Динамика поступательного движения
Первый закон Ньютона, инерциальные системы отсчета. Масса тела и импульс системы материальных точек. Положение второго закона Ньютона. Основное уравнение динамики поступательного движения твердого тела. Вычисление касательного и нормального ускорения.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.09.2015 |
Размер файла | 104,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Динамика поступательного движения
1. Первый закон Ньютона
закон ньютон динамика
Инерциальные системы отсчета
1-й закон Ньютона: всякое тело находится в состоянии покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния.
- I закон Ньютона
Этот закон называют законом инерции. Инерция - способность тела сохранять скорость. Движение по инерции - движение с постоянной скоростью.
1-й закон Ньютона выполняется не во всех системах отсчета. Системы отсчета, в которых выполняется 1-й закон Ньютона, называются инерциальными. Любая система отсчета, движущаяся относительно некоторой инерциальной системы прямолинейно и равномерно, будет также инерциальной.
Примером инерциальной системы отсчета может служить гелиоцентрическая система отсчета, т. е. система отсчета, связанная с Солнцем.
Любая система отсчета, движущаяся относительно гелиоцентрической равномерно и прямолинейно будет являться инерциальной.
Лабораторная система отсчета, оси координат которой жестко связаны с Землей, неинерциальная из-за суточного вращения Земли. Однако вращение Земли происходит очень медленно с а=0,034 м/с 2, и поэтому в большинстве задач лабораторную систему отсчета можно приближенно считать инерциальной.
Содержание 1-го з. Н. сводится к двум утверждениям:
1) все тела обладают свойством инертности;
2) существуют инерциальные системы отсчета.
Инерциальные системы отсчета играют особую роль не только в механике, но и в других разделах физики, т. к. согласно принципу относительности Эйнштейна математическая запись любого физического закона должна иметь один и тот же вид во всех инерциальных системах отсчета.
2. Масса, импульс тела
2-й закон Ньютона
Одинаковое воздействие по-разному изменяет движение различных тел. При воздействии всякое тело изменяет свою скорость не сразу, а постепенно. Способность тела сохранять свою скорость называется инертностью. Мерой инертностью является масса. Масса тела - положительная скалярная величина, являющаяся мерой инертности тела, т. е. характеризует способность тела сохранять свою скорость.
Под действием силы тело изменяет свою скорость не мгновенно, а постепенно, т. е. приобретает конечное ускорение, которое тем меньше, чем больше масса, т. е. при воздействии одной и той же силы
.
Плотность тела ровна отношению массы dm малого объёма к величине этого объёма , если тело однородно, то и .
Центром инерции, или центром масс, системы материальных точек называется точка С радиус-вектор , который равен
Векторная величина равная произведению массы m материальной точки на ее скорость называется импульсом (или количеством движения) этой материальной точки
Импульсом системы материальных точек называется вектор , равный геометрической сумме (т. е. сумме векторов) всех материальных точек
Скорость центра инерции:
т. е. импульс системы равен произведению массы всей системы на скорость ее центра инерции:
2-й закон Ньютона: скорость изменения импульса тела равна действующей на тело силе F
- 2-й закон Ньютона
Если на тело действует несколько сил, то под силой F во втором законе Ньютона нужно понимать равнодействующую силу -геометрическую сумму всех сил, действующих на тело.
Из второго закона Ньютона следует, что
Векторная величина Fdt называется элементарным импульсом силы.
Импульс силы за конечный промежуток времени t2-t1 равен , где
Сила, действующая на тело, равна произведению массы тела на его ускорение
x:
y: -mg + N=0
Касательное и нормальное ускорение определяются соответствующими составляющими силы F
Сила Fn, сообщающая точке нормальное ускорение, направлена к центру кривизны траектории и потому называется центростремительной силой.
Размещено на Allbest.ru
...Подобные документы
Три основных закона динамики Исаака Ньютона. Масса и импульс тела. Инерциальные системы, принцип суперпозиции. Импульс произвольной системы тел. Основное уравнение динамики поступательного движения произвольной системы тел. Закон сохранения импульса.
лекция [524,3 K], добавлен 26.10.2016Первый, второй и третий законы Ньютона. Инерциальные системы, масса и импульс тела. Принцип суперпозиции, импульс произвольной системы тел. Основное уравнение динамики поступательного движения произвольной системы тел. Закон сохранения импульса.
лекция [3,6 M], добавлен 13.02.2016Сущность движения материальных тел. Виды и основные формулы динамики поступательного движения. Классическая механика, как наука. Инерциальные и неинерциальные системы отсчета. Величина, определяющая инерционные свойства тела. Понятие массы и тела.
контрольная работа [662,8 K], добавлен 01.11.2013Понятие массы тела и центра масс системы материальных точек. Формулировка трех законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Силы гравитационного притяжения и тяжести.
презентация [636,3 K], добавлен 21.03.2014Примеры взаимодействия тел с помощью опытов. Первый закон Ньютона, инерциальные системы отсчета. Понятие силы и физического поля. Масса материальной точки, импульс и центр масс системы. Второй и третий законы Ньютона, их применение. Движение центра масс.
реферат [171,4 K], добавлен 10.12.2010Опрделения системы отсчета, материальной точки. Изменение центростремительного ускорения тела. Первый закон Ньютона. Количественная характеристика инертности. Закон сохранения импульса. Второй закон Ньютона. Третий закон Ньютона.
тест [61,1 K], добавлен 22.07.2007Нахождение тангенциального ускорения камня через секунду после начала движения. Закон сохранения механической энергии. Задача на нахождение силы торможения, натяжения нити. Уравнение второго закона Ньютона. Коэффициент трения соприкасающихся поверхностей.
контрольная работа [537,9 K], добавлен 29.11.2013Характеристика законов Ньютона и законов сил в механике. Инерциальные системы отсчета. Принцип относительности Галилея. Принцип суперпозиции. Фундаментальные взаимодействия. Система частиц. Центр масс (центр инерции). Алгоритм решения задач динамики.
презентация [3,0 M], добавлен 25.05.2015Описание основных законов Ньютона. Характеристика первого закона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Принципы закона ускорения тела. Особенности инерционных систем отсчета.
презентация [551,0 K], добавлен 16.12.2014Применение машины Атвуда для изучения законов динамики движения тел в поле земного тяготения. Принцип работы механизма. Вывод значения ускорения свободного падения тела из закона динамики для вращательного движения. Расчет погрешности измерений.
лабораторная работа [213,9 K], добавлен 07.02.2011Изучение кинематики и динамики поступательного движения на машине Атвуда. Изучение вращательного движения твердого тела. Определение момента инерции махового ко-леса и момента силы трения в опоре. Изучение физического маятника.
методичка [1,3 M], добавлен 10.03.2007Кинематика вращательного и динамика поступательного движения тела. Определение инерциальных систем отсчета как таких, которые находятся в покое или движутся равномерно и прямолинейно относительно гелиоцентрической системы. Описание законов Ньютона.
курс лекций [936,6 K], добавлен 14.12.2011Определение динамики, классической механики. Инерциальные системы отсчета. Изучение законов Ньютона. Основы фундаментального взаимодействия тел. Импульс силы, количество движения. Единицы измерения работы и мощности. Свойства потенциального поля сил.
презентация [0 b], добавлен 25.07.2015Сущность механического, поступательного и вращательного движения твердого тела. Использование угловых величин для кинематического описания вращения. Определение моментов инерции и импульса, центра масс, кинематической энергии и динамики вращающегося тела.
лабораторная работа [491,8 K], добавлен 31.03.2014Механика твёрдого тела, динамика поступательного и вращательного движения. Определение момента инерции тела с помощью маятника Обербека. Сущность кинематики и динамики колебательного движения. Зависимость углового ускорения от момента внешней силы.
контрольная работа [1,7 M], добавлен 28.01.2010Основы движения твердого тела. Сущность и законы, описывающие характер его поступательного перемещения. Описание вращения твердого тела вокруг неподвижной оси посредством формул. Особенности и базовые кинематические характеристики вращательного движения.
презентация [2,1 M], добавлен 24.10.2013Теоремы об изменении кинетической энергии для материальной точки и системы; закон сохранения механической энергии. Динамика поступательного и вращательного движения твердого тела. Уравнение Лагранжа; вариационный принцип Гамильтона-Остроградского.
презентация [1,5 M], добавлен 28.09.2013Определение вязкости глицерина и касторового масла, знакомство с методом Стокса. Виды движения твердого тела. Определение экспериментально величины углового ускорения, момента сил при фиксированных значениях момента инерции вращающейся системы установки.
лабораторная работа [780,2 K], добавлен 30.01.2011Динамика вращательного движения твердого тела относительно точки, оси. Расчет моментов инерции некоторых простых тел. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Сходство и различие линейных и угловых характеристик движения.
презентация [913,5 K], добавлен 26.10.2016Краткая биография Исаака Ньютона. Явление инерции в классической механике. Дифференциальный закон движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил. Третий закон Ньютона: принцип парного взаимодействия тел.
презентация [544,5 K], добавлен 20.01.2013