Физические свойства жидкостей
Плотность и удельный вес жидкостей. Единица кинематического коэффициента вязкости. Объемный модуль упругости жидкости. Определение потерь напора по длине в коротком трубопроводе. Расчет критерия подобия Рейнольдса. Гидравлические характеристики потока.
Рубрика | Физика и энергетика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 07.10.2015 |
Размер файла | 435,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Плотность и удельный вес жидкостей
Жидкость -- непрерывная среда, обладающая свойством текучести, т. е. способная неограниченно изменять свою форму под действием сколь угодно малых cил, но в отличие от газа мало изменяющая свою плотность при изменении давления.
В аэромеханике применяют термин «капельная жидкость» с целью подчеркнуть отличие жидкости от газа; газ в этих случаях называют «сжимаемой жидкостью».
Жидкости бывают идеальные и реальные. Идеальные - невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные - вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.
Реальные жидкости могут быть ньютоновскими и неньютоновскими (бингамовскими). В ньютоновских жидкостях при движении одного слоя жидкости относительно другого величина касательного напряжения пропорциональна скорости сдвига. При относительном покое эти напряжения равны нулю. Такая закономерность была установлена Ньютоном в 1686 году, поэтому эти жидкости (вода, масло, бензин, керосин, глицерин и др.) называют ньютоновскими жидкостями. Неньютоновские жидкости не обладают большой подвижностью и отличаются от ньютоновских жидкостей наличием касательных напряжений (внутреннего трения) в состоянии покоя.
Основные свойства жидкостей: плотность, удельный вес, вязкость, сжимаемость и др.
Плотность с - масса жидкости в единице объема. Для однородной жидкости
с=m/V
где m - масса жидкости в объеме V. Единицы измерения с в системе СГС - г/см3, в системе МКГСС - кгс·с2/м4, а в системе СИ - кг/м3.
Удельный вес г - вес жидкости в единице объема:
г=G/V
где G - вес жидкости. Единицы измерения г в системе СГС - дин/см3, в системе МКГСС - кгс/м3, а в системе СИ - Н/м3.
Удельный вес и плотность связаны между собой зависимостью г=с·g, где g - ускорение свободного падения.
Кинематический коэффициент вязкости
Вязкость - свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между ее молекулами. Характеристиками вязкости являются:динамический коэффициент вязкости м и кинематический коэффициент вязкостин.
Единицей динамического коэффициента вязкости в системе СГС является пуаз (П): 1 П=1 дина·с/см2=1 г/(см·с). Сотая доля пуаза носит название сантипуаз (сП): 1 сП=0,01П. В системе МКГСС единицей динамического коэффициента вязкости является кгс·с/м2; в системе СИ - Па·с. Связь между единицами следующая: 1 П=0,010193 кгс·с/м2=0,1 Па·с; 1 кгс·с/м2=98,1 П=9,81 Па·с.
Кинематический коэффициент вязкости
н=м/с,
Единицей кинематического коэффициента вязкости в системе СГС является стокc (Ст), или 1 см2/с, а также сантистокс (сСт): 1 сСт=0,01 Ст. В системах МКГСС и СИ единицей кинематического коэффициента вязкости является м2/с: 1 м2/с=104Ст.
Вязкость жидкости с повышением температуры уменьшается. Влияние температуры на динамический коэффициент вязкости жидкостей оценивается формулой м = м0·ea(t-t0), гдем = м0 - значения динамического коэффициента вязкости соответственно при температуре t и t0 градусов; а - показатель степени, зависящий от рода жидкости; для масел, например, значения его изменяются в пределах 0,025--0,035.
Для смазочных масел и жидкостей, применяемых в машинах и гидросистемах, предложена формула, связывающая кинематический коэффициент вязкости и температуру:
нt=н50·(50/t0)n,
где нt - кинематический коэффициент вязкости при температуре t0;
н50 - кинематический коэффициент вязкости при температуре 50 0С;
t - температура, при которой требуется определить вязкость, 0С;
n - показатель степени, изменяющийся в пределах от 1,3 до 3,5 и более в зависимости от значениян50.
4. Объемный модуль упругости жидкости
Объёмный момдульупрумгости (модуль объёмного сжатия) -- характеристика способности вещества сопротивляться всестороннему сжатию. Эта величина определяет, какое нужно приложить внешнее давление для уменьшения объёма в 2 раза. Например, у воды объёмный модуль упругости составляет около 2000 МПа -- это означает, что для уменьшения объёма воды на 1 % необходимо приложить внешнее давление 20 МПа. С другой стороны, при увеличении внешнего давления на 0,1 МПа объём воды уменьшается на 1/20000 часть. Единицей измерения объёмного модуля упругости в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa)[1].
Для жидкостей объёмный модуль упругости K и плотность с определяют скорость звука c (волны давления (англ.)), согласно формуле Ньютона-Лапласа
5. Коэффициент температурного расширения
Температурное расширение жидкостей количественно характеризуется коэффициентом температурного расширения вt, представляющим относительное изменение объема V0 при изменении температуры t на 1 0С:
вt=(dV/V0)·1/dt
Коэффициент температурного расширения воды увеличивается с возрастанием давления и температуры; для большинства других капельных жидкостей с увеличением давления уменьшается.
Значения вt воды при различных давлениях и температурах
Значения вt некоторых технических жидкостей при температуре 20 0С и давлении 0,1 МПа (1 ат)
При изменении температуры и давления в небольших пределах можно принять вt =const, и тогда объем жидкости при изменении температуры на величину dt=t--t0вычисляется по формуле
V= V0·(1-вt ·dt),
при этом
с=с0/(1+ вt ·dt),
где V и V0 - объемы, а с и с0 - плотности соответственно при температурах t и t0.
6. Сила давления в жидкости
Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением.
Чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности:
давление = сила / площадь.
Обозначим величины, входящие в это выражение: давление - p, сила, действующая на поверхность, - F и площадь поверхности -S.
Тогда получим формулу:
p = F/S.
Единица давления - ньютон на квадратный метр ( 1 Н / м2 ). В честь французского ученого Блеза Паскаля она называется паскалем (Па). Таким образом,
1 Па = 1 Н / м2 .
Сила F, с которой жидкость, налитая в этот сосуд, давит на его дно, равна весу P жидкости, находящейся в сосуде. Вес жидкости можно определить, зная ее массу m. Массу, как известно, можно вычислить по формуле: m = сV. Объем жидкости, налитой в выбранный нами сосуд, легко рассчитать. Если высоту столба жидкости, находящейся в сосуде, обозначить буквой h, а площадь дна сосуда S, то V = Sh.
Масса жидкости m = сV, или m = сSh .
Вес этой жидкости P = gm, или P = gсSh.
Так как вес столба жидкости равен силе, с которой жидкость давит на дно сосуда, то, разделив вес P на площадь S, то получим давление жидкости p:
p = P/S ,или p = gсSh/S,
то есть,
p = gсh.
7. Сила вязкости
При течении жидкости по трубе различные слои имеют разные скорости. Наибольшая скорость течения у центрального слоя. Слой, прилегающий к стенкам трубы, покоится. Поэтому в направлении оси Х, перпендикулярной к направлению течения, возникает градиент скорости . Перенос импульса от слоя к слою осуществляется молекулами, изредка совершающими скачкообразные поступательные движения, меняя при этом положение равновесия, около которых они совершают колебания. При не очень высоких температурах такие перескоки происходят сравнительно редко. Перенос импульса вызывает изменение скорости движения слоев, то есть начинает действовать сила, которая по закону Ньютона равна
, (1.1)
где F - сила внутреннего трения (вязкости) между слоями жидкости; - градиент скорости, характеризующий быстроту изменения скорости вдоль оси х, перпендикулярной к скорости; S - площадь поверхности, разделяющая два соседних слоя жидкости; h - коэффициент вязкости или коэффициент внутреннего трения.
8. Сила веса
Вес -- сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести[1][2]. (В случае нескольких опор под весом понимается суммарная сила, действующая на все опоры; впрочем, для жидких и газообразных опор в случае погружения тела в них часто делается исключение, т. е. тогда силы воздействия тела на них исключают из веса и включают в силу Архимеда
Сила, выталкивающая целиком погружённое тело в жидкость или газ, равна весу жидкости в объёме этого тела. Силу можно рассчитать с помощью математического выражения:
F=pgv
F- сила Архимеда
p- плотность жидкости
g - ускорение свободного падения
V - объём, погружаемого тела.
Следовательно, архимедова сила зависит от плотности жидкости, в которую погружено тело, и от объёма этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.
Определим теперь вес тела, погружённого в жидкость (или газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх), то вес тела в жидкости Р1 будет меньше веса тела в вакууме на архимедову силу.
Р1=Р - F P1= mg - mжg = g (m - mж )
Таким образам, если тело погружено в жидкость (или газ), то оно теряет в своём весе столько, сколько весит вытесненная им жидкость (или газ).
Плавание тел
1) Если сила тяжести больше архимедовой силы, то тело будет опускаться на дно, тонуть.
2) Если сила тяжести равна архимедовой силе, то тело может находиться в равновесии в любом месте жидкости, то есть тело плавает внутри жидкости.
3) Если сила тяжести меньше архимедовой силы, то тело будет подниматься из жидкости, всплывать.
9.Определение потерь напора по длине в коротком трубопроводе
Коротким считается трубопровод, в котором потери на местных сопротивлениях превышают 5% от общих потерь. К коротким относятся системы водоснабжения, водоотведения, горячего водоснабжения внутри зданий (см. рис. 5.6 и 5.7).
Целью расчета короткого трубопровода может быть определение напора или давления в начале трубопровода, потерь напора или потерь давления, а также определение расхода или диаметра трубопровода при известном напоре в его начале.
При расчете напора в начале короткого трубопровода должны быть заданы:
напор или давление в конце трубопровода;
расход
диаметр и длина трубопровода.
При расчете напора в конце короткого трубопровода должны быть заданы:
напор или давление в начале трубопровода;
расход;
диаметр и длина трубопровода.
Расчет трубопровода фактически сводится к расчету потерь - местных и по длине. В коротком трубопроводе потери напора по длине определяются по формуле:
(5.2) |
Если трубопровод имеет участки с разными диаметрами, то потери по длине определяются для каждого участка отдельно, а затем складываются.
.
10.Определение потерь напора по длине в длинном трубопроводе
Трубопроводы служат для транспортирования различных жидкостей на различные расстояния. Гидравлический расчет трубопроводов базируется на основных уравнениях гидравлики. При расчете длинных трубопроводов пренебрегают потерями напора на местных сопротивлениях, которые малы и обычно не превышают 5 % от общих потерь.
Преобразуем формулу Дарси, заменив скорость расходом, поделенным на площадь поперечного сечения трубы
, |
(5.11) |
где - удельное сопротивление трубопровода.
Для квадратичной области сопротивления А зависит только от диаметра трубопровода и от его шероховатости. Следовательно, значения А можно определить опытным путем для трубопроводов с различной степенью шероховатости и с разными диаметрами.
Величина К = называется модулем расхода и также приводится в справочниках. Тогда
. |
(5.12) |
Введение понятия удельного сопротивления трубопровода упрощает расчет, т.к. значения А приводятся в справочниках в зависимости от диаметра трубы и ее шероховатости.
Запишем уравнение Бернулли для двух сечений трубопровода в его начале и в конце: и обозначим:
- требуемый напор, т.е. напор, который должен создать насос в начале трубопровода;
- разность отметок земли в конце и в начале трубопровода;
- пьезометрический напор, т.е. напор в конце трубопровода, который задается при проектировании;
- статический напор.
Принимая во внимание, что в трубопроводе постоянного диаметра
,
тогда уравнение Бернулли примет вид
. |
(5.13) |
Нами получена формула для гидравлического расчета простых, длинных трубопроводов. Простым называется трубопровод, не имеющий ответвлений. Всякие другие трубопроводы относят к категории сложных.
11. Определение местных потерь напора в коротком трубопроводе
Потери напора на местном сопротивлении при турбулентном режиме определяются по формуле:
(5.5) |
где - средняя скорость на участке после сопротивления.
Если режим движения ламинарный, то потери напора на местном сопротивлении определяются по формуле:
, |
(5.6) |
где l- эквивалентная длина, определяемая по таблицам в зависимости от вида местного сопротивления.
После определения потерь напора на каждом местном сопротивлении, они складываются. Считается, что эти потери происходят в данном сечении трубопровода.
После расчета потерь напора по длине и на местных сопротивлениях строятся линии полного и пьезометрического напоров. Для этого трубопровод разбивается на сечения. Количество сечений зависит от количества прямолинейных участков трубопровода и местных сопротивлений. Полный напор в начальном сечении трубопровода определяется по формуле:
. |
12. Определение общих потерь напора в длинном трубопроводе
Общие потери напора во всём трубопроводе будут равны сумме
потерь напора во всех отдельных его участках.
где - потери напора на- том участке трубопровода.
Таким образом, потери напора в трубопроводе, состоящем из последовательно соединённых друг с другом участков равны квадрату расхода жидкости в трубопроводе умноженному на сумму удельных сопротивлений всех участков.
Гидравлическая характеристика трубопровода состоящего из последовательно соединённых участков представляет собой графическую сумму (по оси напоров) гидравлических характеристик всех отдельных участков. На рисунке кривая 1 представляет гидравлическую характеристику 1-го участка трубопровода, кривая 2 - гидравлическую характеристику 2-го участка, кривая 3 - сумму гидравлических характеристик обеих участков.
Сложный трубопровод, состоящий из последовательно соединённых простых трубопроводов можно свести к простому трубопроводу с одинаковым (эквивалентным) диаметром, при этом длины участков будут пересчитываться, чтобы сохранить реальные гидравлические сопротивления участков трубопровода.
Так приведённая длина- того участкабудет:
'Л
Следует отметить, что величина скоростного напора также зависит от диаметра трубопровода, и при определении приведённой длины участка мы вносим некоторую ошибку, которая будет тем большей, чем больше разница в величинах фактического и эквивалентного диаметров. В таких случаях можно рекомендовать другой, более сложный способ.
13. Определение критерия подобия Рейнольдса
Число, или, правильнее, критерий Рейномльдса (), -- безразмерная величина, характеризующая отношение нелинейного и диссипативного членов в уравнении Навье -- Стокса[1]. Число Рейнольдса также считается критерием подобия течения вязкой жидкости.
Число Рейнольдса определяется следующим соотношением:
где
-- плотность среды, кг/м3;
-- характерная скорость, м/с;
-- гидравлический диаметр, м;
-- динамическая вязкость среды, Па·с или кг/(м·с);
-- кинематическая вязкость среды, м2/с ();
-- объёмная скорость потока;
-- площадь сечения трубы.
Для каждого вида течения существует критическое число Рейнольдса, , которое, как принято считать, определяет переход от ламинарного течения ктурбулентному. При течение происходит в ламинарном режиме, при возможно возникновение турбулентности. Критическое значение числа Рейнольдса зависит от конкретного вида течения (течение в круглой трубе, обтекание шара и т. п.), различными возмущениями потока, такими как изменение направленности и модуля вектора скорости потока, шероховатость стенок, близость местных сопротивлений и др. Например, для течения (точнее, для стабилизированного изотермического потока) жидкости в прямой круглой[источник не указан 1362 дня] трубе с очень гладкими стенками . Для движения плёнки жидкости с относительно гладкой поверхностью раздела с газом при двухфазном потоке .
Значения Re выше критического и до определённого предела относятся к переходному (смешанному) режиму течения жидкости, когда турбулентное течение более вероятно, но ламинарное иногда тоже наблюдается -- то есть неустойчивая турбулентность. Числу Reкр 2300 соответствует интервал 2300--10000; для упомянутого примера с тонкими плёнками это 20-120 -- 1600.
Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно. Например, в водохранилищах формально вычисленные значения числа Рейнольдса очень велики, хотя там наблюдается ламинарное течение. Напротив, возмущения потока могут значительно снижать величину .
Стоит отметить, что для газов Reкр достигается при значительно бомльших скоростях, чем у жидкостей, поскольку у первых куда больше кинематическая вязкость (в 10-15 раз).
14. Площадь поперечного потока - S
Поперечное сечение потока -- это сечение, которое перпендикулярно в каждой точке скорости частиц потока жидкости.
Векторы скорости частиц имеют некоторое расхождение в потоке жидкости.
поперечным сечением потока жидкости называется сечение, которое перпендикулярно в каждой точке скорости частиц потока жидкости.
Рис. Векторы скорости потока жидкости (а) и поперечное сечение потока (б)
Поэтому поперечное сечение потока -- криволинейная плоскость (рис. а, линия I--I) В виду незначительного расхождения векторов скорости в гидродинамике за живое сечение принимается плоскость, расположенная перпендикулярно скорости движения жидкости в средней точке потока.
15. Гидравлический радиус
Гидравлическим радиусом R потока называется отношение площади живого сечения S к смоченному периметру :
При напорном движении в трубе круглого сечения гидравлический радиус будет равен:
Рисунок
Труба круглого сечения
Для безнапорного потока прямоугольного сечения с размерами гидравлический радиус можно вычислить по формуле
Рисунок
Поток прямоугольного сечения
Свободная поверхность жидкости при определении смоченного периметра не учитывается.
16. Смоченный периметр
Смоченный периметр потока - линия, по которой жидкость соприкасается с поверхностями русла в данном живом сечении. Длина этой линии обозначается буквой (Хи).
Рисунок
Гидравлические характеристики потока
Для круглой трубы
В напорных потоках смоченный периметр совпадает с геометрическим периметром, так как поток жидкости соприкасается со всеми твёрдыми стенками.
17. Расход жидкости в потоке. Средняя скорость потока жидкости
Расход жидкости -- это количество жидкости, протекающей через живое сечение потока в единицу времени. Расход может определяться в массовых долях G и объемных Q.
Средняя скорость движения жидкости -- это средняя скорость частиц в живом сечении потока.
Если в живом сечении потока, движущегося, например, в трубе, построить векторы скорости частиц и соединить концы этих векторов, то получится график изменения скоростей (эпюра скоростей).
Рис. Распределение скоростей движения жидкости в живом сечении трубы при течении: а -- турбулентном; б -- ламинарном
Если площадь такой эпюры разделить на диаметр данной трубы, то получится значение средней скорости движения жидкости в данном сечении:
Vcр = Sэ/d,
где Sэ -- площадь эпюры местных скоростей; d -- диаметр трубы
Объемный расход жидкости рассчитывается по формуле:
Q = Sэ*Мср,
где Q -- площадь живого сечения потока.
18.Уравнение Д. Бернулли
Уравнение Даниила Бернулли является основным уравнением гидродинамики. Ниже разбирается это уравнение для установившегося плавно изменяющегося движения жидкости, с помощью которого решаются основные задачи гидродинамики. Введем понятия удельной энергии элементарной струйки и потока жидкости.
Удельная энергия элементарной струйки. Напомним, что удельная энергия есть энергия, отнесенная к единице силы тяжести жидкости. Пусть имеем в элементарной струйке частицу массойm, которая обладает некоторой скоростью и, находится под гидродинамическим давлением р, занимает некоторый объем V и находится от произвольной плоскости сравнения о-о на некоторой высоте z (рис. 20). Масса частицы обладает запасом удельной потенциальной энергии еп, которая складывается из удельных потенциальных энергий положения епол, и давления едав. В самом деле,масса жидкости, поднятая на высоту z, имеет запас потенциальной энергии, равныйmgz, где g - ускорение свободного падения. Удельная потенциальная энергия положения равна потенциальной энергии, деленной на силу тяжести жидкости ()
. (а)
Масса жидкости занимает некоторый объем V, находящийся под давлением р. Потенциальная энергия давления равна рV. Удельная же потенциальная энергия давления равна потенциальной энергии pV, деленной на силу тяжести данного объема gV, т.е.
. (б)
Полный запас удельной потенциальной энергии массы жидкости равен их сумме, т. е. и, учитывая выражения (а) и (б), напишем
. (в)
Кроме того, масса жидкости т движется со скоростью и и обладает кинетической энергией ; но сила тяжести этой массы равна mg, и удельная кинетическая энергия струйки равна
. (г)
Складывая выражения (в) и (г), получим выражение полной удельной энергии элементарной струйки
. (71)
Здесь - удельная кинетическая энергия;
- удельная потенциальная энергия давления и положения.
Полная удельная энергия потока Е складывается из удельной потенциальной энергии и удельной кинетической энергии Ек потока.
Для случая установившегося плавно изменяющегося движения жидкости удельная потенциальная энергия во всех точках живого сечения одинакова и равна
. (д)
Поток жидкости рассматривается как совокупность п элементарных струек, каждая из которых обладает своей удельной кинетической энергией . Эта величина различна для разных струек, образующих поток.
Определим среднее значение этой величины в сечении потока. Для этого действительные скорости элементарных струек u1, u2, ..., ип заменим средней скоростью потока v; тогда среднее значение удельной кинетической энергии потока в данном сечении равно
. (е)
Здесь a - коэффициент Кориолиса, учитывающий неравномерность распределения скоростей по сечению потока (или корректив кинетической энергии).
Безразмерный коэффициент a представляет собой отношение действительной кинетической энергии потока к кинетической энергии, вычисленной по средней скорости. Если эпюра скоростей в сечении потока близка к прямоугольной, т.е. скорости в разных точках близки к средней, то коэффициент Кориолиса a близок к единице. Если же скорости в сечении значительно различаются между собой, то и коэффициент a оказывается значительно больше единицы.
Рассмотрим, например, поток глубиной Н = 6 м, в сечении которого скорости распределены по треугольнику, т.е. у дна скорость равна нулю и к поверхности нарастает по закону прямой до наибольшего значения ипов = 3 м/сек. Средняя скорость v = 1,5 м/сек, а соответствующая ей кинетическая энергия
м.
Оценим кинетическую энергию потока точнее. Для этого возьмем три точки на высоте h1 = 1м; h2 = 3 м и h3 = 5 м, которые лежат посредине слоев равной высоты по 2 м каждый. Скорость в этих точках соответственно и1 = 0,5; и2 = 1,5 и и3 = 2,5м/сек. Вычислим кинетическую энергию по этим трем скоростям
м,
что больше, чем по средней скорости.
Коэффициент Кориолиса получается
жидкость жидкость напор рейнольдс
.
На основе обработки многочисленных данных, полученных на реках и каналах, установлено, что для больших открытых потоков . При равномерном движении в трубах и каналах практически .
В дальнейшем, за исключением особо оговоренных случаев, для упрощения расчетов будем принимать . Однако следует помнить, что в некоторых случаях при неравномерном распределении скоростей значения a могут быть значительно больше 1 (2 и более).
Складывая удельную кинетическую и удельную потенциальную энергии потока, получим формулу полной удельной энергии потока
,
а учитывая выражения (е) и (д), имеем
, (72)
т.е. полная удельная энергия потока равна сумме удельной кинетической и удельной потенциальной (давления и положения) энергий потока. Напомним, что все выводы сделаны для установившегося, плавно изменяющегося движения жидкости.
Размещено на Allbest.ru
...Подобные документы
Особенности причин появления и расчет на трех участках по длине трубы коэффициента гидравлического трения, потерь давления, потерь напора на трение, местных потерь напора при описании прохождения воды в трубопроводе при условиях турбулентного движения.
задача [250,4 K], добавлен 03.06.2010Расчет кинематического коэффициента вязкости масла при разной температуре. Применение формулы Убеллоде для перехода от условий вязкости к кинематическому коэффициенту вязкости. Единицы измерения динамического и кинематического коэффициентов вязкости.
лабораторная работа [404,7 K], добавлен 02.02.2022Сущность метода Стокса по определению коэффициента вязкости. Определение сил, действующих на шарик при его движении в жидкости. Оценка зависимости коэффициента внутреннего трения жидкостей от температуры. Изучение ламинарных и турбулентных течений.
лабораторная работа [1001,4 K], добавлен 15.10.2010Вязкость - свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одного слоя вещества относительно другого. Определение коэффициента вязкости жидкости методом Стокса. Законы и соотношения, использованные при расчете формулы.
лабораторная работа [531,3 K], добавлен 02.03.2013Экспериментальная проверка формулы Стокса и условий ее применимости. Измерение динамического коэффициента вязкости жидкости; число Рейнольдса. Определение сопротивления жидкости, текущей под действием внешних сил, и сопротивления движущемуся в ней телу.
лабораторная работа [339,1 K], добавлен 29.11.2014Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.
презентация [220,4 K], добавлен 28.09.2013Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.
презентация [571,8 K], добавлен 06.04.2015Конвективный теплообмен в однородной среде. Свободная (естественная) и вынужденная конвекции. Физические свойства жидкостей. Коэффициенты динамической вязкости, объемного (температурного) расширения жидкости. Гидродинамический пограничный слой.
презентация [100,5 K], добавлен 18.10.2013Единицы измерения вязкости жидкости. Формула Пуазейля. Ламинарное и турбулентное течения. Число Рейнольдса. Критические явления в магнетизме. Кровяное давление. Геодинамо и магнитные полюса. Сверхбыстрые дождевые капли. Законы жидкого кратерообразования.
презентация [858,5 K], добавлен 29.09.2013Причина возникновения сил вязкого трения в жидкостях. Движение твердого тела в жидкости. Определение вязкости жидкости по методу Стокса. Экспериментальная установка. Вязкость газов. Механизм возникновения внутреннего трения в газах.
лабораторная работа [61,1 K], добавлен 19.07.2007Расчет потерь напора при турбулентном режиме движения жидкости в круглых трубопроводах и давления нагнетания насоса, учитывая только сопротивление трения по длине. Определение вакуума в сечении, перемешивания жидкости, пульсации скоростей и давлений.
контрольная работа [269,2 K], добавлен 30.06.2011Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.
курсовая работа [531,8 K], добавлен 24.12.2013Расчет затрат тепла на отопление, вентиляцию и горячее водоснабжение. Определение диаметра трубопровода, числа компенсаторов, потерь напора в местных сопротивлениях, потерь напора по длине трубопровода. Выбор толщины теплоизоляции теплопровода.
контрольная работа [171,4 K], добавлен 25.01.2013Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.
лабораторная работа [860,4 K], добавлен 07.12.2010Произведение расчета кривых потребного напора трубопроводов (расход жидкости, число Рейнольдса, относительная шероховатость, гидравлические потери) с целью определение затрат воды в ветвях разветвленного трубопровода без дополнительного контура.
контрольная работа [142,7 K], добавлен 18.04.2010Математическая модель и решение задачи очистки технических жидкостей от твердых частиц в роторной круговой центрифуге. Система дифференциальных уравнений, описывающих моделирование процесса движения твердой частицы. Физические характеристики жидкости.
презентация [139,6 K], добавлен 18.10.2015Сущность ньютоновской жидкости, ее относительная, удельная, приведённая и характеристическая вязкость. Движение жидкости по трубам. Уравнение, описывающее силы вязкости. Способность реальных жидкостей оказывать сопротивление собственному течению.
презентация [445,9 K], добавлен 25.11.2013Гидродинамическая и тепловая стабилизация потока жидкости в трубе. Уравнение подобия для конвективной теплоотдачи. Теплоотдача к жидкости в кольцевом канале. Критические значения чисел Рейнольдса для изогнутых труб. Поправка на шероховатость трубы.
презентация [162,4 K], добавлен 18.10.2013Гидравлические трубопроводные системы. Назначение и краткое описание конденсатной системы. Расчет потерь напора в конденсатной и всасывающей магистралях. Нахождение полного коэффициента сопротивления системы, полного напора насоса для ее разных расходов.
курсовая работа [303,5 K], добавлен 07.03.2015Определение вязкости глицерина и касторового масла, знакомство с методом Стокса. Виды движения твердого тела. Определение экспериментально величины углового ускорения, момента сил при фиксированных значениях момента инерции вращающейся системы установки.
лабораторная работа [780,2 K], добавлен 30.01.2011