Использование биотоплива как метод решения энергетической проблемы в современном мире
Энергетическая проблема в современном мире. Сокращение выбросов парниковых газов, как одно из главных преимуществ биотоплива. Биоэнергетика, основные понятия и достижения. Биотопливо как продукт биоэнергетики. Организация производства биотоплив в России.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.09.2015 |
Размер файла | 28,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
Введение
1. Энергетическая проблема в современном мире
2. Биоэнергетика: понятие и достижения
3. Биотопливо как продукт биоэнергетики
Список использованных источников и литературы
Введение
Не совсем понятное, очень наукообразное понятие “биоэнергетика” уже стало неотъемлимой частью нашей жизни. Наравне с такими словами как “аура”, “эзотерика”, “нирвана”, “рейки”, “прана” и т.д. Эти выражения звучат довольно часто, говорят об этом совершенно разные люди. Только смысл, который вкладывается в них, совпадает не всегда. Человеческие представления о “биоэнергетике” достаточно различны. По каким-то причинам выражение Биоэнергетика вызывает ассоциации именно с экстрасенсами. Это далеко не так.
Практически все люди думают: "Биоэнергетика - что-то вроде экстрасенсорных способностей, которыми обладают исключительно одаренные люди". Люди, увидев злого человека, разумно полагают что энергетика у него также злая, нехорошая, от него следует ожидать исключительно чего-то плохого, негативного. Например сглаза или порчи, “энергетического вампиризма” (отбор энергии) и подобных вещей. А добрый человек излучает добро, часто служит аккумулятором, он готов отдавать энергию.
Хотя понятие биоэнергетики вошло в наш быт, оно осталось до конца непонятым. Каждая домохозяйка, каждый школьник, которые иногда смотрят телевизор, могут объяснить что у каждого из нас существует какая-то оболочка, может быть даже их несколько. Также они расскажут что Аура может быть здоровой, а может быть больной. Каждый человек хочет иметь здоровую ауру, но мало кто знает, как можно это сделать, так как не рассматривает биоэнергетику применительно к себе.
Вот как объясняют понятие Биоэнергетики в словарях:
Биоэнергетика - научная дисциплина, исследующая энергетические процессы в клетках, тканях, особях, экосистемах и т.д. (Cловарь по естественным наукам.)
Биоэнергетика - (1) дисциплина, изучающая процессы энергетических трансформаций в процессе существования биологических организмов и функционирования биосферы в целом; (2) отрасль знания о едином информационном поле, о его взаимодействии с биологическими объектами всех уровней сложности. (Энциклопедия эзотеризма)
1. Энергетическая проблема в современном мире
биоэнергетика топливо выброс
В мире все больше говорят о необходимости замены нефти, угля и газа на биотоплива. Отголоски уже доходят и до России, где, впрочем, пока немногие понимают, что же это такое на самом деле. В прессе иногда можно встретить рассказы о чудесных веществах, совершенно не загрязняющих окружающую среду и более эффективных, чем бензин, керосин и дизельное топливо.
В действительности ничего принципиально нового в биотопливах нет. Биотоплива использовались тысячелетиями и для многих остаются единственным источником тепла и средством приготовления пищи. Главным биотопливом были и остаются дрова, причем их экологичность совсем не очевидна - достаточно лишь вспомнить о неконтролируемой вырубке лесов.
Впрочем, теперь под словом "биотоплива" редко подразумевают дрова. Речь, как правило, идёт о более высокотехнологичных продуктах, получаемых из сельскохозяйственных культур или отходов переработки растительного и животного сырья. С возобновляемостью у них все в порядке, чуть сложнее обстоит дело с вредными выбросами. Сторонники говорят, что биотоплива меньше загрязняют атмосферу, а противники возражают, что при сгорании биотоплив выделяются те же продукты, что и при сжигании ископаемых топлив.
Истина же, как водится, лежит посередине. Действительно, в процессе сгорания и тех, и других топлив образуются, главным образом, углекислый газ, вода и несколько примесей, многие из которых являются вредными: моноксид углерода, оксиды азота, углеводороды и т.п. Наибольшее внимание обычно уделяется вредным компонентам выхлопа и одному из виновников парникового эффекта - углекислому газу.
Одним из главных преимуществ биотоплив называют сокращение выбросов парниковых газов. Это, однако, не означает, что при сгорании биотоплив образуется меньше диоксида углерода (хотя и такое возможно). При сгорании биотоплива в атмосферу возвращается углерод, который ранее поглотили растения, поэтому углеродный баланс планеты остаётся неизменным. Ископаемые топлива - совсем другое дело: углерод в их составе миллионы лет оставался "законсервированным" в земных недрах. Когда он попадает в атмосферу, концентрация углекислого газа повышается.
В том, что касается вредных выбросов, биотоплива несколько выигрывают у нефтяных. Большинство исследований показывают, что биотоплива обеспечивают снижение выбросов моноксида углерода и углеводородов. Кроме того, биотоплива практически не содержат серы. Вместе с тем, несколько увеличивается выброс оксидов азота, вдобавок, при неполном сгорании многих биотоплив в атмосферу попадают альдегиды. Но, в целом, по уровню вредных выхлопов биотоплива выигрывают у нефтяных.
Видов топлив из биомассы предлагается великое множество. Это и биогаз - метан, получаемый за счет разложения органических остатков (например, навоза) бактериями, и твердые топлива, но больше всего разговоров идет о биотопливах для автомобилей: этаноле и "биодизеле".
2. Биоэнергетика: понятие и достижения
Биоэнергетика, биологическая энергетика, изучает механизмы преобразования энергии в процессах жизнедеятельности организмов. Иначе говоря, Биоэнергетика рассматривает явления жизнедеятельности в их энергетическом аспекте. Методы и подходы к изучаемым явлениям, применяемые в биоэнергетике, - физико-химические, объекты и задачи - биологические. Таким образом, биоэнергетика стоит на стыке этих наук и является частью молекулярной биологии, биофизики и биохимии.
Началом биоэнергетики можно считать работы немецкого врача Ю.Р. Майера, открывшего закон сохранения и превращения энергии (1841) на основе исследования энергетических процессов в организме человека. Суммарное изучение процессов, являющихся источниками энергии для живых организмов, и энергетического баланса организма, его изменений при различных условиях (покой, труд разной интенсивности, окружающая температура) долгое время являлось основным содержанием биоэнергетики. В середине 20 в., в связи с общим направлением развития биологических наук, центральное место в биоэнергетике заняли исследования механизма преобразования энергии в живых организмах.
Все исследования в области биоэнергетики основываются на единственно научной точке зрения, согласно которой к явлениям жизни полностью применимы законы физики и химии, а к превращениям энергии в организме - основные начала термодинамики. Однако сложность и специфичность биологических структур и реализующихся в них процессов обусловливают ряд глубоких различий между биоэнергетикой и энергетикой неорганического мира, в частности технической энергетикой. Первая фундаментальная особенность биоэнергетики заключается в том, что организмы - открытые системы, функционирующие лишь в условиях постоянного обмена веществом и энергией с окружающей средой. Термодинамика таких систем существенно отличается от классической. Основополагающее для классической термодинамики понятие о равновесных состояниях заменяется представлением о стационарных состояниях; второе начало термодинамики (принцип возрастания энтропии) получает иную формулировку в виде Пригожина теоремы. Вторая важнейшая особенность биоэнергетики связана с тем, что процессы в клетках протекают в условиях отсутствия перепадов температуры, давления и объёма; в силу этого переход теплоты в работу в организме невозможен и тепловыделение представляет невозвратимую потерю энергии. Поэтому в ходе эволюции организмы выработали ряд специфических механизмов прямого преобразования одной формы свободной энергии в другую, минуя её переход в тепло. В организме лишь небольшая часть освобождающейся энергии превращается в тепло и теряется. Большая её часть преобразуется в форму свободной химической энергии особых соединений, в которых она чрезвычайно мобильна, т.е. может и при постоянной температуре превращаться в иные формы, в частности совершать работу или использоваться для биосинтеза с весьма высоким кпд, достигающим, например при работе мышцы, 30%.
Одним из основных результатов развития биоэнергетики в последние десятилетия является установление единообразия энергетических процессов во всём живом мире - от микроорганизмов до человека. Едиными для всего растительного и животного мира оказались и те вещества, в которых энергия аккумулируется в подвижной, биологически усвояемой форме, и процессы, с помощью которых такое аккумулирование осуществляется. Такое же единообразие установлено и в процессах использования аккумулированной в этих веществах энергии. Например, структура сократительных белков и механизм механо-химического эффекта (т.е. превращения химической энергии в работу) в основном одни и те же при движении жгутиков у простейших, опускании листиков мимозы или при сложнейших движениях птиц, млекопитающих и человека. Подобное единообразие характерно не только для явлений, изучаемых биоэнергетикой, но и для других присущих всему живому функций: хранения и передачи наследственной информации, основных путей биосинтеза, механизма ферментативных реакций.
Веществами, через которые реализуется энергетика организмов, являются макроэргические соединения, характеризующиеся наличием фосфатных групп. Роль этих соединений в процессах превращения энергии в организме впервые установил, изучая мышечное сокращение, советский биохимик В.А. Энгельгардт. В дальнейшем работами многих исследователей было показано, что эти соединения участвуют в аккумуляции и трансформации энергии при всех жизненных процессах. Энергия, освобождающаяся при отщеплении фосфатных групп, может использоваться для синтеза биологически важных веществ с повышенным запасом свободной энергии и для процессов жизнедеятельности, связанных с превращением свободной химической энергии в работу (механическую, активного переноса веществ, электрическую и т.д.). Важнейшим из этих соединений веществом, играющим для всего живого мира роль почти единственного трансформатора и передатчика энергии, является аденозинтрифосфорная кислота - АТФ (см. Аденозинфосфорные кислоты), расщепляющаяся до аденозиндифосфорной кислоты (АДФ) или аденозинмонофосфорной кислоты (АМФ). Гидролиз АТФ, т.е. отщепление от неё конечной фосфатной группы, протекает по уравнению:
АТФ + H2O =АДФ + фосфат
и сопровождается уменьшением свободной энергии на значение DF. Если эта реакция протекает при концентрации всех реагентов и продуктов в 1,0 моль при 25°С и pH 7,0, то свободная энергия АДФ оказывается меньше свободной энергии АТФ на 29,3 кдж (7000 кал). В клетке это изменение свободной энергии больше: DF=50 кдж/моль (12 000 кал/моль). Значения DF для реакции АТФ-АДФ выше, чем у большинства реакций гидролиза. Макроэргическими называют и сами связи третьей (конечной) и второй фосфатных групп в молекуле АТФ и аналогичные связи в других макроэргических соединениях. Эти связи обозначают знаком ~ (тильда); например, формулу АТФ можно записать так: аденин - рибоза - фосфат ~ фосфат ~ фосфат. Говоря об энергии макроэргических связей, в биоэнергетике имеют в виду не действительную энергию ковалентной связи между атомами фосфора и кислорода (или азота), как это принято в физической химии, а лишь разность между значениями свободной энергии (DF) исходных реагентов и продуктов реакций гидролиза АТФ или других аналогичных реакций. "Энергия связи" в этом смысле, строго говоря, не локализована в данной связи, а характеризует реакцию в целом.
Энергия макроэргических связей АТФ является универсальной формой запасания свободной энергии для всего живого мира: все преобразования энергии в процессах жизнедеятельности осуществляются через аккумуляцию энергии в этих связях и её использование при их разрыве. Значение DF для этих реакций представляет собой как бы "биологический квант" энергии, т.к. все преобразования энергии в организмах происходят порциями, примерно равными DF. При ферментативном гидролизе АТФ в клетке отщепляющаяся фосфатная группа всегда переносится на субстрат, запас энергии в котором оказывается в результате больше, чем в исходном соединении.
Обмен веществ (метаболизм) в клетке состоит из непрерывно совершающихся распада сложных веществ до более простых (катаболические процессы) и синтеза более сложных веществ (анаболические процессы). Катаболические процессы являются экзергоническими, т.е. идут с уменьшением свободной энергии (DF<0); анаболические процессы - эндергонические, они протекают с увеличением свободной энергии (DF>0). Согласно общим законам термодинамики, экзергонические процессы могут протекать спонтанно, самопроизвольно, процессы же эндергонические требуют притока свободной энергии извне. В клетке это осуществляется благодаря сопряжению обоих процессов: одни используют энергию, освобождаемую при протекании других. Это сопряжение, лежащее в основе всего метаболизма и жизнедеятельности клетки, совершается при посредстве системы АТФ-АДФ, создающей промежуточные, обогащенные энергией соединения.
Например, синтез сахарозы из глюкозы и фруктозы происходит за счёт энергии, освобождающейся при реакции гидролиза АТФ, путём образования промежуточного активированного соединения - глюкозо-1-фосфата: 1) АТФ + глюкоза=АДФ + глюкозо-1-фосфат; 2) глюкозо-1-фосфат + фруктоза= сахароза + фосфат. Суммарная реакция: АТФ + глюкоза+фруктоза=АДФ + сахароза + фосфат. Энергетический баланс процесса: АТФ=АДФ + фосфат - 29,3 кдж/моль (-7000 кал/моль) (уменьшение свободной энергии); глюкоза + фруктоза=сахароза + 23 кдж/моль (+5500 кал/моль) (увеличение свободной энергии). Потеря энергии на тепло 6,3 кдж/моль (1500 кал/моль), т.е. кпд процесса 79%.
По такому же типу осуществляется сопряжение реакций и при синтезе других сложных соединений (липидов, полисахаридов, белков и нуклеиновых кислот). В этих процессах, кроме АТФ, принимают участие и некоторые аналогичные соединения, в которые, вместо аденина, входят другие азотистые основания (гуанин-, цитозин-, уридин-, тимидинтрифосфаты или креатинфосфаты). При синтезе белков и нуклеиновых кислот от АТФ отщепляется не одна концевая фосфатная группа, а две последние (пирофосфат). Т.о., все процессы накопления (аккумулирования) энергии в организмах должны сводиться к процессам образования АТФ, т.е. фосфорилирования (включения фосфатных групп в АДФ или АМФ).
Энергетика процессов метаболизма, в которых энергия сохраняет форму химической, в основных чертах ясна, но этого нельзя сказать о процессах, в которых энергия переходит из химической формы в механическую работу или какой-нибудь иной вид энергии (например, электрический). Так, известно, например, что работа, совершаемая сокращающейся мышцей, производится за счёт энергии, освобождающейся при гидролизе АТФ, но механизм этого преобразования энергии ещё не ясен. Выяснение интимных механизмов механо-химического эффекта и других превращений химической энергии - важная и актуальная задача Биоэнергетика, успешное решение которой может открыть путь к прямому преобразованию химической энергии в механическую и электрическую без промежуточного "разорительного" превращения её в тепло.
Основным и практически единственным источником энергии для жизни на Земле является энергия излучения Солнца, часть которой поглощается пигментами растений и некоторых бактерий и в процессе фотосинтеза аккумулируется автотрофными организмами в форме химической энергии: частью в виде АТФ (процессы фотосинтетического фосфорилирования), частью в виде энергии некоторых специфических соединений (восстановленных никотинамид-адениндинуклеотидов), являющихся важнейшими промежуточными аккумуляторами энергии. Весь дальнейший процесс синтеза углеводов, а затем и липидов, белков и других компонентов клетки осуществляется в цикле темновых ферментативных реакций за счёт энергии указанных выше соединений.
При реакции синтеза углеводов
6CO2+6H2O=C6H12O6+6O2
суммарно увеличение свободной энергии DF=2,87 Мдж/моль (686 000 кал/моль), а теплосодержание продуктов (молярная энтальпия) изменяется на величину DН=2,82 Мдж/моль (673 000 кал/моль). Т.о., углеводы, липиды, белки и другие пищевые продукты представляют собой форму долговременного хранения поглощённой растением энергии излучения.
В гетеротрофных организмах АТФ образуется в процессе дыхания на промежуточных стадиях окисления пищевых веществ до CO2 и воды. В этом процессе около 40-50% свободной энергии переходит в энергию макроэргических связей АТФ, а остальная теряется в виде тепла. Общее количество энергии, запасаемой растениями в год (при упрощённом предположении, что весь углерод фиксируется в виде глюкозы), равно примерно 1018-1021 дж, что составляет лишь 0,001 от общего потока падающей на Землю солнечной энергии (1024 дж/год.).
Некоторое количество энергии накапливается и в процессах хемосинтеза за счёт окисления восстановленных неорганических соединений, но вклад этих процессов в энергетику биосферы невелик.
Сказанное выше характеризует только суммарный баланс энергии в процессах её аккумуляции и использования. Изучение первичных механизмов миграции энергии на клеточном и молекулярном уровнях показало, что решающую роль в них играет транспорт электронов по цепи передатчиков. В отдельных звеньях этой цепи окислительно-восстановительных реакций происходит освобождение небольших порций свободной энергии, примерно соответствующих значениям DF для макроэргических связей АТФ.
Дальнейшее изучение проблем биоэнергетики, в частности механизмов преобразования химической энергии в работу, требует перехода к рассмотрению этих процессов на субмолекулярном уровне, где вступают в силу законы квантовой физики и химии.
3. Биотопливо как продукт биоэнергетики
Использование спиртов в качестве топлива для автомобильных двигателей - давно не новость. Разработчики первых двигателей внутреннего сгорания уделяли спиртовым моторам не меньше внимания, чем бензиновым. Спирты имеют высокие октановые числа - более 100 единиц, но меньшую по сравнению с нефтяными топливами теплоту сгорания (при сгорании топлива выделяется меньше энергии, мощность падает, а расход топлива увеличивается).
Начало крупномасштабной добычи нефти сделало применение спирта в качестве моторного топлива невыгодным. Спиртовые топлива стали нишевым продуктом: например, на метиловом спирте работают двигатели мотоциклов для спидвея и многих спортивных картов. Спиртовое автомобильное горючее пользуется определённой популярностью в Бразилии, где нет больших запасов нефти, но зато есть идеальные условия для выращивания сахарного тростника и производства из него дешевого спирта. Помимо этанола и метанола, в качестве моторных топлив предлагается использовать и другие спирты. Компании BP и Du Pont делают ставку на бутанол.
Наибольшее внимание сейчас уделяется именно этиловому спирту. В лентах научно-технических и экономических новостей сообщения о планах по строительству новых заводов появляются чуть ли не каждый день. В США сахарный тростник не растет, поэтому главным источником биоэтанола должна стать кукуруза. "Царицей полей" дело, впрочем, не ограничивается: в ход планируется пустить все - от картофеля и пшеницы до различных органических отходов. Ряд стран планируют наладить экспорт биоэтанола в США и другие государства, заинтересованные в переходе на спиртовое горючее. Бразилия планирует к 2025 г. заменить тростниковым спиртом до 10% потребляемого в мире бензина.
Бензиновые двигатели, в общем случае, не годятся для использования спиртового топлива, хотя конструктивные изменения для перевода их на спирт минимальны. Часто удается ограничиться использованием стойких к спиртам материалов и установкой элементов для отделения водяного конденсата. В настоящее время многие ведущие автопроизводители выпускают универсальные двигатели, способные работать на бензине, спирте или их смесях. При использовании смесей бензина с небольшим количеством спирта (до 10%) топливо, как правило, подходит и для обычных бензиновых двигателей. Именно смесевыми топливами сейчас наиболее увлечены в мире. Смеси бензина с этанолом обычно обозначают буквой E (от слова этанол) и числом, показывающим содержание спирта в процентах. Наиболее распространено топливо E10 или газохол, содержащее 10% этанола. Оно широко используется в Дании, Таиланде и других странах. В США топливо E10 набирает популярность из-за вступивших в силу ограничений на применение в бензине эфиров.
Вместе с тем, наибольший интерес сейчас проявляют к смесям с высоким содержанием этанола. Чаще всего говорят о топливе E85, которое представляет собой смесь спирта (85%) и бензина (15%). При этом на деле содержание этанола меньше 85%, так как для приготовления смесей используется девяностотрёх-девяностошести процентный спирт, к тому же денатурированный. Топливо E85 достаточно активно используется в Швеции, быстрыми темпами растет его популярность и в США.
Нужно отметить, что синтетический этанол, получаемый из нефти, в качестве топлива обладает точно такими же свойствами, как и полученный из растительного сырья, но не обеспечивает нейтральности в плане выбросов углекислоты.
Идея использовать растительные масла в качестве топлив для дизельных двигателей была выдвинута еще при создании первых таких моторов. Однако с освоением нефтяных запасов в XX веке более выгодным оказалось топливо из нефти. Сейчас биодизельное топливо часто отождествляют с рапсовым маслом, которое действительно стало основным сырьевым источником "биосоляры" в Европе. Однако биодизельное топливо можно получать и из других масел, например, подсолнечного, пальмового или соевого, что и делают за пределами Европы.
Важно иметь в виду, что сами по себе растительные масла в качестве топлив не используются. Любая "биосоляра" представляет собой смесь продуктов переэтерификации растительных масел. В растительном содержатся жиры - эфиры жирных кислот с глицерином. В процессе получения "биосоляры" эфиры глицерина разрушают и заменяют глицерин (он выделяется как побочный продукт) на более простые спирты - метанол и, реже, этанол. В Европе основным биодизельным топливом стал метиловый эфир рапсового масла.
Растительные масла и их эфиры, как и спирты, отличаются агрессивностью ко многим материалам, традиционно используемым в двигателях и топливной системе автомобилей. В последние годы большинство европейских производителей выпускают машины, допускающие использование смесей нефтяного топлива с "биосолярой" в количестве 5-20%, а иногда и 100% биотоплива. Добавление биодизельного компонента в количестве до 5% обычно считается приемлемым для любых двигателей, неадаптированных к биотопливу. Достаточно активно биодизельное топливо внедряется и в США, где в качестве сырья используют чаще всего соевое масло. Еще один перспективный источник "биосоляры" - отработанные пищевые масла.
В России биотоплива для двигателей внутреннего сгорания остаются экзотикой. Этому способствует как наличие значительных запасов нефти и газа, так и объективные трудности, связанные с получением и использованием топлив из природного сырья.
Россия - это не Европа, не США и, тем более, не Бразилия. Тут более суровый климат, и получать дешевый спирт или масло, снимая по нескольку урожаев в год, не выйдет. Климат заметно ограничивает и применимость биотоплив. Например, биодизельные топлива на основе рапсового масла застывают при температурах около - 15° С, а в ряде случаев и выше. Это ограничивает применимость биодизеля южными регионами страны или летним временем года. Проблема застывания существует и для нефтяного дизельного топлива, но она успешно решается технологическими методами (депарафинизация, облегчение фракционного состава) или добавлением депрессорных присадок, эффективно снижающих температуру застывания. Для растительных топлив такие присадки еще только разрабатываются. Другая проблема - поглощение влаги из атмосферы, при низких температурах грозящее расслоением топлива, коррозией и образованием льда. Спирт и его смеси с бензином не замерзают, однако еще больше склонны к поглощению влаги. На определенном этапе это может привести к расслоению топливной смеси, что недопустимо. Ситуация усугубляется тем, что даже если сразу расслоения не произойдет, резкие перепады температуры могут привести к появлению в топливной системе водяного конденсата. При низких температурах он замерзает и приводит к забивке топливопроводов, фильтров и др. Влага также способствует появлению коррозии. Таким образом, для районов с резко континентальным климатом спирто-бензиновые смеси могут оказаться непригодными.
Нельзя забывать и об огромном парке устаревшей техники, которая не только эксплуатируется, но и выпускается в России. Для нее топлива с высоким содержанием биокомпонента непригодны. Топлива с высоким содержанием этанола не годятся для России и по другой причине. Если за 20-30 рублей можно купить литр топлива, на 70% состоящего из спирта, быстро найдутся желающие выделить спирт у себя в гараже или организовать подпольное производство суррогатных напитков.
Несмотря на упомянутые недостатки, работа по созданию спиртовых топлив в России велась и ведётся. Ещё в 1990-е гг. "АвтоВАЗ" одобрил использование топлив, содержащих до 5% этанола в качестве добавки, повышающей октановое число. А в 2004 г. был принят ГОСТ Р 52201-2004 на спиртосодержащие моторные топлива "бензанолы", в которых доля этанола составляет 5-10%. Впрочем, подобные топлива так и не были запущены в широкое производство. В качестве октаноповышающей добавки привлекательнее оказались эфиры, прежде всего, МТБЭ. Они не так склонны к поглощению воды, к тому же, при использовании этанола наверняка придётся столкнуться с необходимостью соблюдать правила оборота спиртосодержащей продукции и печально известной ЕГАИС. К тому же, ГОСТ не указывает, что спиртовая добавка обязательно должна быть биологического происхождения, поэтому изготовители наверняка предпочтут более дешёвый синтетический спирт, получаемый из нефтяного сырья.
Стандартов на биодизельное топливо в России пока нет, и продавать его на заправках не спешат. Тем не менее, в стороне от мировых тенденций Россия не остаётся: во-первых, с биодизелем экспериментируют учёные и конструкторы, а, во-вторых, производство топлива из растительного сырья потихоньку налаживается: завод в Армавире в Ростовской области планирует построить компания "Русбиодизель", правда, ориентировано предприятие будет поначалу на экспорт.
Внутри страны пионерами по внедрению биотоплив, по всей видимости, станут крупные города, где особенно строги требования к выхлопу автотранспорта.
Организация производства биотоплив в России, пусть даже на экспорт, полезна и с точки зрения развития сельского хозяйства. Уже сейчас этанольный бум в США привел к росту цен на кукурузу, а в юго-восточной Азии озабочены вырубкой лесов под плантации для производства пальмового масла, из которого потом делают биодизельное топливо. Так что выгоду из бума на биотоплива при желании смогут извлечь и в России.
Список литературы
1.<http://www.energospace.ru>
2.Горелов А.А. Концепции современного естествознания. М., 1999.
3.Концепции современного естествознания. Под ред. В.Н. Лавриненко, В.П. Ратникова. М., 2001.
4.Концепции современного естествознания. Под ред. С.И. Самыгина. Ростов н/Д, 2001.
5.Найдыш В.М. Концепции современного естествознания: Учебник. М., 2004.
Размещено на Allbest.ru
...Подобные документы
Энергетическая проблема в современном мире. Понятие биоэнергетики, достижения в данной области. Биологическое топливо как продукт биоэнергетики, преимущества его использования. Механизмы преобразования энергии в процессе жизнедеятельности организмов.
реферат [41,3 K], добавлен 19.10.2012Ресурс энергии, заключенный в биомассе, который может быть реально вовлечен в хозяйственную деятельность. Обзор развития биотопливной отрасли в России. Сфера жидкого биотоплива. Проблемы внедрения этого направления в современной энергетической отрасли.
доклад [15,3 K], добавлен 15.11.2015Виды классических источников энергии. Современные проблемы развития энергетики роль и значение биотоплива в альтернативной биоэнергетике. Твердое, жидкое и газообразное биотопливо. Пеллеты. Расчет экономической эффективности биотопливного производства.
реферат [38,0 K], добавлен 17.06.2016Возобновление как преимущество альтернативных источников энергии. Энергетическая и сырьевая проблемы в России. Энергия солнца, ветра, приливов, глубинное тепло Земли, топливо из биомассы. Исследования в области применения биотоплива вместо нефти.
реферат [25,8 K], добавлен 05.01.2010Проблемы электроэнергетики мира. Воздействие на окружающую среду энергетики. Топливно-энергетический баланс России. Пути решения энергетических проблем. Удельное энергопотребление на душу населения в мире. Альтернативные источники возобновляемой энергии.
презентация [104,3 K], добавлен 12.12.2010Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.
курсовая работа [317,6 K], добавлен 19.03.2013История создания автомобильных двигателей, работающих на этиловом спирте. Особенности производства биогаза из листьев, навоза и пищевых отходов. Выращивание водорослей в США для получения биотоплива. Изготовление этанола из древесных опилок в России.
презентация [601,4 K], добавлен 12.02.2014Ознакомление с основными направлениями и перспективами развития альтернативной энергетики. Определение экономических и экологических преимуществ использования ветровой, солнечной, геотермальной, космической, водородной, сероводородной энергии, биотоплива.
реферат [706,0 K], добавлен 15.12.2010Биогаз, сырье для получения биотоплива. Достоинства получения топлива из органических отходов. Комплексное использование биогазовой установки. Способ сбраживания биомассы в промышленных реакторах. Схема бокса для ферментации. Торговая марка Zorg Biogas.
презентация [1,2 M], добавлен 15.12.2015Проблемы современной российской энергетики, перспективы использование возобновляемых источников энергии и местных видов топлива. Развитие в России рынка биотоплива. Главные преимущества использования биоресурсов на территории Свердловской области.
контрольная работа [1,1 M], добавлен 01.08.2012Классификация промышленных отраслей в современном мире и их современные тенденции, сдвиги. Значение нефти в энергетике на сегодня. Проблемы и перспективы развития энергетического кризиса в будущем, его взаимосвязь с истощением мировых нефтяных запасов.
презентация [1,0 M], добавлен 16.11.2010Структура и задачи промышленного комплекса в условиях рыночной конкуренции. Анализ объемов производства и потребления электроэнергии в мире. Проблемы и перспективы развития энергетики в России. Реализация проектов в области солнечно-дизельной генерации.
курсовая работа [52,8 K], добавлен 22.11.2019Изучение необходимости и сущности энергосбережения. Характеристика основных направлений эффективного энергопотребления: энергосбережение на предприятии, сокращение тепловых потерь в зданиях разного назначения. Современные технологии энергосбережения.
реферат [14,6 K], добавлен 27.04.2010Природа явления, свойства, способы получения и использование сжиженных газов. Безопасный метода Линде, эффективный метод Клода, исследование свойств при нулевой температуре с помощью сжиженных газов. Применение газов в промышленности, медицине.
реферат [303,8 K], добавлен 23.04.2011Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.
презентация [316,3 K], добавлен 22.12.2011Использование элегаза в качестве дугогасящей среды на современном этапе, оценка его главных преимуществ по сравнению со сжатым воздухом и маслом. Понятие и внутреннее строение, конструкция элегазового выключателя, строение и функциональность привода.
презентация [509,2 K], добавлен 09.12.2013Проведение экологической политики на ТЭС. Технологическое регулирование выбросов загрязняющих веществ в атмосферу. Глубокая очистка продуктов сгорания от летучей золы. Нормативы предельных выбросов диоксида серы. Использование мокрых золоуловителей.
реферат [723,2 K], добавлен 14.08.2012Топливно-энергетический комплекс Республики Беларусь: система добычи, транспорта, хранения, производства и распределения всех видов энергоносителей. Проблемы энергетической безопасности республики, дефицит финансовых средств в энергетической отрасли.
реферат [21,0 K], добавлен 16.06.2009Организационно-экономическая и энергетическая характеристика содовоцементного комбината. Электробаланс завода, расчёт платы за электроэнергию. Организация энергетической службы предприятия, состав фонда оплаты труда. Смета затрат на работы и энергоуслуги.
курсовая работа [616,3 K], добавлен 30.09.2011Энергетика как величайшее достижение цивилизации, которая в современном мире энергетика играет важную роль. Общая характеристика современного электроэнергетического комплекса России. Знакомство с основными особенностями специальности теплоэнергетика.
эссе [26,0 K], добавлен 26.06.2013