Сила взаимодействия
Ознакомление с видами взаимодействия: гравитационным, слабым, электромагнитным, сильным. Рассмотрение инерциальных систем отсчета, сил сухого трения, движения под действием сил. Формулирование законов Ньютона. Определение силы тяжести, веса тела.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.09.2015 |
Размер файла | 52,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Главное свойство окружающего нас мира - существование разного вида взаимодействий.
Сила представляет собой количественную меру взаимодействия, следовательно, можно выделить четыре типа фундаментальных сил.
Гравитационное взаимодействие.
Притяжение тел к Земле, существование солнечной системы обусловлено гравитационными силами.
Слабое взаимодействие.
Существует большое число нестабильных элементарных частиц, которые под влиянием слабых сил превращаются в другие частицы.
Электромагнитное взаимодействие.
Этими силами обусловлены связи в атомах и молекулах. Они объясняют устойчивость вещества.
Сильное взаимодействие.
Наличие в ядрах атомов одноименно заряженных и нейтральных частиц говорит о существовании сил внутриядерного взаимодействия.
Инерциальные системы отсчета. Законы Ньютона
В динамике выясняются причины того или иного характера движения тела на основе сил, действующих на тело. Наиболее просто законы динамики выглядя в так называемых инерциальных системах отсчета.
Инерциальными называют такие системы отсчета, в которых тело находится в состоянии покоя или равномерного прямолинейного движения, если все силы, действующие на тело, скомпенсированы. Скомпенсированность сил означает следующее:
.
Все материальные тела обладают некоторым физическим свойством, которое называют инертность. Инертность это свойство тела сохранять состояние покоя или равномерного прямолинейного движения, если все силы, действующие на тело, скомпенсированы. Впервые на это обратил внимание Галилей, который сформулировал принцип инертности.
В основе динамики лежат три закона Ньютона.
1-ый закон Ньютона.
Существуют такие системы отсчета, в которых тело находится в состоянии покоя или движется равномерно и прямолинейно, если все силы, действующие на него, скомпенсированы.
Первый закон Ньютона, прежде всего, постулирует существование инерциальных систем отсчета. В этом его самостоятельное значение. Кроме того, он устанавливает условия покоя тела или равномерного прямолинейного движения.
Поскольку инертность это физическое свойство тела, его можно выражать количественно и измерять. В качестве меры инертности тела выбирают его массу m. Измеряя независимо силу, действующую на тело и ускорение, которое сообщает телу эта сила, можно становить пропорциональность . Коэффициентом пропорциональности в этой зависимости является масса. Измеренную в таком динамическом эксперименте массу называют инертной массой.
Сам Ньютон формулировал свой второй закон с помощью понятия импульса тела .
2-ой закон ньютона.
Изменение импульса тела равно действующей на тело силе и совпадает с ней по направлению.
.
Или в нерелятивистском случае:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой.
.
3-ий закон Ньютона.
Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.
Отсюда следует, что при взаимодействиях в инерциальных системах силы всегда возникают попарно.
Силы в природе. Движение под действием сил. Силы сухого трения (трение покоя и трение скольжения)
Сухое трение возникает на поверхностях соприкосновения твердых тел. При этом различают два вида трения: трение покоя и трение скольжения.
Рис.1
Подействуем некоторой силой F на тело, лежащее на горизонтальной поверхности
Опыт показывает, что пока сила F меньше некоторого критического значения Fкр тело покоится относительно поверхности. Расставим силы, действующие на тело, на рис. 2.
Рис. 2
Поскольку тело взаимодействует с тремя телами (внешним, с Землей и поверхностью), на него действуют три силы: внешняя , сила тяжести Земли и сила взаимодействия с поверхностью . Теперь можно предложить следующую модель взаимодействия тела с поверхностью. С одной стороны, тело под действием силы тяжести давит на поверхность, деформирует ее и вызывает появление ответной силы - силы упругой реакции поверхности . С другой стороны, поверхность и тело шероховаты и между ними есть взаимодействие, которое описывается силой трения . Эта сила называется сила трения покоя, т.к. тело покоится относительно поверхности. Формулы для расчета силы трения покоя не существует, т.к. она равна по модулю внешней силе, ее уравновешивающей.
Рассмотрим тело, покоящееся на наклонной плоскости (рис.3).
Рис. 3
На него также действуют только две силы: сила тяжести и сила взаимодействия с наклонной плоскостью . Эту силу представим как равнодействующую двух сил: силы упругой реакции наклонной плоскости и силу трения покоя .
Обратимся опять к рис.13. Когда внешняя сила превышает критическое значение Fкр, то тело начинает скользить по поверхности и появляется сила трения скольжения . При специальной обработке поверхностей сила трения скольжения практически не зависит от скорости, и ее величина определяется выражением:
= .
Здесь - коэффициент трения скольжения, N- сила упругой реакции опоры.
Опыт показывает следующий вид зависимости силы трения от скорости движения тела, который приведен на рис. 4.
Рис. 4
Этот закон иногда называют законом Кулона - Амонтона.
Закон всемирного тяготения
Как уже отмечалось, гравитационное взаимодействие очевидно одно из самых универсальных в природе, ему подчинены все материальные тела. Этому взаимодействию соответствует сила гравитационного взаимодействия, которая удовлетворяет закону всемирного тяготения Ньютона.
Закон всемирного тяготения в следующем виде справедлив для материальных точек массами m1 и m2, находящимися на расстоянии r друг от друга:
.
В таком виде закон всемирного тяготения справедлив еще для тел, имеющих форму шара, если под r понимать расстояние между их центрами.
Однако это только выражения для модуля этой силы. Векторная величина силы всемирного тяготения определяется следующим выражением (см. рис.5):
.
Рис. 5
Гравитационная постоянная G была измерена Г. Кавендишем в 1798 г. с помощью крутильных весов, изображенных на рис. 6.
Рис. 6.
гравитационный сила ньютон тяжесть
Сила взаимодействия больших и малых шаров измерялась по величине угла закручивания нити подвеса весов.
Сила тяжести.
На все тела вблизи поверхности Земли действует сила взаимодействия, которую, называют силой тяжести. Величина силы тяжести равна F=mg. Она только приблизительно равна силе гравитационного взаимодействия тела и Земли, вследствие движения Земли вокруг собственной оси вращения.
Вес тела.
Вес тела это сила, с которой тело давит на опору или растягивает нить подвеса. Вес тела численно равен силе нормального давления тела на опору. Он зависит от состояния опоры (а именно, от характера ее движения). Если же тело не давит на опору и не растягивает подвес, то тело находится в состоянии невесомости. Для невесомости характерно действие на тело только одной силы - силы тяжести.
В выражение входит масса, которая ранее была определена, как мера инертности тела. В этот же закон входит так называемая гравитационная масса. Но инертность и способность к гравитационному взаимодействию представляют собой физически разные свойства. Если инертная масса определяется в динамическом эксперименте, то гравитационная масса определяется в статическом эксперименте взвешиванием. Можем записать в гравитационном поле Земли:
.
Здесь Мз - масса Земли, R- радиус Земли, mт -масса тела.
Обозначим величину (некоторая константа). Если сбросить тело с небольшой высоты вблизи поверхности Земли, то можем записать по второму закону Ньютона:
.
Отсюда следует, что:
.
Опыт показывает (это, в частности, установил Галилей), что a=g, следовательно .
Это равенство установлено экспериментально с относительной погрешностью 10-12 .
Размещено на Allbest.ru
...Подобные документы
Анализ аксиоматики динамики. Понятие инерциальных систем отсчета. Область применимости механики Ньютона. Понятие взаимодействий и сил. Фундаментальные взаимодействия в природе. Силы трения, сопротивления и тяжести. Особенности движения в поле силы.
презентация [2,9 M], добавлен 08.10.2013Движение тела по эллиптической орбите вокруг планеты. Движение тела под действием силы тяжести в вертикальной плоскости, в среде с сопротивлением. Применение законов движения тела под действием силы тяжести с учетом сопротивления среды в баллистике.
курсовая работа [1,2 M], добавлен 17.06.2011Кинематика вращательного и динамика поступательного движения тела. Определение инерциальных систем отсчета как таких, которые находятся в покое или движутся равномерно и прямолинейно относительно гелиоцентрической системы. Описание законов Ньютона.
курс лекций [936,6 K], добавлен 14.12.2011Изучение законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Анализ причин изменения движения тел. Исследование инерциальных систем отсчета. Взаимодействие тел с разной массой.
презентация [531,3 K], добавлен 08.11.2013Определение поступательного движения. Действие и противодействие. Направление действия силы. Сила трения покоя и сила сухого трения. Силы взаимного притяжения. История о том, как "Лебедь, Рак и Щука везти с поклажей воз взялись" с точки зрения физики.
презентация [1,7 M], добавлен 04.10.2011История возникновения силы трения - процесса взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. Возникновение сил трения скольжения и покоя на стыке соприкасающихся тел, способы уменьшения.
реферат [1,2 M], добавлен 30.07.2015Изучение понятия "вес тела" - силы, с которой это тело действует на опору или подвес, вследствие действия на него силы тяжести. Обозначение и направление веса тела. Характеристика принципа работы и видов динамометров – приборов для измерения силы (веса).
презентация [465,2 K], добавлен 13.12.2010Виды и категории сил в природе. Виды фундаментальных взаимодействий. Уравнения Ньютона для неинерциальной системы отсчета. Определение силы электростатического взаимодействия двух точечных зарядов. Деформация растяжения и сжатия стержня, закон Гука.
презентация [19,6 M], добавлен 13.02.2016Определение динамики, классической механики. Инерциальные системы отсчета. Изучение законов Ньютона. Основы фундаментального взаимодействия тел. Импульс силы, количество движения. Единицы измерения работы и мощности. Свойства потенциального поля сил.
презентация [0 b], добавлен 25.07.2015Понятие массы тела и центра масс системы материальных точек. Формулировка трех законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Силы гравитационного притяжения и тяжести.
презентация [636,3 K], добавлен 21.03.2014Запись второго закона Ньютона в векторной и скалярной форме. Определение пути прохождения тела до остановки при заданной начальной скорости. Расчет времени движения данного тела, если под действием силы равной 149 Н тело прошло путь равный 200 м.
презентация [390,9 K], добавлен 04.10.2011Сущность закона определения максимальной силы трения покоя. Зависимость модуля силы трения скольжения от модуля относительной скорости тел. Уменьшение силы трения скольжения тела с помощью смазки. Явление уменьшения силы трения при появлении скольжения.
презентация [265,9 K], добавлен 19.12.2013Гравитационные, электромагнитные и ядерные силы. Взаимодействие элементарных частиц. Понятие силы тяжести и тяготения. Определение силы упругости и основные виды деформации. Особенности сил трения и силы покоя. Проявления трения в природе и в технике.
презентация [204,4 K], добавлен 24.01.2012Описание основных законов Ньютона. Характеристика первого закона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Принципы закона ускорения тела. Особенности инерционных систем отсчета.
презентация [551,0 K], добавлен 16.12.2014Примеры взаимодействия тел с помощью опытов. Первый закон Ньютона, инерциальные системы отсчета. Понятие силы и физического поля. Масса материальной точки, импульс и центр масс системы. Второй и третий законы Ньютона, их применение. Движение центра масс.
реферат [171,4 K], добавлен 10.12.2010Характеристика законов Ньютона и законов сил в механике. Инерциальные системы отсчета. Принцип относительности Галилея. Принцип суперпозиции. Фундаментальные взаимодействия. Система частиц. Центр масс (центр инерции). Алгоритм решения задач динамики.
презентация [3,0 M], добавлен 25.05.2015Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.
презентация [1,4 M], добавлен 22.01.2012Причина возникновения силы трения и ее примеры: движение оси колеса, шарик, катящийся по горизонтальному полу. Формулы расчета силы трения в физике. Роль силы трения в жизнедеятельности на Земле: осуществление ходьбы, вращение ведущих колес экипажа.
презентация [90,8 K], добавлен 16.01.2011Сила трения как сила, возникающая при соприкосновении тел, направленная вдоль границы соприкосновения и препятствующая относительному движению тел. Причины возникновения трения. Роль силы трения в быту, в технике и в природе. Вредное и полезное трение.
презентация [1,5 M], добавлен 09.02.2014Механическое движение. Относительность движения. Взаимодействие тел. Сила. Второй закон Ньютона. Импульс тела. Закон сохранения импульса в природе и технике. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.
шпаргалка [479,0 K], добавлен 12.06.2006