Физика атомного ядра. Свойства и строение атомных ядер
Заряд и масса как важнейшие характеристики ядра, его состав. Схема атома водорода, энергия связи ядра. Виды ядерных реакций: превращение, радиационный захват, рассеяние и др. Понятие естественной радиоактивности, основной закон радиоактивного распада.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 30.09.2015 |
Размер файла | 356,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Физика атомного ядра. Свойства и строение атомных ядер
Содержание
1. Заряд и масса атомных ядер
2. Состав ядра
2.1 Схема атома водорода
3. Энергия связи ядра. Дефект массы. Ядерные силы
4. Ядерные реакции
4.1 Реакция превращения
4.2 Реакция радиационного захвата
4.3 Рассеяние
4.4 Реакция деления
5. Радиоактивность
5.1 Естественная радиоактивность
5.2 Основной закон радиоактивного распада
1. Заряд и масса атомных ядер
Важнейшими характеристиками ядра являются его заряд и масса М. Z- заряд ядра определяется количеством положительных элементарных зарядов сосредоточенных в ядре. Носителем положительного элементарного заряда р = 1,6021·10-19 Кл в ядре является протон. Атом в целом нейтрален и заряд ядра определяет одновременно число электронов в атоме. Распределение электронов в атоме по энергетическим оболочкам и подоболочкам существенно зависит от их общего числа в атоме. Поэтому заряд ядра в значительной мере определяет распределение электронов по их состояниям в атоме и положение элемента в периодической системе Менделеева. Заряд ядра равен qя = z·e, где z -зарядовое число ядра, равное порядковому номеру элемента в системе Менделеева.
Масса атомного ядра практически совпадает с массой атома, потому что масса электронов всех атомов, кроме водородного, составляет примерно 2,5· 10-4 массы атомов. Массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 масса атома углерода .
1 ае.м. =1,6605655(86)·10-27 кг.
mя = ma - Z me.
Изотопами, называются разновидности атомов данного химического элемента, обладающие одинаковым зарядом, но различающееся массой.
Целое число ближайшее к атомной массе, выраженной в а.е.м. называется массовым числом и обозначается буквой А. Обозначение химического элемента: А - массовое число, X - символ химического элемента, Z -зарядовое число - порядковый номер в таблице Менделеева (): Бериллий ; Изотопы: , ', .
Радиус ядра:
где А - массовое число.
2. Состав ядра
Ядро атома водорода называется протоном
mпротона = 1,00783 а.е.м., .
2.1 Схема атома водорода
В 1932 г. была открыта частица названная нейтроном, обладающая массой близкой к массе протона (mнейтрона = 1,00867 а.е.м.) и не имеющая электрического заряда. Тогда же Д.Д. Иваненко сформулировал гипотезу о протонно - нейтроном строении ядра: ядро состоит из протонов и нейтронов и их сумма равна массовому числу А. 3арядовое число Z определяет число протонов в ядре, число нейтронов N =А - Z.
Элементарные частицы - протоны и нейтроны, входящие в состав ядра, получили общее название нуклонов. Нуклоны ядер находятся в состояниях, существенно отличающихся от их свободных состояний. Между нуклонами осуществляется особое ядерное взаимодействие. Говорят, что нуклон может находиться в двух "зарядовых состояниях" - протонном с зарядом +е, и нейтронном с зарядом 0.
ядро атом реакция радиоактивный
3. Энергия связи ядра. Дефект массы. Ядерные силы
Ядерные частицы - протоны и нейтроны - прочно удерживаются внутри ядра, поэтому между ними действуют очень большие силы притяжения, способные противостоять огромным силам отталкивания между одноименно заряженными протонами. Эти особые силы, возникающие на малых расстояниях между нуклонам, называются ядерными силами. Ядерные силы не являются электростатическими (кулоновскими).
Изучение ядра показало, что действующие между нуклонами ядерные силы обладают следующими особенностями:
а) это силы короткодействующие - проявляющееся на расстояниях порядка 10-15 м и резко убывающие даже при незначительном увеличения расстояния;
б) ядерные силы не зависят от того, имеет ли частица (нуклон) заряд - зарядовая независимость ядерных сил. Ядерные силы, действующие между нейтроном и протоном, между двумя нейтронами, между двумя протонами равны. Протон и нейтрон по отношению к ядерным силам одинаковы.
Энергия связи является мерой устойчивости атомного ядра. Энергия связи ядра равна работе, которую нужно совершить для расщепления ядра на составляющие его нуклоны без сообщения им кинетической энергии
МЯ < У(mp + mn)
Мя - масса ядра
Измерение масс ядер показывает, что масса покой ядра меньше, чем сумма масс покоя составляющих его нуклонов.
Величина
служит мерой энергия связи и называется дефектом массы.
Уравнение Эйнштейна в специальной теории относительности связывает энергию и массу покоя частицы.
В общем случае энергия связи ядра может быть подсчитана по формуле
где Z - зарядовое число (число протонов в ядре);
А - массовое число (общее число нуклонов в ядре);
mp,, mn и Мя - масса протона, нейтрона а ядра
Дефект массы (Дm) равны.й 1 а.е. м. (а.е.м. - атомная единица массы) соответствует энергий связи (Есв), равной 1 а.е.э. (а.е.э. - атомная единица энергии) и равной 1а.е.м.·с 2 = 931 МэВ.
4. Ядерные реакции
Изменения ядер при взаимодействии их с отдельными частицами и друг с другом принято называть ядерными реакциями.
Различают следующие, наиболее часто встречающиеся ядерные реакции.
4.1 Реакция превращения
В этом случае налетевшая частица остается в ядре, но промежуточное ядро испускает какую-либо другую частицу, поэтому ядро - продукт отличается от ядра-мишени.
4.2 Реакция радиационного захвата
Налетевшая частица застревает в ядре, но возбужденное ядро испускает избыточную энергию, излучая г- фотон (используется в работе ядерных реакторов)
Пример реакции захвата нейтронов кадмием
или фосфором
4.3 Рассеяние
Промежуточное ядро испускает частицу, тождественную с налетевшей, причем может быть:
упругое рассеяние, при котором
;
неупругое рассеяние, при котором
.
Упругое рассеяние нейтронов углеродом (используется в реакторах для замедления нейтронов):
Неупругое рассеяние:
4.4 Реакция деления
Это реакция, идущая всегда с выделением энергии. Она является основой для технического получения и использования ядерной энергии. При реакции деления возбуждение промежуточного составного ядра столь велико, что оно делится на два, примерно равных осколка, с выделением нескольких нейтронов.
Если энергия возбуждения невелика, то разделение ядра не происходит, а ядро, потеряв избыток энергии путем испускания г - фотона или нейтрона, возвратится в нормальное состояние (рис. 1). Но если вносимая нейтроном энергия велика, то возбужденное ядро начинает деформироваться, в нем образуется перетяжка и в результате оно делится на два осколка, разлетающихся с огромными скоростями, при этом испускается два нейтрона (рис. 2).
Цепная реакция - саморазвивающаяся реакция деления. Для осуществления её необходимо, чтобы из вторичных нейтронов, образующихся при одном акте деления, хотя бы один смог вызвать следующий акт деления: (так как некоторые нейтроны могут участвовать в реакциях захвата не вызывая деления). Количественно условие существования цепной реакции выражает коэффициент размножения:
k < 1 - цепная реакция невозможна, k = 1 (m = mкр) - цепная реакций с постоянным количеством нейтронов (в ядерном реакторе}, k > 1 (m > mкр) - ядерные бомбы.
5. Радиоактивность
5.1 Естественная радиоактивность
Радиоактивность представляет собой самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.
Типы радиоактивности:
б-распад.
Испускание ядрами некоторых химических элементов б-системы двух протонов и двух нейтронов, соединенных воедино (а-частица - ядро атома гелия )
б-распад присущ тяжелым ядрам с А > 200 и Z > 82. При движении в веществе б-частицы производят на своем пути сильную ионизацию атомов (ионизация - отрыв электронов от атома), действуя на них своим электрическим полем. Расстояние, на которое пролетает б-частица в веществе до полной её остановки, называется пробегом частицы или проникающей способностью(обозначается R, [R] = м, см). . При нормальных условиях б- частица образует в воздухе 30000 пар ионов на 1 см пути. Удельной ионизацией называется число пар ионов образующихся на 1 см длины пробега. б- частица оказывает сильное биологическое действие.
Правило смещения для б-распада:
2. в-распад.
а) электронный (в-): ядро испускает электрон и электронное антинейтрино
б) позитронный (в+):ядро испускает позитрон и нейтрино
Эта процессы происходят, путем превращения одного вида нуклона в ядре в другой: нейтрона в протон или протона в нейтрон.
Электронов в ядре нет, они образуются в результате взаимного превращения нуклонов.
Позитрон - частица, отличающаяся от электрона только знаком заряда (+е = 1,6·10-19 Кл)
Из эксперимента следует, что при в - распаде изотопы теряют одинаковое количество энергии. Следовательно, на основании закона сохранения энергии В. Паули предсказал, что выбрасывается еще одна легкая частица, названная антинейтрино. Антинейтрино не имеет заряда и массы. Потери энергии в - частицами при прохождении их через вещество вызываются, главным образом, процессами ионизации. Часть энергии теряется на рентгеновское излучение при торможении в - частицы ядрами поглощающего вещества. Так как в - частицы обладают малой массой, единичным зарядом и очень большими скоростями, то их ионизирующая способность невелика, (в 100 раз меньше, чем у б - частиц), следовательно, проникающая способность (пробег) у в - частиц существенно больше, чем у б - частиц.
Rв воздуха =200 м, Rв Pb ? 3 мм
в- - распад происходит у естественных и искусственных радиоактивных ядер. в+ - только при искусственной радиоактивности.
Правило смещения для в- - распада:
в) К - захват (электронный захват) - ядро поглощает один из электронов, находящихся на оболочке К (реже L или М) своего атома, в результате чего один из протонов превращается а нейтрон, испуская при этом нейтрино. Схема К - захвата:
Место е электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.
г-лучи.
Обычно все типы радиоактивности сопровождаются испусканием г- лучей. г-лучи - это электромагнитное излучение, обладающее длинами волн от одного до сотых долей ангстрем л'=~ 1-0,01 Е=10-10-10-12 м. Энергия г-лучей достигает миллионов эВ.
Wг ~ MэB
1эВ=1,6·10-19 Дж
Ядро, испытывающее радиоактивный распад, как правило, оказывается возбужденным, н его переход в основное состояние сопровождается испусканием г - фотона. При этом энергия г-фотона определяется условием
где Е 2 и E1 -энергия ядра.
Е 2- энергия в возбужденном состоянии;
Е 1 - энергия в основном состоянии.
Поглощение г-лучей веществом обусловлено тремя основными процессами:
· фотоэффектом (при hv < l MэB);
· образованием пар электрон - позитрон;
или
· рассеяние (эффект Комптона) -
Поглощение г-лучей происходит по закону Бугера:
где м- линейный коэффициент ослабления, зависящий от энергий г - лучей и свойств среды;
І0- интенсивность падающего параллельного пучка;
I - интенсивность пучка после прохождения вещества толщиной х см.
г-лучи - одно из наиболее проникающих излучений. Для наиболее жестких лучей (hнmax) толщина слоя половинного поглощения равна в свинце 1,6 см, в железе - 2,4 см, в алюминии - 12 см, в земле - 15 см.
5.2 Основной закон радиоактивного распада
Число распавшихся ядер dN пропорционально первоначальному числу ядер N и времени распада dt,dN~N dt. Основной закон радиоактивного распада в дифференциальной форме:
Коэффициент л называется постоянной распада для данного вида ядер. Знак "-" означает, что dN должно быть отрицательным, так как конечное число не распавшихся ядер меньше начального.
следовательно, л характеризует долю ядер, распадающихся за единицу времени, т е. определяет скорость радиоактивного распада. л не зависит от внешних условий, а определяется лишь внутренними свойствами ядер. [л]=с-1. Основной закон радиоактивного распада в интегральной форме
где N 0 - первоначальное число радиоактивных ядер при t=0;
N - число не распавшихся ядер в момент времени t;
л - постоянная радиоактивного распада.
О скорости распада на практике судят используя не л, а Т 1/2 - период полураспада - время, за которое распадается половина первоначального количества ядер. Связь Т 1/2 и л
Т 1/2 U238 = 4,5·106 лет, Т 1/2 Ra = 1590 лет, Т 1/2 Rn = 3,825 сут. Число распадов в единицу времени А = -dN/dt называется активностью данного радиоактивного вещества.
Из
следует,
[А] = 1Беккерель = 1распад/1с;
[А] = 1Ки = 1Кюри= 3,7·1010 Бк.
Закон изменения активности
где А 0 =лN0 - начальная активность в момент времени t = 0;
Размещено на Allbest.ru
...Подобные документы
Заряд, масса, размер и состав атомного ядра. Энергия связи ядер, дефект массы. Ядерные силы и радиоактивность. Плотность ядерного вещества. Понятие ядерных реакций и их основные типы. Деление и синтез ядер. Квадрупольный электрический момент ядра.
презентация [16,0 M], добавлен 14.03.2016Физика атомного ядра. Структура атомных ядер. Ядерные силы. Энергия связи ядер. Дефект массы. Ядерные силы. Ядерные реакции. Закон радиоактивного распада. Измерение радиоактивности и радиационная защита.
реферат [306,3 K], добавлен 08.05.2003История открытий в области строения атомного ядра. Модели атома до Бора. Открытие атомного ядра. Атом Бора. Расщепление ядра. Протонно-нейтронная модель ядра. Искусственная радиоактивность. Строение и важнейшие свойства атомных ядер.
реферат [24,6 K], добавлен 08.05.2003Краткая характеристика нуклонов. Масса и энергия связи ядра. Формы радиоактивного распада. Ядерные силы и модели атомного ядра. Основные формулы теории атомного ядра. Цепные реакции деления. Термоядерные и ядерные реакции. Химические свойства изобаров.
курсовая работа [1,5 M], добавлен 21.03.2014Планетарная модель атома Резерфорда. Состав и характеристика атомного ядра. Масса и энергия связи ядра. Энергия связи нуклонов в ядре. Взаимодействие между заряженными частицами. Большой адронный коллайдер. Положения теории физики элементарных частиц.
курсовая работа [140,4 K], добавлен 25.04.2015Вивчення фізичної сутності поняття атомного ядра. Енергія зв’язку і маса ядра. Електричні і магнітні моменти ядер. Квантові характеристики ядер. Оболонкова та ротаційні моделі ядер. Надтекучість ядерної речовини. Опис явищ, що протікають в атомних ядрах.
курсовая работа [50,2 K], добавлен 07.12.2014Энергия связи атомного ядра, необходимая для полного расщепления ядра на отдельные нуклоны. Условия, необходимые для ядерной реакции. Классификация ядерных реакций. Определение коэффициента размножения нейтронов. Ядерное оружие, его поражающие свойства.
презентация [2,2 M], добавлен 29.11.2015Внутренняя структура и компоненты ядра, специфика взаимосвязи нуклонов. Энергия связи и масса ядра, квантовые характеристики, а также электрические и магнитные моменты. Оболочечная и ротационная модель, несферичность ядер. Текучесть ядерного вещества.
контрольная работа [51,7 K], добавлен 31.01.2016Строение атома и атомного ядра. Явление радиоактивности. Взаимодействие нейтронов с атомными ядрами. Цепная ядерная реакция. История создания ядерного оружия. Виды ядерных зарядов. Поражающие факторы ядерного взрыва. Ядерный терроризм.
реферат [85,8 K], добавлен 05.05.2006Энергия отдачи ядер. Излучениеми релятивистские эффекты. Скорость движения электрона вдали от ядра. Кинетическая энергия образовавшегося иона. Длина волны гамма квантов, волны света. Скорость пиона до распада. Уровни энергии электрона в атоме водорода.
реферат [165,2 K], добавлен 22.11.2011Основные термины, используемые при рентгенологическом исследовании. Устройство рентгеновской трубки. Свойства рентгеновского излучения. Характеристика структуры атома и ядра вещества. Виды радиоактивного распада: альфа-распад. Система обозначений ядер.
реферат [667,7 K], добавлен 16.01.2013Открытие сложного строения атома – важнейший этап становления современной физики. Модель Томпсона и ее противоречие с опытами по исследованию распределения положительного заряда в атоме. Определение размеров атомного ядра. Открытие радиоактивности.
презентация [1,7 M], добавлен 09.04.2015Опыт Резерфорда. Исследование строения атома. Измерение дифференциального сечения. Состав атомного ядра. Методы измерения размеров ядер и распределения в них массы. Характеристики протона, нейтрона, электрона. Тензорный характер взаимодействия нуклонов.
презентация [222,2 K], добавлен 21.06.2016Кинетическая энергия электрона. Дейбролевская и комптоновская длина волны. Масса покоя электрона. Расстояние электрона от ядра в невозбужденном атоме водорода. Видимая область линий спектра атома водорода. Дефект массы и удельная энергия связи дейтерия.
контрольная работа [114,0 K], добавлен 12.06.2013Исследование концепции динамической структуры атома в пространстве. Изучение структуры атома и атомного ядра. Описания динамики движения тел в реальном пространстве потенциальных сфер. Анализ спирального движения квантовых частиц в свободном пространстве.
реферат [2,4 M], добавлен 29.05.2013Энергия связи и состав атомного ядра. Особенности цепной ядерной реакции. Основы термоядерного синтеза. Ядерный реактор как установка, в которой осуществляется управляемая цепная реакция деления тяжелых ядер. Применение этого рода энергии. Определения.
презентация [3,8 M], добавлен 22.12.2013Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Анализы, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Метод изотропного разбавления, радиометрическое титрование.
реферат [23,4 K], добавлен 11.03.2012Основні характеристики та пов’язані з ними властивості атомних ядер: лінійні розміри, заряд, магнітний момент. Експериментальне визначення форми електричного поля ядра. Структурна будова ядра, його елементи та характеристика. Природа ядерних сил.
реферат [293,1 K], добавлен 12.04.2009Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.
реферат [377,6 K], добавлен 30.01.2010Изучение деления ядер, открытие цепных реакций на деление ядер урана. Создание ядерных реакторов, ядерной энергетики и оружия. Термоядерный синтез легких ядер в звездах. Что должен знать физик-ядерщик. Общие клинические проявления лучевой болезни.
реферат [16,7 K], добавлен 14.05.2011