Модель ядерных оболочек
Использование ядерных моделей для описания динамики ядерной материи. Классификация моделей ядра и виды модельного потенциала. Основное и возбужденные состояния ядра, построение диаграммы ядерных уровней. Инвариантность гамильтониана и квантовые числа.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 13.09.2015 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МОДЕЛЬ ЯДЕРНЫХ ОБОЛОЧЕК
1. Модель ядерных оболочек
Атомное ядро представляет собой квантовую систему многих тел, сильно взаимодействующих друг с другом. Поэтому описание такой системы, исходя из первопринципов, является трудной задачей. С одной стороны, число нуклонов в ядре не столь велико, чтобы можно было использовать методы статистической физики. С другой стороны, распространение микроскопических расчетов даже на системы 3, 4, 5 нуклонов встречает принципиальные трудности. Кроме того, мы знаем, что основные строительные блоки ядра -- протон и нейтрон -- являются сложными структурными образованиями трех валентных кварков. Поэтому последовательное решение проблем структуры атомных ядер возможно только в рамках квантовой хромодинамики. В этой связи для описания динамики ядерной материи широко используются различные ядерные модели, каждая из которых имеет ограниченную цель -- описать какую-то определенную совокупность свойств атомного ядра.
Модели ядра можно разбить на два больших класса -- микроскопические (рассматривающие поведение отдельных нуклонов в ядре) и коллективные (рассматривающие согласованное, скоррелированное движение больших групп нуклонов в ядре). Пример коллективной модели ядра -- модель жидкой капли. Уже в рамках этого достаточно упрошенного представления удалось получить весьма полезную формулу Вайцзеккера (6.9) для энергии связи ядра.
Среди микроскопических ядерных моделей выделяется модель ядерных оболочек. Она аналогична модели атомных оболочек, в которой задача многих тел сведена к одночастичной задаче - движению невзаимодействующих друг с другом электронов, подчиняющихся принципу Паули, в кулоновском поле ядра. Применение подобного подхода к ядру, однако, кажется неправомерным. Ядро -- это система сильно взаимодействующих плотно упакованных нуклонов. Ядерное поле создается внутренними короткодействующими межнуклонными силами. Нуклоны в ядре должны часто сталкиваться и обмениваться энергиями. Средняя длина свободного пробега нуклона в ядре должна быть меньше радиуса ядра. Все это приводит к выводу о невозможности движения нуклонов внутри ядра по устойчивым орбитам, с долго сохраняющимися квантовыми числами, т.е. нахождения их на определенных оболочках. Однако факты свидетельствуют в пользу существования в атомных ядрах оболочечной структуры.
Основной факт, подтверждающий оболочечное строение ядра, -- это «магические числа» протонов и нейтронов. Приведем основные экспериментальные факты в пользу существования магических чисел:
· Повышенная распространенность магических ядер.
· Относительное уменьшение массы магических ядер.
· Увеличение энергии отделения нуклона в магических ядрах.
Резкое увеличение энергии первого возбужденного состояния у ядер с магическим числом нейтронов и (или) протонов (рис.1).
Ядра, у которых магическими являются числа протонов и нейтронов, называют дважды магическими. Например, ядра ,.
Магическим числам нуклонов, как уже отмечалось выше, отвечают ядра с заполненными оболочками, демонстрирующие особую устойчивость, подобно благородным газам, имеющим заполненные атомные оболочки. Оболочечная структура ядра свидетельствует о том, что нуклоны в ядре во многом ведут себя как независимые частицы в потенциальной яме.
Возможность использования модели оболочек для описания свойств атомного ядра означает, что многочастичная ядерная задача допускает такую формулировку, при которой усреднение отдельных короткодействующих межнуклонных потенциалов внутри ядра сводится к возникновению почти одинакового для всех нуклонов потенциала притяжения (яме), причем нуклоны в этой яме можно приближенно рассматривать как независимые частицы. Таким образом, ядро по своей внутренней структуре в первом приближении представляет не жидкость, а скорее идеальный газ фермионов, заключенный в объем ядра.
Размещено на http://www.allbest.ru/
Фундаментальная роль в применимости модели оболочек к ядрам принадлежит принципу Паули. Этот принцип существенно ограничивает возможности взаимодействия между двумя фермионами при низких энергиях. В основном состоянии ядра нижние одночастичные уровни вплоть до некоторой энергии (уровня Ферми) заполнены. Взаимодействие двух нуклонов с изменением их состояния требует их перехода на новые энергетические уровни. При этом, если один нуклон увеличивает свою энергию и переходит в более высокое свободное состояние, то другой должен уменьшить энергию и обязан занять более низкое состояние. Но все нижние состояния уже заполнены и на них не может появиться дополнительный фермион. Таким образом, нуклоны продолжают находиться в прежних состояниях и длина свободного пробега нуклона становится больше диаметра ядра. Возникает условие для устойчивых нуклонных состояний.
Будем рассматривать «сферическую» модель оболочек, когда нуклоны находятся в сферически симметричной потенциальной яме . Пренебрегаем кулоновским взаимодействием. Рассмотрим три вида модельного потенциала (рис.2):
Размещено на http://www.allbest.ru/
Прямоугольная потенциальная яма
(1)
Потенциал гармонического осциллятора
(2)
где М- масса нуклона, а - осцилляторная частота.
Потенциал Вудса-Саксона
(3)
Потенциал Вудса-Саксона наиболее близок к реальному ядерному потенциалу. Он является отражением распределения Ферми плотности ядерного вещества. Такая аппроксимация формы ядерного потенциала оправдана малым радиусом действия нуклон-нуклонных сил. В потенциале (3), как и в распределении Ферми , . Что касается глубины ядерной потенциальной ямы V0, то она увеличивается при переходе от легких ядер к тяжелым. В легких ядрах (А < 40) V0= 20-30 МэВ, в средних ядрах (А= 40-100) V0 = 30-40 МэВ и в тяжелых ядрах (А > 100) V0 = 40-50 МэВ.
Если выбран модельный потенциал, то далее все сводится к решению уравнения Шрёдингера для отдельного нуклона. Пусть -- гамильтониан ядра, a -- гамильтониан отдельного нуклона (с индексом ). Тогда имеем
Где
(4)
Уравнение Шрёдингера для отдельного нуклона
(5)
Так как гамильтониан одинаков для всех нуклонов, то запишем
(6)
Волновая функция нуклона описывающая его орбитальное движение, имеет вид
(7)
где п -- радиальное квантовое число (n = 1, 2, 3,...), l -- орбитальный момент нуклона, m -- его проекция на ось z. При фиксированном l энергия нуклона тем больше, чем больше число п. Состояние нуклона обозначают в виде комбинации п (буква) l (число). Последовательность одночастичных уровней зависит от V(r).
На рис. 3 слева показана схема уровней для потенциала Вудса--Саксона. Ядерные оболочки обычно обозначают по уровням гармонического осциллятора: 1s-оболочка, 1p-оболочка, 1d2s-оболочка, 1f2p, 1g2d3s и т.д.
Энергия ядра в модели оболочек является суммой одночастичных энергий нуклонов, а волновая функция ядра может быть представлена с учетом требований симметрии, налагаемых принципом Паули, в виде произведения волновых функций отдельных нуклонов.
Заполнение оболочек нуклонами происходит в соответствии с принципом Паули. В основном состоянии должны быть заняты самые нижние уровни. При этом одночастичные уровни для протонов и нейтронов заселяются независимо. Число нуклонов одного типа на одночастичном уровне дается формулой
(8)
где (2l+1) - число ориентаций вектора ,
2 - число ориентаций спина нуклона
Уровни гармонического осциллятора эквидистантны. Расстояние между ними дается выражением
(9)
при (радиуса ядра R рассчитывается по формуле (6.21))
Рис.3. Схематическое изображение одночастичных уровней в сферически-симметричном потенциале: слева без учета спин-орбитального взаимодействия, справа -- с учетом. Фигурные скобки объединяют уровни, входящие в одну осцилляторную оболочку. В круглых скобках дано число вакантных мест на уровне для нуклонов одного типа, в квадратных скобках приведено суммарное число нуклонов одного типа, если заполнены все уровни вплоть до данного включительно.
Из (9) видно, что с ростом числа нуклонов А «плотность» оболочек растет (расстояние между оболочками уменьшается). Так, если при имеем МэВ, то при получаем МэВ. Этот эффект хорошо виден на рис .4.
Размещено на http://www.allbest.ru/
Уровни гармонического осциллятора характеризуются вырождением по орбитальному моменту нуклона. В потенциале Вудса-Саксона снимается вырождение по орбитальному моменту нуклона в пределах одной оболочки и происходит перегруппировка высоких одночастичных уровней. Оболочками в случае произвольного потенциала следует считать группы близко расположенных одночастичных уровней.
Пользуясь формулой (8), можно найти максимальное число нуклонов одного типа на уровне и максимальное число нуклонов одного типа в ядрах с заполненными оболочками. Эти последние числа должны отвечать магическим ядрам. Для потенциалов гармонического осциллятора, прямоугольной ямы и ямы промежуточной формы (типа Вудса-Саксона) получаем следующие магические числа:
гармонический осциллятор N, Z = 2, 8, 20, 34, 58, 92, 168;
прямоугольная яма N, Z = 2, 8, 20, 34, 58, 92, 138;
потенциал Вудса-Саксона N, Z = 2, 8, 20, 34, 58, 92, 138.
Лишь первые три числа (2, 8, 20) совпадают с экспериментально установленными магическими числами. Для объяснения всего набора магических чисел, как оказалось, необходимо учесть спин-орбитальные силы, т.е. ту часть ядерного потенциала, которая зависит от взаимной ориентации орбитального и спинового моментов нуклона.
Спин-орбитальные силы играют существенную роль в атомных ядрах. С учетом спин-орбитальной добавки ядерный потенциал имеет вид
(10)
где как и
В потенциале (10) снимается вырождение по полному моменту j нуклона в пределах одной оболочки, который при данном l в зависимости от ориентации спина нуклона принимает 2 значения:
.
Происходит расщепление состояния с данным l на два состояния с разной взаимной ориентацией и . Таким образом, каждый одночастичный уровень расщепляется на два. Глубже опускается уровень с
,\
так как в этом случае нуклон сильнее взаимодействует с остальными.
В обозначение одночастичных уровней вводится нижний индекс, указывающий величину j. Так, вместо уровня lp появляются два уровня l и l. Величина расщепления, очевидно, тем больше, чем больше l (это следует уже из вида выражения). Начиная с уровня lg (рис.3), затем lh и т.д., ls - расщепление становится сравнимым с расстоянием между соседними осцилляторными оболочками. Расщепление уровней с настолько велико, что нижний уровень оболочки с максимальным j и l сильно опускается вниз и оказывается в предыдущей оболочке (это относится к уровням , , , которые попадают соответственно в 4-ю, 5-ю, 6-ю и 7-ю оболочки).
Количество нуклонов одного сорта на одночастичном уровне равно -- числу проекций j на ось z:
(11)
Состояния ядра в одночастичной модели оболочек определяются расположением нуклонов на одночастичных уровнях и называются конфигурациями. Основное состояние ядра отвечает расположению нуклонов на самых нижних одночастичных уровнях. Так, в ядре 16O в основном состоянии нуклоны полностью заполняют уровни , и .
Кулоновское взаимодействие протонов увеличивает энергию протонных одночастичных уровней по сравнению с нейтронными и видоизменяет потенциальную яму для протонов (она мельче нейтронной и за пределами ядра выходит на асимптотику кулоновского потенциала). С учетом этого расположение нуклонов по одночастичным уровням в основном состоянии ядра 16O показано на рис.5.
Размещено на http://www.allbest.ru/
Приведенная на рис.3 последовательность уровней одинакова для протонов и нейтронов вплоть до Z = N = 50. При Z и N, больших 50, последовательности уровней и порядок их заполнения для протонов и нейтронов различаются. Для нейтронов с N > 50 имеет место тенденция к заполнению сначала уровней с меньшими моментами.
В трех случаях одночастичная модель оболочек однозначно предсказывает спин и четность основного состояния ядра:
1. Ядро с заполненными уровнями. Так как на каждом уровне заняты состояния со всеми возможными проекциями , результирующий момент уровня и полный момент ядра равны нулю. Каждому нуклону на уровне с проекцией будет соответствовать нуклон с и суммарный момент нуклонов уровня будет равен нулю. Возможные значения даются следующим набором чисел:
Рис 6. Нуклоны одного типа на уровне с
Например, если уровень имеет j = 3/2, то на нем может находиться 4 нуклона одного типа (4 протона и 4 нейтрона) и заполненный уровень с этими четырьмя нуклонами можно изобразить так, как на рис. 6
Четность заполненного уровня положительна, так как она содержит четное число (2j + 1) нуклонов одинаковой четности. Поэтому для заполненного уровня (оболочки)
(12)
2. Ядро с одним нуклоном сверх заполненных уровней. Остов заполненных уровней имеет характеристики 0+, поэтому момент и четность определяются квантовыми числами единственного внешнего нуклона. Если этот нуклон в состоянии , то полный момент ядра J = j, а результирующая четность ядра . Поэтому для основного состояния ядра в этом случае имеем
(13)
3. Ядро с «дыркой» в заполненном уровне, т. е. когда до заполнения уровня не хватает одного нуклона. Пусть квантовые числа нуклона на таком уровне . Обозначим момент и четность уровня с «дыркой» j' и p'. Так как добавление нуклона на уровень приводит к его заполнению, имеем
(14)
т. е. для ядра с дыркой имеем те же правила определения спина и четности основного состояния, что и для ядра с одним нуклоном сверх заполненных уровней:
Рассмотрим теперь случай двух тождественных нуклонов на одном уровне. Между любой парой нуклонов одного типа на уровне действует дополнительное взаимодействие Vост помимо общего, сводящегося к центрально симметричному V(r), и это взаимодействие Vост (не сводимое к V(r)) называется, поэтому, остаточным. Опыт показывает, что свойства Vост таковы, что паре нуклонов одного сорта на одном уровне выгодно иметь результирующий момент равный нулю. Vост снимает вырождение по J этой пары, так что низшим оказывается состояние с J = 0. Это и есть упоминавшиеся ранее при обсуждении формулы Вайцзеккера силы спаривания. Дополнительная энергия связи ядра за счет этих сил 1-3 МэВ.
С учетом этого свойства легко сформулировать следующие правила для спинов J и четностей P в основном состоянии ядра:
четно-четное ядро
нечетное ядро
(15)
нечетно-нечетно ядро
,
где относятся к полному и орбитальному моменту нечетного нуклона (протона, нейтрона).
Возникновение сил спаривания в ядрах обусловлено особенностями взаимодействия в системе нуклонов. На характерных ядерных расстояниях нуклоны притягиваются, и им энергетически выгодно находиться на одном и том же уровне в состояниях, характеризуемых одними и теми же числами n, l, j. Поскольку кулоновское взаимодействие раздвигает протонные и нейтронные состояния (рис. 5), то наиболее выгодной является ситуация «совместного» нахождения в одном состоянии нуклонов одного типа. Однако это возможно лишь при соблюдении принципа Паули, что и диктует необходимость таким нуклонам при одинаковом иметь различные . Наиболее устойчивой при этом оказывается пара нуклонов с противоположно направленными моментами, т.е. с +jz и -jz . Такая пара нуклонов обладает максимально возможным набором совпадающих квантовых чисел, и, соответственно, волновые функции нуклонов этой пары характеризуются наибольшим перекрытием. Результирующий полный момент и четность такого состояния
Таким образом, в основном и низколежаших состояниях ядер нуклоны группируются парами nn и pp с противоположно направленными , и для того чтобы разрушить хотя бы одну такую пару, в ядро нужно внести энергию 1-3 МэВ. В противном случае связанные в пары нуклоны будут сколь угодно долго сохранять неизменными свои квантовые характеристики. Возникает своеобразная ситуация сверхтекучести ядерной материи. Аналогичная ситуация имеет место с электронами проводимости, которые при низких температурах объединяются в куперовские пары.
Размещено на http://www.allbest.ru/
В одночастичной модели оболочек возбужденные состояния ядер возникают при переходе одного или нескольких нуклонов на более высокие одночастичные орбиты. Наиболее просто выглядит спектр возбужденных состояний ядер с одним нуклоном или «дыркой» сверх заполненных оболочек. Нижние возбуждения такого ядра образуются перемещением этого внешнего нуклона на более высокие (свободные) уровни или дырки на нижние уровни (вглубь) ядра. Примерами возбуждений такого типа являются нижние возбужденные состояния ядер и (рис. 7).
Первое из этих ядер -- это ядро с нейтронной дыркой в дважды магическом коре , второе - с одним нейтроном сверх этого же кора. В основном состоянии ядро имеет одну вакансию (дырку) на уровне . Поэтому спин J и четность основного состояния . Ядро в основном состоянии имеет одну частицу на уровне сверх заполненного остова . . Представленные на рис. 7 возбуждения обусловлены соответственно перемещением нейтронной дырки (ядро ) и нейтрона (ядро ) по одночастичным уровням при неизменном дважды магическом коре .
Одночастичные переходы в ядре происходят между одночастичными состояниями, расположенными над уровнем Ферми. В ядре одночастичные переходы происходят между одночастичными состояниями, расположенными ниже уровня Ферми.
Пример. Определить в сферической модели оболочек спины J и четности Р основных состояний изотопов кислорода 15O - 23O.
Решение. Изотоп 16O имеет полностью заполненные оболочки по протонам и нейтронам, т.е. является дважды магическим ядром . Конфигурацию основного состояния ядра 16O можно записать в виде
Числа над обозначением уровня -- это числа нуклонов одного типа (нейтронов или протонов) на данном уровне. Изотопам 15O - 22O будут соответствовать следующие нейтронные конфигурации:
Ядро 15O имеет одну вакансию (дырку) на уровне 1 Начиная с изотопа 17O, происходит заполнение нейтронами уровня 1:
В ядре 22O полностью заполнен уровень . Со следующего изотопа 23O начинается заполнение уровня :
Пример. Рассчитать в рамках модели оболочек магнитный момент ядра трития -- .
Решение. Магнитный момент этого ядра должен быть равен собственному магнитному моменту единственного протона, входящего в его состав, т.е. должно быть
.
Действительно, в рассматриваемом ядре в основном состоянии имеем два спаренных нейтрона на -оболочке и один протон на этой же оболочке. У спаренных нейтронов спины антипараллельны. Поэтому их собственные магнитные моменты взаимно уничтожают друг друга. Орбитальный магнетизм не имеющих электрического заряда нейтронов заведомо отсутствует. У протона его тоже нет, так как орбитальный момент протона . Поэтому магнитный момент трития равен собственному магнитному моменту единственного протона.
Экспериментальное значение магнитного момента трития близко к полученной оценке. Имеющееся различие можно объяснить отклонением от простой модели оболочек за счет остаточных нуклон-нуклонных сил.
2. Основное и возбужденные состояния ядра. Диаграмма ядерных уровней
Атомное ядро -- система с фиксированной полной энергией. Состояния таких систем называются стационарными. Для них имеет место стационарное уравнение Шредингера.
(1)
полностью определятся видом гамильтона .
Состояние с наибольшей энергией связи (наименьшей полной энергией) называют основным. Все остальные состояния (с большей полной энергией) -- возбужденные. Диаграмма уровней ядра строится следующим образом (рис. 8). Нижнему по энергии (наибольшему по энергии связи) состоянию приписывается нулевой индекс и энергия E0=0:
(2)
W0 - энергия связи ядра в основном состоянии.
Энергии Ei (i=1,2,…) остальных состояний определяются как
( 3)
т.е. отсчитываются от основного состояния. Таким образом, -- это энергии возбуждения. Нижние уровня ядра дискретны. При спектр уровней уже непрерывен. При ядерных превращениях (и распадах) происходят переходы между различными стационарными состояниями ядер.
3. Квантовые характеристики ядерных состояний. Инвариантность гамильтониана и квантовые числа
Какие физические величины помимо энергии сохраняются в стационарных ядерных состояниях? Этот набор определяется симметрией системы (гамильтониана). А именно, неизменность (инвариантность) гамильтониана Н относительно определенного преобразования (операции симметрии) приводит к сохранению некоторой физической величины, а значит, и соответствующему квантовому числу:
Инвариантность (системы) относительно сдвига (трансляций) во времени приводит к закону сохранения энергии.
Инвариантность относительно параллельного переноса системы (или осей координат) приводит к закону сохранения импульса.
Инвариантность относительно пространственных поворотов приводит к закону сохранения момента количества движения.
Эти три закона универсальны, т.е. справедливы для всех систем.
Как найти другие сохраняющиеся физические величины (квантовые числа)? Напомним некоторые сведения из квантовой механики. Значение наблюдаемой величины F в состоянии дается средним значением <F> соответствующего оператора (пусть он не зависит от времени):
(4)
Можно легко показать, что <F> сохраняется, (т.е. не зависит от времени), если коммутатор операторов Гамильтона системы и обращается в нуль:
или более точно
т.е. операторы и коммутируют.
Таким образом, нахождение сохраняющейся величины (или соответствующего квантового числа) можно свести к нахождению таких преобразований (операций симметрии), оператор которых коммутирует с .
ядерный гамильтониан квантовый
4. Особенности спинов ядер
Следующим (вслед за энергией E и импульсом) квантовым числом, которое сохраняется у ядра в силу инвариантности к поворотам (см. п. 2, 3-я инвариантность списка), является полный момент J количества движения покоящегося ядра или, как говорят, спин ядра. Спин ядра является результатом сложения спинов и орбитальных моментов частиц (нуклонов), входящих в состав ядра.
Вообще говоря, ядерные состояния (как любой системы частиц) характеризуются также полным орбитальным моментом L (в центральном поле) и полным спиновым моментом S:
(5)
В зависимости от типа взаимодействия между частицами возможны следующие варианты объединения орбитальных и спи новых моментов отдельных частиц в полный момент (спин) J:
(6)
Очевидно, для ядра выполнение следующих правил:
а) А четно J = n (n = 0,1,2,3,...), т. е. целое;
б) А нечетно J = n + т. е. полуцелое.
Кроме того, экспериментально установлено еще одно правило: у четно-четных ядер в основном состоянии (ground state)
В основном состоянии остальных ядер
Все это указывает на взаимную компенсацию моментов нуклонов в основном состоянии -- особое свойство межнуклонного взаимодействия.
5 Четность. Орбитальная и внутренняя четность. Четность системы частиц
Инвариантность системы (гамильтониана ) относительно пространственного отражения -- инверсии (замены ) приводит к закону сохранения четности и еще одному квантовому числу -- четности. Ядерный гамильтониан обладает соответствующей симметрией.
Действительно,
(7)
Это означает, что система (ядро) не меняет своих свойств при.
Определим оператор пространственной инверсии (оператор четности) для системы частиц следующим образом:
(8)
или просто если ввести обозначение .
Подействуем на левую и правую части (3.8) еще раз оператором :
(9)
т.е. - оператор тождественного преобразования.
С другой стороны удовлетворяет уравнению на собственные значения (так как в силу инвариантности к пространственному отражению должно быть соответствующее сохраняющееся квантовое число):
(10)
Из (9) и (10) следует, что
т.е.
Итак, имеется две возможности
(11)
или
- четные функции (состояния),
- нечетные функции (состояния).
До сих пор волновая функция была волновой функцией системы точечных (бесструктурных) частиц. Вообще говоря, волновая функция частицы с индексом б имеет вид
, (12)
где описывает внутренне состояние частицы б, а - движение частицы б как целого(точечного объекта по некоторой траектории (орбите). Вид волновой функции в форме (3.12) следует из того, что гамильтониан объекта б можно представить как сумму гамильтонианов , где описывает объект как точку (без структуры), а внутреннюю структуру объекта.
Оператор четности действует на каждый множитель в :
(13)
причем, если - инвариантен к инверсии в пространстве внутренних координат,
(14)
где -- внутренние координаты, -- внутренняя четность (оператор в последнем соотношении совершает инверсию в пространстве внутренних координат частицы, от которых лишь и зависит ).
Волновая функция орбитального движения в центральном поле (т.е. движения с определенным l) может быть представлена в сферических координатах в виде
(15)
Инверсия соответствует в сферических координатах преобразованию
(16)
при котором радиальная часть волновой функции не меняется, a -- собственная функция оператора орбитального момента количества движения (так называемая сферическая функция или гармоника) -- преобразуется следующим образом:
(17)
Итак, имеем
(18)
называют орбитальной четностью.
Волновую функцию системы независимых частиц можно представить в виде произведения волновых функций отдельных частиц (точнее, в виде линейной комбинации этих произведений):
(19)
где . Откуда, если речь идет о движении частиц в центральном поле,
т.е. четность такой системы
(20)
Для двух частиц
(21)
В системе центра инерции
-
орбитальный момент относительного движения.
Формулы (20), (21) можно применять к ядру как системе нуклонов, рассматривая их как независимые частицы в общем ядерном потенциале, а также к реакциям, когда частицы до и после столкновения можно считать невзаимодействующими.
Имеют смысл лишь относительные внутренние четности. Для протона принимают . Нейтрон имеет ту же внутреннюю четность +1. Остальные внутренние четности определяют относительно протона. Для электрона, участвующего в электромагнитном взаимодействии, . Для фотона . Это следствие того, что электромагнитное поле описывается векторным потенциалом А, который эквивалентен волновой функции фотона, а для векторной функции
(22)
Что позволяет приписать фотону
Поясним ситуацию с четностью векторов. Ранее записанное соотношение (3.8) справедливо для скалярных функций . При действии же оператора на векторную функцию следует для полноты инверсии изменить не только знаки радиус-векторов частиц (), но также знаки всех трех компонент вектора , что неизбежно происходит при изменении направления всех координатных осей на противоположные. Поэтому для любого истинного (полярного) вектора имеет место соотношение (22).
Внутренние четности у частиц и античастиц с полуцелым спином (фермионов) противоположны, с целым (бозонов) -- одинаковы.
Внутренние четности частиц получают из распадов и реакций с участием частиц с известной внутренней четностью на основе закона сохранения четности. Он имеет место в сильных и электромагнитных взаимодействиях и нарушается в слабых.
Рисунок 3.1 демонстрирует принятые обозначения спина и четности ядерных состояний , например , , и т.д.
6. Тождественность частиц. Статистика. Фермионы и бозоны
В микромире частицы одного типа неразличимы, т.е. имеет место принцип тождественности частиц. Перестановка двух одинаковых частиц не меняет состояния системы. Принцип тождественности можно сформулировать и так: гамильтониан системы частиц инвариантен относительно перестановки всех координат двух любых частиц одного типа. Поэтому должна быть новая квантовая характеристика (квантовое число) или сохраняющаяся физическая величина, отвечающая этому преобразованию.
Оператор перестановки и его собственные значения определяются следующим образом:
Поэтому и .
При
т.е.
Частицы, входящие в состав таких систем, называют бозонами.
При
Частицы, входящие в состав таких систем, - фермионы.
Примеры: бозоны - фермионы - .
У фермионов в одном состоянии может пребывать не более одной частицы (принцип Паули), у бозонов -- сколько угодно. В квантовой теории поля показывается, что фермионы имеют полу целый спин, а бозоны -- целый. Лазер существует благодаря тому, что фотоны являются бозонами. Доказательство принципа Паули:
Пусть частицы 1 и 2 находятся в одинаковом состоянии. Тогда и суть одна и та же функция и , 2, , т. е. такого состояния нет.
Классические статические электромагнитные моменты ядер.
Ядро как система зарядов и токов обладает статическими электрическими и магнитными мультипольными моментами. Обычно ограничиваются не равными нулю моментами нижайшей мультипольности в основном состоянии -- электрическим квадрупольным и магнитным дипольным, которые дают ценные сведения о свойствах ядра. Электрический дипольный момент ядра равен нулю, что легко доказывается на основе закона сохранения четности (см. ниже).
Электрические моменты. Если -- плотность распределения электрического заряда в системе, то из классической электродинамики известно, что
есть электрический монополь, т.е. полный (скалярный) заряд системы.
(i = 1 (ось х), 2 (ось y), 3 (ось z)) (23)
есть i-я компонента вектора электрического дипольного момента
Компонента
(24)
есть одна из пяти линейно-независимых компонент тензора электрического квадрупольного момента. Электрический квадрупольный момент определяет взаимодействие системы с градиентом внешнего электрического поля (например, создаваемого электронной оболочкой). При наличии электрического дипольного момента возникает его взаимодействие с напряженностью внешнего электрического поля. При отличии от нуля электрического заряда системы возникает его взаимодействие с внешним электрическим потенциалом.
Под электрическим квадрупольным моментом Q ядра условились понимать величину
(25)
Величины электрического дипольного и квадрупольного моментов зависят от выбора системы координат. В дальнейшем мы будем использовать так называемую собственную (или внутреннюю) систему координат. Эта система, будучи жестко связана с ядром, перемещается и поворачивается вместе с ним. Начало собственной системы координат совпадает с центром распределения заряда и массы ядра. Можно легко показать, что электрический дипольный момент обращается в нуль при совпадении центра заряда с центром массы системы. Равенство нулю ядерного электрического дипольного момента как раз и говорит о таком совпадении.
Если у ядра есть ось симметрии (как, например, у аксиально симметричного эллипсоида), то значение Q зависит от ориентации оси z собственной системы координат относительно этой оси симметрии. Модуль |Q| максимален, если ось z совпадает с осью симметрии, и как раз эту величину рассматривают как собственный (внутренний), или классический
Рис. 9.
характеризует отличие распределения заряда ядра от сферически симметричного ( для сферически симметричного ядра), т.е. характеризует форму ядра (рис.9).
Следует подчеркнуть, что ядерный спин J в основном состоянии всегда направлен вдоль оси симметрии (если она существует). Понять это помогает простая аналогия с классической механикой, где момент количества движения J тела возникает за счет его вращения вокруг некоторой оси. В этом случае ось вращения, совпадающая по направлению с J, и будет его осью симметрии.
Рис.3.3. Орбитальный и спиновый магнитный момент частицы
Подавляющее большинство несферических ядер имеет форму аксиально симметричнного эллипсоида. При ядро -- вытянутый вдоль оси ж эллипсоид. При ядро является сплюснутым (вдоль z) эллипсоидом (рис.9). Квадрупольный момент измеряется в барнах (1б= 10-24 см2).
Магнитный дипольный момент. Классическое определение магнитного дипольного момента частицы с массой m и зарядом q:
. (26)
В микромире аналогом классического момента является магнитный момент орбитального движения
где q?/2mc - магнетон.
Если выражать в магнетонах, а l в , то
. (28)
Обобщая (27) на случай магнитного момента, возникающего за счет спина, запишем его в виде
, (29)
или
(30)
где -- безразмерная константа (спиновый, гиромагнитный множитель), учитывающий отклонение собственного (спинового, а значит квантового) магнитного момента от классического (орбитального). В значении скрыта информация о структуре частицы. Можно показать (впервые это было сделано Дираком), что точечная заряженная частица со спином 1/2 массой m и зарядом q (например, электрон) имеет величину собственного магнитного момента
т.е. для нее . Отклонение от этой величины для частицы со спином Ѕ говорит о внутренней структуре частицы. Экспериментальное определение и их объяснение - важная задача субатомной физики.
Можно ввести, обобщая, и орбитальные гиромагнитные множители которые очевидно равны 1, например,
С помощью можно включить в эту схему и нейтральные частицы, для которых , например нейтрон, полагая для него
Магнитные моменты нуклонов и ядер выражают в ядерных магнетонах
которые в раз меньше магнетона Бора
Таким образом, магнитный дипольный момент ядра имеет орбитальную и спиновую составляющие:
(31)
Гидромагнитные факторы (g-факторы) электрона, позитрона и нуклонов даны в табл. 1
Таблица 1. Гидромагнитные факторы электрона/позитрона (в ) и нуклонов (в )
Частица |
|||
Электрон |
-1 |
-2 |
|
Позитрон |
1 |
2 |
|
Протон |
1 |
5,586 |
|
Нейтрон |
0 |
-3,826 |
Значения и определены экспериментально Штерном в 1933 г., Альварецом и Блохом в 1940 г. Отличие от 2 и неравенство нулю говорит о сложной структуре (неточечности) нуклона, который, как известно, состоит из кварков.
Вводят также понятие гиромагнитного фактора для каждого ядра:
. (32)
Колинеарность и J очевидна, так как при вращении заряда магнитный момент должен совпадать или быть противоположным по направлению с J. Ценность изучения связана с возможностью получения информации о спинах ядер.
Литература
1. Капитонов И.М. Введение в физику ядра и частиц. YPCC. М.,2002.
2. Ишханов Б.С., Капитонов И.М., Юдин Н.П. Частицы и атомные ядра.URSS. Издательство ЛКИ, 2007.
Размещено на Allbest.ru
...Подобные документы
Энергия связи атомного ядра, необходимая для полного расщепления ядра на отдельные нуклоны. Условия, необходимые для ядерной реакции. Классификация ядерных реакций. Определение коэффициента размножения нейтронов. Ядерное оружие, его поражающие свойства.
презентация [2,2 M], добавлен 29.11.2015Модели атомных ядер, в которых понятие потенциала применяется и нет. Экспериментальные факты, подтверждающие зависимость ядерных сил от расстояния, спинов, относительного орбитального момента нуклонов. Различные классификации ядерных потенциалов.
дипломная работа [133,1 K], добавлен 16.08.2011Законы сохранения и энергетические соотношения в ядерных реакциях. Определение порога реакции в нерелятивистском и релятивистском приближениях. Механизмы протекания и основные типы ядерных реакций. Концепция образования составного ядра нейтроном.
контрольная работа [948,5 K], добавлен 08.09.2015Заряд, масса, размер и состав атомного ядра. Энергия связи ядер, дефект массы. Ядерные силы и радиоактивность. Плотность ядерного вещества. Понятие ядерных реакций и их основные типы. Деление и синтез ядер. Квадрупольный электрический момент ядра.
презентация [16,0 M], добавлен 14.03.2016Основные принципы распределения ядер по группам и квазиоболочкам. Особенности расположения нуклонов в ядрах. Радиоактивность и деление ядер. Синтез ядерных моделей. Сравнительная характеристика предложенной модели ядра с другими ядерными моделями.
книга [3,7 M], добавлен 12.11.2011Использование в ядерных реакторах, работающих на естественном уране, замедлителей нейтронов для повышения коэффициентов размножения нейтронов. Схема процессов в ядерном реакторе, его основные элементы. Построение и запуск первых ядерных реакторов.
презентация [559,1 K], добавлен 24.03.2011Основные предпосылки быстрого роста ядерной энергетики. Устройство энергетических ядерных реакторов. Требования к конструкциям активной зоны и ее характеристики. Основные требования к безопасности атомных станций с реакторами ВВЭР нового поколения.
курсовая работа [909,2 K], добавлен 14.11.2019Изучение деления ядер, открытие цепных реакций на деление ядер урана. Создание ядерных реакторов, ядерной энергетики и оружия. Термоядерный синтез легких ядер в звездах. Что должен знать физик-ядерщик. Общие клинические проявления лучевой болезни.
реферат [16,7 K], добавлен 14.05.2011История развития атомной энергетики. Типы ядерных энергетических реакторов. Переработка и хранение ядерных отходов. Проблема эксплуатационной безопасности. Оценка состояния на сегодняшний день и перспективы её развития. Строительство АЭС в Беларуси.
курсовая работа [41,8 K], добавлен 12.10.2011Строение атома и атомного ядра. Явление радиоактивности. Взаимодействие нейтронов с атомными ядрами. Цепная ядерная реакция. История создания ядерного оружия. Виды ядерных зарядов. Поражающие факторы ядерного взрыва. Ядерный терроризм.
реферат [85,8 K], добавлен 05.05.2006Строение вещества, виды ядерных распадов: альфа-распад, бета-распад. Законы радиоактивности, взаимодействие ядерных излучений с веществом, биологическое воздействие ионизирующего излучения. Радиационный фон, количественные характеристики радиоактивности.
реферат [117,7 K], добавлен 02.04.2012Цепная реакция деления, термоядерный синтез. Явления при ядерном взрыве. Классификация ядерных взрывов по мощности и по нахождению центра взрыва. Военное и мирное применение ядерных взрывов. Природные ядерные взрывы. Разрушительные последствия от взрыва.
реферат [29,4 K], добавлен 03.12.2015Анализ состава системы учета и контроля ядерных материалов, методика комплексной оценки ее состояния. Расчет показателей качества измерений и организации системы, оценка степени подготовки персонала. Изучение методов определения весовых коэффициентов.
дипломная работа [163,2 K], добавлен 27.01.2014Особенности осуществления ядерных реакций, их сопровождение энергетическими превращениями. Термоядерные реакции в природных условиях. Строение ядерного реактора. Цепные ядерные реакции, схема их развития. Способы и области применения ядерных реакций.
презентация [774,1 K], добавлен 12.12.2014Механизм действия ядерных сил. Искусство управлять ядерной энергией. Как не сделать атомную бомбу из реактора. Ядерно-топливный цикл. "Сердце" атомной станции. Саморегулирование и самоограничение ядерной реакции. Самозащищенность ядерного энергоблока.
презентация [6,7 M], добавлен 03.04.2014История открытий в области строения атомного ядра. Модели атома до Бора. Открытие атомного ядра. Атом Бора. Расщепление ядра. Протонно-нейтронная модель ядра. Искусственная радиоактивность. Строение и важнейшие свойства атомных ядер.
реферат [24,6 K], добавлен 08.05.2003Внутренняя структура и компоненты ядра, специфика взаимосвязи нуклонов. Энергия связи и масса ядра, квантовые характеристики, а также электрические и магнитные моменты. Оболочечная и ротационная модель, несферичность ядер. Текучесть ядерного вещества.
контрольная работа [51,7 K], добавлен 31.01.2016Сущность, устройство, типы и принцип действия ядерных реакторов, факторы и причины их опасности. Основное назначение реактора БН-350 в Актау. Особенности самообеспечения ядерной энергетики топливом. Технология производства реакторов с шаровой засыпкой.
контрольная работа [1,7 M], добавлен 27.10.2009Характеристика газоразрядных детекторов ядерных излучений (ионизационных камер, пропорциональных счетчиков, счетчиков Гейгера-Мюллера). Физика процессов, происходящих в счетчиках при регистрации ядерных частиц. Анализ работы счетчика Гейгера-Мюллера.
лабораторная работа [112,4 K], добавлен 24.11.2010Типы, устройство и принцип действия ядерных реакторов – устройств, предназначенных для осуществления управляемой ядерной реакции. Обоснование необходимости использования ядерной энергии в мирных целях. Преимущества АЭС над другими видами электростанций.
презентация [898,5 K], добавлен 04.05.2011