Для определения положения движущегося тела (или точки) в разные моменты времени с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, образующую вместе с этим телом систему отсчета.
Тело отсчета - тело (или группа тел), принимаемое в данном случае за неподвижное, относительно которого рассматривается движение других тел.
Система отсчета - это система координат, связанная с телом отсчета, и выбранный способ измерения времени (рис. 1).
Рис.1
Изображать систему отсчета будем в виде трех координатных осей (не показывая тело, с которым они связаны).
Движение тел совершается в пространстве с течением времени. Пространство в механике мы рассматриваем, как трехмерное евклидово пространство.
Время является скалярной, непрерывно изменяющейся величиной. В задачах кинематики время t принимают за независимое переменное (аргумент). Все другие переменные величины (расстояния, скорости и т. д.) рассматриваются как изменяющиеся с течением времени, т.е. как функции времени t.
Для решения задач кинематики надо, чтобы изучаемое движение было как-то задано (описано).
Кинематически задать движение или закон движения тела (точки) - значит задать положение этого тела (точки) относительно данной системы отсчета в любой момент времени.
Основная задача кинематики точки и твердого тела состоит в том, чтобы, зная закон движения точки (тела), установить методы определения всех кинематических величин, характеризующих данное движение.
Положение тела можно определить с помощью радиус-вектора или с помощью координат.
Радиус-вектор точки М - направленный отрезок прямой, соединяющий начало отсчета О с точкой М (рис. 2).
Координата х точки М - это проекция конца радиуса-вектора точки М на ось Ох. Обычно пользуются прямоугольной системой координат. В этом случае положение точки М на линии, плоскости и в пространстве определяют соответственно одним (х), двумя (х, у) и тремя (х, у, z) числами - координатами (рис. 3).
движение тело скорость точка
Рис. 2
Рис.3
Материальная точка - тело, размерами которого в данных условиях можно пренебречь.
Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или, когда тело движется поступательно.
Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движении все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.
В дальнейшем под словом "тело" будем понимать "материальная точка".
Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией. На практике форму траектории задают с помощью математических формул (у=f(х) -- уравнение траектории) или изображают на рисунке. Вид траектории зависит от выбора системы отсчета. Например, траекторией тела, свободно падающего в вагоне, который движется равномерно и прямолинейно, является прямая вертикальная линия в системе отсчета, связанной с вагоном, и парабола в системе отсчета, связанной с Землей.
В зависимости от вида траектории различают прямолинейное и криволинейное движение.
Путь s - скалярная физическая величина, определяемая длиной траектории, описанной телом за некоторый промежуток времени. Путь всегда положителен: s> 0.
Перемещение тела за определенный промежуток времени - направленный отрезок прямой, соединяющий начальное (точка М0) и конечное (точка М) положение тела (см. рис. 2):
,
где и -- радиус-векторы тела в эти моменты времени.
Проекция перемещения на ось Ох: ?rx =?х = х-х0, где x0 и x - координаты тела в начальный и конечный моменты времени.
Модуль перемещения не может быть больше пути: ?s.
Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.
Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:
2. Способы задания движения точки
Для задания движения точки можно применять один из следующих трех способов:
1) векторный, 2) координатный, 3) естественный.
1. Векторный способ задания движения точки.
Пусть точка М движется по отношению к некоторой системе отсчета Oxyz. Положение этой точки в любой момент времени можно определить, задав ее радиус-вектор , проведенный из начала координат О в точку М (рис. 4).
Рис.4
При движении точки М вектор будет с течением времени изменяться и по модулю, и по направлению. Следовательно, является переменным вектором (вектором-функцией), зависящим от аргументаt:
Равенство определяет закон движения точки в векторной форме, так как оно позволяет в любой момент времени построить соответствующий вектор и найти положение движущейся точки.
Геометрическое место концов вектора , т.е. годограф этого вектора, определяет траекторию движущейся точки.
2. Координатный способ задания движения точки.
Положение точки можно непосредственно определять ее декартовыми координатами х, у, z (рис.3), которые при движении точки будут с течением времени изменяться. Чтобы знать закон движения точки, т.е. ее положение в пространстве в любой момент времени, надо знать значения координат точки для каждого момента времени, т.е. знать зависимости x=f1(t), y=f2(t), z=f3(t).
Уравнения представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.
Чтобы получить уравнение траектории надо из уравнений движения исключить параметр t.
Нетрудно установить зависимость между векторным и координатным способами задания движения.
Разложим вектор на составляющие по осям координат:
Где rx, ry, rz - проекции вектора на оси; - единичные векторы направленные по осям, орты осей.
Так как начало вектора находится в начале координат, то проекции вектора будут равны координатам точки M. Поэтому
3. Естественный способ задания движения точки.
Рис. 5
Естественным способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки М при ее движении относительно системы отсчета Oxyz (рис.5) Выберем на этой траектории какую-нибудь неподвижную точку О', которую примем за начало отсчета, и установим на траектории положительное и отрицательное направления отсчета (как на координатной оси).
Тогда положение точки М на траектории будет однозначно определяться криволинейной координатой s, которая равна расстоянию от точки О' до точки М, измеренному вдоль дуги траектории и взятому с соответствующим знаком. При движении точка М перемещается в положения M1, М2, следовательно, расстояние s будет с течением времени изменяться.
Чтобы знать положение точки М на траектории в любой момент времени, надо знать зависимость
s=f(t).
Уравнение выражает закон движения точки М вдоль траектории.
3. Вектор скорости точки
Скорость - мера механического состояния тела. Она характеризует быстроту изменения положения тела относительно данной системы отсчета и является векторной физической величиной.
Известно, что при движении точки по прямой линии с постоянной скоростью, равномерно, скорость её определяется делением пройденного расстояния s на время: . При неравномерном движении эта формула не годится. Введем сначала понятие о средней скорости точки за какой-нибудь промежуток времени.
Пусть движущаяся точка находится в момент времени t в положении М, определяемом радиусом-вектором , а в момент t1 приходит в положение M1 определяемое вектором (рис.7). Тогда перемещение точки за промежуток времени ?t=t1-t определяется вектором который будем называть вектором перемещения точки. Из треугольника ОММ1 видно, что ; следовательно,
Рис. 6
Отношение вектора перемещения точки к соответствующему промежутку времени дает векторную величину, называемую средней по модулю и направлению скоростью точки за промежуток времени ?t:
Скоростью точки в данный момент времени t называется векторная величина v, к которой стремится средняя скорость vср при стремлении промежутка времени ?t к нулю:
Итак, вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора точки по времени.
Так как предельным направлением секущей ММ1 является касательная, то вектор скорости точки в данный момент времени направлен по касательной к траектории точки в сторону движения.
4. Определение скорости точки при координатном способе задания движения
Вектор скорости точки , учитывая, что rx=x, ry=y, rz=z, найдем:
Таким образом, проекции скорости точки на координатные оси равны первым производным от соответствующих координат точки по времени.
Зная проекции скорости, найдем ее модуль и направление (т.е. углы б, в, г, которые вектор v образует с координатными осями) по формулам
Итак, численная величина скорости точки в данный момент времени равна первой производной от расстояния (криволинейной координаты) s точки по времени. Направлен вектор скорости по касательной к траектории, которая нам наперед известна.
5. Определение скорости точки при естественном способе задания движения
Величину скорости можно определить, как предел (?r - длина хорды ММ1):
где ?s - длина дуги ММ1. Первый предел равен единице, второй предел - производная ds/dt.
Следовательно, скорость точки есть первая производная по времени от закона движения:
Направлен вектор скорости, как было установлено ранее, по касательной к траектории. Если величина скорости в данный момент будет больше нуля, то вектор скорости направляется в положительном направлении
6. Вектор ускорения точки
Ускорение -- векторная физическая величина, характеризующая быстроту изменения скорости. Оно показывает, на какую величину изменяется скорость тела за единицу времени.
В СИ единицей ускорения является метр на секунду в квадрате .
Пусть в некоторый момент времени t движущаяся точка находится в положении М и имеет скорость v, а в момент t1 приходит в положение M1 и имеет скорость v1 (рис. 7).
Рис.7
Тогда за промежуток времени ?t=t1-t скорость точки получает приращение . Для построения вектора отложим от точки М вектор, равный v1, и построим параллелограмм, в котором диагональю будет , a одной из сторон . Тогда, очевидно, вторая сторона и будет изображать вектор . Заметим, что вектор всегда направлен в сторону вогнутости траектории.
Отношение приращения вектора скорости к соответствующему промежутку времени ?t определяет вектор среднего ускорения точки за этот промежуток времени:
Вектор среднего ускорения имеет то же направление, что и вектор , т.е. направлен в сторону вогнутости траектории.
Ускорением точки в данный момент времени t называется векторная величина , к которой стремится среднее ускорение при стремлении промежутка времени ?t к нулю: Вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени.
Найдем, как располагается вектор по отношению к траектории точки. При прямолинейном движении вектор направлен вдоль прямой, по которой движется точка.
При прямолинейном движении с возрастающей по модулю скоростью (рис. 8, а) векторы и сонаправлены () и проекция ускорения на направление движения положительна.
При прямолинейном движении с убывающей по модулю скоростью (рис. 8, б) направления векторов и противоположны () и проекция ускорения на направление движения отрицательна.
Рис.8
Если траекторией точки является плоская кривая, то вектор ускорения , так же как и вектор , лежит в плоскости этой кривой и направлен в сторону ее вогнутости. Если траектория не является плоской кривой, то вектор направлен в сторону вогнутости траектории и лежит в плоскости, проходящей через касательную к траектории в точке М и прямую, параллельную касательной в соседней точке M1(рис. 8). В пределе, когда точка М стремится к М, эта плоскость занимает положение так называемой соприкасающейся плоскости, т.е. плоскости, в которой происходит бесконечно малый поворот касательной к траектории при элементарном перемещении движущейся точки. Следовательно, в общем случае вектор ускорения лежит в соприкасающейся плоскости и направлен в сторону вогнутости кривой.
Определение ускорения при координатном способе задания движения.
Вектор ускорения точки в проекции на оси получаем:
т.е. проекция ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул
где б1, в1, г1 - углы, образуемые вектором ускорения с координатными осями.
7. Определение ускорения при естественном способе задания движения. Касательное и нормальное ускорение точки
При естественном способе задания движения вектор определяют по его проекциям на оси Mфnb, имеющие начало в точке М и движущиеся вместе с нею (рис.9). Эти оси, называемые осями естественного трехгранника (или скоростными (естественными) осями), направлены следующим образом: ось Mф - вдоль касательной к траектории в сторону положительного отсчета расстояния s; ось Mn - по нормали, лежащей в соприкасающейся плоскости и направленной в сторону вогнутости траектории; ось Mb - перпендикулярно к первым двум так, чтобы она образовала с ними правую тройку. Нормаль Mn, лежащая в соприкасающейся плоскости (в плоскости самой кривой, если кривая плоская), называется главной нормалью, а перпендикулярная к ней нормаль Mb - бинормалью.
Рис.9
Было показано, что ускорение точки лежит в соприкасающейся плоскости, т.е. в плоскости Mфn; следовательно, проекция вектора на бинормаль равна нулю (a=0).
Вычислим проекции , на две другие оси. Пусть в момент времени t точка находится в положении М и имеет скорость v, a в момент t1=t+?t приходит в положение М1 и имеет скорость v1.
Тогда по определению
Перейдем в этом равенстве от векторов к их проекциям на оси Mф и Mn, проведенные в точке М (рис.9). Тогда на основании теоремы о проекции суммы (или разности) векторов на ось получим:
Учитывая, что проекция вектора на параллельные оси одинаковы, проведем через точку М1 оси , параллельные Mф, Mn, и обозначим угол между направлением вектора и касательной Mфчерез ?ц. Этот угол между касательными к кривой в точках М и М1 называется углом смежности.
Напомним, что предел отношения угла смежности ?ц к длине дуги MM1=?s определяет кривизну k кривой в точке М. Кривизна же является величиной, обратной радиусу кривизны с в точке М. Таким образом,
Обращаясь теперь к чертежу (рис.9), находим, что проекции векторов и на оси Mф, Mn, будут равны:
где v и v1 - численные величины скорости точки в моменты t и t1.
Следовательно,
Заметим, что при ?t>0 точка М1 неограниченно приближается к М и одновременно
Тогда, учитывая, что в пределе , получим для aф выражение
Правую часть выражения an преобразуем так, чтобы в нее вошли отношения, пределы которых нам известны. Для этого умножим числитель и знаменатель дроби, стоящей под знаком предела, на ?ц?s. Тогда будем иметь
так как пределы каждого из стоящих в скобке сомножителей при ?t>0 равны:
Окончательно получаем:
Итак, мы доказали, что проекция ускорения точки на касательную равна первой производной от численной величины скорости или второй производной от расстояния (криволинейной координаты) s noвремени, а проекция ускорения на главную нормаль равна квадрату скорости, деленному на радиус кривизны траектории в данной точке кривой; проекция ускорения на бинормаль равна нулю (ab=0). Эти результаты выражают собою одну из важных теорем кинематики точки.
Рис.10
Отложим вдоль касательной Mф и главной нормали Mn векторы и , численно равные aф и an (рис. 12). Эти векторы изображают касательную и нормальную составляющие ускорения точки.При этом составляющая будет всегда направлена в сторону вогнутости кривой (величина a всегда положительна), а составляющая может быть направлена или в положительном, или в отрицательном направлении оси Mф в зависимости от знака проекции (см. рис.10, а и б).
Вектор ускорения точки изображается диагональю параллелограмма, построенного на составляющих и . Так как эти составляющие взаимно перпендикулярны, то по модулю:
8. Относительность движения. Сложение скоростей
Как отмечалось выше, для описания движения тела необходимо выбрать тело отсчета и связать с ним систему координат. В качестве тела отсчета может выступать любое тело.
В разных системах отсчета будут различны вид траектории, значения скорости, перемещения и других величин. В этом и заключается относительность движения.
Например, человек идет по палубе парохода со скоростью относительно парохода. Пароход движется поступательно со скоростью относительно берега. Найдем скорость человека относительно берега.
Свяжем неподвижную систему отсчета (хОу) с Землей, а подвижную (х'О'у') -- с пароходом.
Рис.11
Из рис.11 видно, что перемещение
(1)
где -- перемещение человека относительно парохода,
-- перемещение парохода относительно берега,
-- перемещение человека относительно берега.
Таким образом, если тело одновременно участвует в нескольких движениях, то результирующее перемещение точки равно векторной сумме перемещений, совершаемых ею в каждом из движений. В этом состоит установленный экспериментально принцип независимости движений.
Разделив уравнение (1) на промежуток времени, за который произошли перемещения человека и парохода, получим закон сложения скоростей:
Скорость тела относительно неподвижной системы отсчета равна геометрической сумме скорости тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной.
Закон сложения скоростей справедлив и для неравномерного движения, только в этом случае - мгновенные скорости.
Этот закон был установлен Г. Галилеем. Он справедлив только для движений со скоростями, намного меньшими скорости света с = 3•108 (м/с). Такие скорости в физике называют нерелятивистскими.
Некоторые частные случаи движения точки.
Пользуясь полученными результатами, рассмотрим некоторые частные случаи движения точки.
9. Равномерное прямолинейное движение
Равномерное прямолинейное движение - это движение, при котором тело за любые равные промежутки времени совершает равные перемещения, т. е. это движение с постоянной по модулю и направлению скоростью:
-- уравнение скорости,
-- уравнение ускорения.
Пусть в момент времени t0=0 координата тела х0, в момент t - х (рис. 12).
Рис.12
Тогда за промежуток времени Дt=t-t0=t координата X тела изменилась на величину ?х = х - х0. Следовательно, проекция скорости тела
,
следовательно,
x=x0+vxt- кинематическое уравнение равномерного движения (уравнение зависимости координаты от времени).
Проекция перемещения ?rx=х-х0
?rx=vxt - уравнение перемещения.
При равномерном прямолинейном движении направление скорости не изменяется, поэтому путь . Следовательно, -- уравнение пути.
Зависимость кинематических величин от времени можно изобразить графически.
Изобразим графики скорости, перемещения, пути и координаты для трех тел: 1, 2, 3 (рис. 13).
Рис.13
Тела 1, 2 движутся в положительном направлении оси Ох, причем ; тело 3 движется в направлении, противоположном оси Ох; их начальные координаты соответственно , . Графики скорости представлены на рис.13. Площадь заштрихованного прямоугольника численно равна пути s (модулю перемещения), пройденному телом 1 за время t1. На рис.13 даны графики перемещения , на рис.14 - графики пути s=f(t).
Рис.14
Наклон графика , к оси времени зависит от модуля скорости: .
Графики движения (зависимости координаты от времени) изображены на рис.15
Рис.15
С помощью графика движения можно определить:
1) координаты тела в любой момент времени;
2) путь, пройденный телом за некоторый промежуток времени;
3) время, за которое пройден какой-то путь;
4) кратчайшее расстояние между телами в любой момент времени;
5) момент и место встречи тел и др.
Размещено на Allbest.ru
...Подобные документы
Характеристика движения простейшего тела и способы его задания. Определение скорости и ускорение точки при векторном, координатном, естественном способе задания движения. Простейшие движения твердого тела, теоремы о схождении скоростей и ускорений.
курс лекций [5,1 M], добавлен 23.05.2010Изменение вектора скорости за промежуток времени. Годограф скорости. Нахождение ускорения при координатном способе задания движения. Проекции ускорения на радиальное и поперечное направления. Линия пересечения спрямляющей и нормальной плоскостей.
презентация [2,4 M], добавлен 24.10.2013Кинематика точки. Способы задания движения. Определение понятия скорости точки и методы ее нахождения. Выявление ее значения при естественном способе задания равномерного движения. Способ графического представления скорости в декартовой системе координат.
презентация [2,3 M], добавлен 24.10.2013Характеристика движения объекта в пространстве. Анализ естественного, векторного и координатного способов задания движения точки. Закон движения точки по траектории. Годограф скорости. Определение уравнения движения и траектории точки колеса электровоза.
презентация [391,9 K], добавлен 08.12.2013Закон движения груза для сил тяжести и сопротивления. Определение скорости и ускорения, траектории точки по заданным уравнениям ее движения. Координатные проекции моментов сил и дифференциальные уравнения движения и реакции механизма шарового шарнира.
контрольная работа [257,2 K], добавлен 23.11.2009Понятие и характерные свойства геометрического вектора. Правило сложения векторов по треугольнику. Сущность и методика исследования траектории движения. Скорость и ускорение движения, их оценка и относительность. Система координат и точки в ней.
реферат [141,3 K], добавлен 24.12.2010Понятие кинематики как раздела механики, в котором изучается движения точки или тела без учета причин, вызывающих или изменяющих его, т.е. без учета действующих на них сил. Способы задания движения и ускорения материальной точки, направления осей.
презентация [1,5 M], добавлен 30.04.2014Аксиомы статики. Моменты системы сил относительно точки и оси. Трение сцепления и скольжения. Предмет кинематики. Способы задания движения точки. Нормальное и касательное ускорение. Поступательное и вращательное движение тела. Мгновенный центр скоростей.
шпаргалка [1,5 M], добавлен 02.12.2014История развития кинематики как науки. Основные понятия этого раздела физики. Сущность материальной точки, способы задания ее движения. Описание частных случаев движения в зависимости от ускорения. Формулы равномерного и равноускоренного движения.
презентация [1,4 M], добавлен 03.04.2014Построение траектории движения точки. Определение скорости и ускорения точки в зависимости от времени. Расчет положения точки и ее кинематических характеристик. Радиус кривизны траектории. Направленность вектора по отношению к оси, его ускорение.
задача [27,6 K], добавлен 12.10.2014Задание движения точки. Годограф радиуса-вектора. Уравнение движения точки. Векторный, естественный, координатный способы. Поступательное, вращательное, плоскопараллельное движение тела. Скорости точек при движении тела. Мгновенный центр скоростей.
презентация [399,3 K], добавлен 09.11.2013Расчет тангенциального и полного ускорения. Определение скорости бруска как функции. Построение уравнения движения в проекции. Расчет начальной скорости движения конькобежца. Импульс и закон сохранения импульса. Ускорение, как производная от скорости.
контрольная работа [151,8 K], добавлен 04.12.2010Обзор разделов классической механики. Кинематические уравнения движения материальной точки. Проекция вектора скорости на оси координат. Нормальное и тангенциальное ускорение. Кинематика твердого тела. Поступательное и вращательное движение твердого тела.
презентация [8,5 M], добавлен 13.02.2016Закон изменения угловой скорости колеса. Исследование вращательного движения твердого тела вокруг неподвижной оси. Определение скорости точки зацепления. Скорости точек, лежащих на внешних и внутренних ободах колес. Определение углового ускорения.
контрольная работа [91,3 K], добавлен 18.06.2011Построение графиков координат пути, скорости и ускорения движения материальной точки. Вычисление углового ускорения колеса и числа его оборотов. Определение момента инерции блока, который под действием силы тяжести грузов получил угловое ускорение.
контрольная работа [125,0 K], добавлен 03.04.2013Определение высоты и времени падения тела. Расчет скорости, тангенциального и полного ускорения точки окружности для заданного момента времени. Нахождение коэффициента трения бруска о плоскость, а также скорости вылета пульки из пружинного пистолета.
контрольная работа [95,3 K], добавлен 31.10.2011Расчет величины ускорения тела на наклонной плоскости, числа оборотов колес при торможении, направление вектора скорости тела, тангенциального ускорения. Определение параметров движения брошенного тела, расстояния между телами во время их движения.
контрольная работа [1,0 M], добавлен 29.05.2014Вычисление скорости, ускорения, радиуса кривизны траектории по уравнениям движения точки. Расчет передаточных чисел передач, угловых скоростей и ускорений звеньев вала электродвигателя. Кинематический анализ внецентренного кривошипно-ползунного механизма.
контрольная работа [995,0 K], добавлен 30.06.2012Задача на определение ускорения свободного падения. Расчет начальной угловой скорости торможения вентилятора. Кинетическая энергия точки в момент времени. Молярная масса смеси. Средняя арифметическая скорость молекул газа. Изменение энтропии газа.
контрольная работа [468,3 K], добавлен 02.10.2012Определение реакций связей в точках, вызываемых действующими нагрузками. Определение главного вектора и главного момента системы относительно начала координат. Расчет скорости и ускорения точки в указанный момент времени; радиус кривизны траектории.
контрольная работа [293,6 K], добавлен 22.01.2013