Приборы для измерения давления

Принципы измерения и основные типы датчиков давления: упругие, мембраны, сильфоны, электрические, емкостные, индуктивные, пьезоэлектрические, потенциометрические, тензометрические, вакуумные, на основе виброэлемента. Назначение электрических манометров.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.10.2015
Размер файла 414,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Давление - одно из ключевых теплотехнических величин, важнейший параметр многих технологических процессов.

Датчики давления предназначены для измерений и непрерывного преобразования давления в унифицированный выходной сигнал постоянного тока или напряжения.

Используются датчики в регуляторах и других устройствах автоматики в системах автоматического контроля, регулирования и управления технологическими процессами в системах водообработки, отопления, вентиляции и кондиционирования; гидравлических системах, холодильной технике, расходомерах и счетчиках; дизельных двигателях; тормозных системах; уровнемерах, в испытательных стендах и т.д.

Индустриальные измерения и контрольно-измерительная аппаратура применяются во всех областях промышленности - от атомной до пищевой и фармакологической; соответственно, везде нужны и датчики давления.

Принцип действия датчиков основан на упругой деформации чувствительного элемента (сенсора), на который нанесены полупроводниковые тензорезисторы, включенные по схеме моста Уинстона. Измеряемое давление подводится через штуцер в рабочую полость датчика и вызывает деформацию диафрагмы. Это приводит к изменению геометрии резисторов, находящихся с ней в тесной механической связи и изменению их сопротивления. Происходит преобразование приложенного давления (механический вход) в изменение сопротивления (электрический выход).

Датчики давления измеряют разность двух давлений, воздействующих на измерительную мембрану (чувствительный элемент) датчика. Одно из этих давлений -- измеряемое, второе -- опорное, то есть то давление, относительно которого происходит отсчет измеряемого. В зависимости от вида опорного давления все датчики разделяются на следующие виды.

1. Общие сведения о датчиках давления

1.1 Типы датчиков

Существует множество различных датчиков давления являющихся наиболее подходящими для конкретного процесса, но их обычно можно разделить на несколько категорий, а именно: упругие датчики, электрические преобразователи, датчики дифференциального давления и датчики давления вакуума. Ниже представлены категории, каждая из которых содержит уникальные внутренние компоненты более подходящие под использование в конкретной ситуации.

1.1.1 Упругие датчики

Большинство датчиков давления жидкости имеют упругую структуру, где жидкость заключена в небольшой отсек по меньшей мере с одной упругой стенкой. При использовании данного метода, показания давления определяются путем измерения отклонения этой эластичной стенки, представляя результат непосредственным отсчетом через соответствующие связи, либо через трансдуцированные электрические сигналы. Упругие датчики давления очень чувствительны, они довольно хрупкие и подвержены вибрации. Кроме того, они, как правило, значительно дороже, чем манометры, и поэтому в основном используются для передачи измеренных данных и измерения разности давлений. Теоретически можно использовать довольно широкий спектр упругих элементов для упругих датчиков давления. Однако большинство устройств используют ту или иную форму трубки Бурдона или диафрагмы. Принцип, на котором основаны разного вида трубки Бурдона: Давление, подаваемое внутрь трубки, вызывает упругую деформацию эллиптического или овального сечения трубки в сторону круга, которая вызывает появление напряжений в продольном направлении, заставляющих трубку разгибаться, а свободный конец трубки перемещаться. Система рычагов и передач превращает это движение и возвращает стрелку, показывающую давление относительно круглой шкалы. Диапазон измерения такого манометра составляет - от 10 Па до 1000 МПа. Трубные материалы могут быть изменены соответствующим образом в соответствии с требуемым условием процесса. Также, трубки Бурдона - портативные и требуют минимального технического обслуживания, однако, они могут быть использованы только для статических измерений и имеют низкую точность.

Материалом для трубчатых пружин может служить сталь, бронза, латунь. В зависимости от конструктивного исполнения трубчатые пружины могут быть одно- и многовитковые (винтовые и спиральные), S-образные и т.п. Распространены одновитковые трубчатые пружины, используемые в манометрах, которые предназначены для измерения давления жидкостей и газов, а также в таких типах манометров как глубиномер. Датчики С-типа могут быть использованы в диапазонах давлений приближающихся к 700 МПа; они имеют минимальный рекомендованный диапазон давления - 30 кПа (т.е. они не достаточно чувствительны для измерения разности давлений меньше чем 30 кПа).

1.1.2 Сильфоны

Сильфоны имеют цилиндрическую форму и содержат много складок. Они могут деформироваться в осевом направлении при изменении давления (сжатие или расширение).

Давление, которое должно быть измерено прикладывается к одной стороне сильфона (внутри или снаружи), тогда как на противоположную сторону действует атмосферное давление. Абсолютное давление может быть измерено путем откачки воздуха из внешнего или внутреннего пространства сильфона, а затем измерением давления на противоположной стороне. Сильфон может быть подключен только к включающим / выключающим переключателям или к потенциометру и используется при низких давлениях, <200 Па с чувствительностью 1,2 Па.

1.1.3 Мембраны (диафрагмы)

Мембраны изготовлены из круглых металлических дисков или гибких элементов, таких как резина, пластик или кожа. Материал, из которого изготовлена мембрана зависит от того используется ли свойства упругости этого материала или ему должен противостоять другой элемент (например - пружина). Мембраны изготовленные из металлических дисков используют упругие характеристики, а тем, которым противостоят другие упругие элементы, изготовлены из гибких элементов. Мембраны очень чувствительны к резким изменениям давления. Мембраной изготовленной из металла можно измерить максимальное давление равное примерно 7 МПа, а мембраной использующей упругий тип материала можно измерять чрезвычайно низкие давления (0,1 кПа - 2,2 МПа) при подключении к емкостным преобразователям или к датчикам перепада давления. Диафрагмы бывают плоские, гофрированные и капсульного типа. Как отмечалось ранее, мембраны очень чувствительны (0,01 МПа). Они могут измерять дробные разности давления на очень маленьком диапазоне (скажем, давления нескольких дюймов воды) (эластичный тип) или большие перепады давления (приближаясь к максимальному диапазону в 207 кПа) (металлический тип).

Мембраны очень универсальны - они обычно используются в очень агрессивных средах или в ситуациях с экстремальными избыточными давлениями.

Рисунок 1 - Примеры упругих элементов датчиков давления

1.1.4 Электрические датчики

Сегодня датчики не только обязательно подключаются к стрелочным указателям, для отображения давления, но также могут служить для преобразования давления в электрический или пневматический сигнал, который может быть передан в диспетчерскую в которой производится считывание и определение давления. Электрические датчики принимают данные полученные механическое воздействие от упругого датчика и включают в себя электрический компонент, таким образом, усиливая чувствительность и увеличивая сферы применения датчиков. Существуют такие типы датчиков давления: емкостной, индуктивный, датчик магнетосопротивления (датчик Холла), пьезоэлектрический, тензодатчик, виброэлемент, и потенциометрический тип датчика.

1.1.5 Емкостные датчики

Емкостной датчик состоит из параллельных пластин - конденсаторов, соединенных с диафрагмой, которая обычно металлическая и подвергается давлению сил участвующих в процессе с одной стороны и опорным давлением на другой стороне. Электроды прикреплены к мембране и получают питание от генератора высокой частоты. Электроды ощущают любое перемещение диафрагмы и это влияет на изменение емкости пластин-конденсаторов. Изменение емкости обнаруживается подсоединенной электрической цепью, которая выводит напряжение в соответствии с изменением давления. Данный тип датчика может работать в диапазоне от 2,5 Па - 70 МПа с чувствительностью 0,07 МПа.

Рисунок 2 - Пример емкостного датчика давления

1.1.6 Индуктивный датчик давления

Индуктивные датчики давления в сочетании с диафрагмой или трубкой Бурдона. Ферромагнитный сердечник прикреплен к упругому элементу и имеет первичную и две вторичные обмотки. Ток подается на первичную обмотку. Когда сердечник по центру то то же напряжение будет индуцироваться к двум вторичными обмотками. Когда сердечник перемещается под влиянием давления, отношение напряжения между двумя вторичными обмотками изменяется. Разность напряжений пропорциональна изменению давления.

Ниже показан пример индуктивного датчика давления с использованием диафрагмы. Для этого вида датчика давления, принимая камеру 1 в качестве эталонной камеры с опорным давлением Р 1 подающегося и катушку заряжаемую эталонным током. Когда давление в других камерах изменяется, диафрагма движется и индуцирует ток в другой катушке, который измеряется и выражает измеренное значение тока в единицах давления.

Такие датчики могут быть использованы с любым упругим элементом (хотя, как правило, используются в сочетании с диафрагмой или трубкой Бурдона). Чтение значения создаваемого давления, будет определяться калибровкой напряжения. Таким образом, диапазон давления, в котором может быть использован этот датчик определяется относительно упругого элемента, но лежит в диапазоне от 250 Па - 70 МПа.

Рисунок 3 - Индуктивный датчик давления с использованием диафрагмы

1.1.7 Датчики давления, магнетосопротивления

Датчики давления, основанные на принципе магнетосопротивления, также имеют ферромагнитный сердечник. При изменении давления, гибкий элемент перемещает ферромагнитную пластину, что приводит к изменению магнитного потока цепи, которое может быть измерено. Ситуации, в которых можно было бы использовать электрический элемент это ситуация, в которой индуктивный датчик не генерирует достаточно точное измерение. Диапазон давления для данного метода составляет от 250 Па до 70 МПа с чувствительностью 0,35 МПа.

Рисунок 4 - Датчик давления на основе измерения магнетосопротивления

1.1.8 Пьезоэлектрические датчики

Пьезоэлектрические датчики используют датчик - кристалл. Когда давление прикладывается к кристаллу, он деформируется и создается небольшой электрический заряд. Измерение электрического заряда пропорционально изменению давления. Этот тип датчика имеет очень быстрое время отклика на постоянные изменения давления. Подобно датчику давления основанного на принципе измерения магнетосопротивления, пьезоэлектрический элемент очень чувствителен, но реагирует гораздо быстрее.

Таким образом, если время имеет существенное значение, пьезоэлектрический датчик будет приоритетный к использованию. Диапазон давления датчиков такого типа составляет 0,021 - 100 МПа с чувствительностью 0,1 МПа.

Рисунок 5 - Пьезоэлектрический датчик давления

1.1.9 Потенциометрические датчики

Потенциометрические датчики имеют рычаг, механически прикрепленный к упругому датчику давления. При изменении давления, деформируется упругий элемент, в результате чего заставляет рычаг двигаться вперед или назад по потенциометру и таким образом снимаются показания сопротивления. Эти чувствительные элементы принадлежат оптимальному рабочему диапазону, но ограничены многими факторами. Таким образом, они являются датчиками нижнего уровня, которые не используются слишком часто. При низкой чувствительности и рабочем диапазоне, они могут лучше всего подойти в качестве дешевого детектора давая грубую оценку. Диапазон давления 0,035 - 70 МПа с чувствительностью 0,07 -0,35 МПа.

Рисунок 6 - Потенциометрический датчика давления

1.1.10 Тензометрический датчик

Тензометрический датчик обнаруживает изменения давления путем измерения изменения сопротивления мостовой схемы Уитстона. В общем, эта схема используется для определения неизвестного электрического сопротивления, уравновешивая две секции мостовой схемы, так что бы отношение сопротивлений в одной секции () было таким же, как и в другой секции (), возвращая ноль, в гальванометре в центральной ветви. Одна из секций содержит неизвестный компонент, сопротивление которого должно быть определено, тогда как другая секция содержит резистор с известным сопротивлением, которое можно регулировать. Схема моста Уитстона показана ниже:

Рисунок 7 - Схема моста Уитстона

Тензодатчик помещает чувствительные элементы на каждом из резисторов и измеряет изменение сопротивления каждого резистора под действием изменения давления. Сопротивление определяется уравнением

(1)

где с - удельное сопротивление проводника,

L - длина проводника,

A - площадь поперечного сечения проводника.

Изменение давления будет либо удлинять, либо сжимать проводник, следовательно, датчик сжатия необходимо на одном резисторе, а датчик удлинения на другом. Чтобы контролировать воздействие температуры (проволока будет также либо удлиняться, либо сжиматься из-за изменения температуры), свободный датчик нужно разместить на остальных двух резисторах. Эти датчики часто являются одним из типов полупроводника (N-тип или р-тип).

Таким образом, чувствительность таких датчиков значительно больше, чем чувствительность их металлических аналогов, однако с большей чувствительностью приходит более узкий функциональный диапазон: температура должна оставаться постоянной, чтобы получить действительное значение. Эти датчики сильно зависят от изменений температуры (в отличие от других типов электрических компонентов). Диапазон давления 0 - 1400 МПа с чувствительностью 1,4 - 3.5 МПа.

Пример несвязанного тензодатчика показан ниже. Данный тип датчиков использует чувствительные к натяжению провода, один конец которого закреплен на неподвижной раме, а другой конец прикреплен к подвижному элементу, который движется с изменением давления.

Рисунок 8 - Пример несвязанного тензодатчика

Пример связанного тензодатчика можно увидеть ниже. Данный тип размещается в верхней части диафрагмы, которая деформируясь при изменении давления, натягивает провода, прикрепленные к диафрагме.

Рисунок 9 - Пример связанного тензодатчика

1.1.11 Виброэлемент

Вибрационные датчики давления функционируют посредством измерения изменения резонансной частоты вибрирующих элементов. Ток проходит через провода, индуцируя электродвижущую силу в проводе. Затем усилие увеличивается, что вызывает колебание проволоки. Давление влияет на этот механизм, с помощью влияния на сам провод: повышение давления уменьшает напряжение в проводе и, таким образом снижает угловую частоту колебаний провода. При измерении абсолютных давлений, датчик размещен в цилиндре под вакуумом. Эти датчики измерения абсолютного давления являются очень эффективными: они производят повторяемые результаты и слабо подвержены влиянию температуры. Им не хватает чувствительности в процессе измерения, тем не менее, таким образом, они не очень подходят для процесса, в котором необходимо отслеживать кратковременные изменения давления. Диапазон давления: 0,0035 - 0,3 МПа с чувствительностью 1E-5 МПа.

Рисунок 10 - Вибрационный датчик давления

Рисунок 11 - Вибрационный датчик давления в цилиндре

датчик вакуумный индуктивный манометр

1.1.12 Датчики дифференциального давления

Датчики дифференциального давления используются с различными видами датчиков, в которых измерение давления является результатом разности давлений, в частности таких датчиков как диафрагмы, сопла подачи или Вентури-метров. Датчик перепада давления преобразует разность давлений в передаваемый сигнал. Где размещение датчика перепада давления зависит от характера потока текучей среды, которая измеряется. Типичный датчик дифференциального давления минимально инвазивный (внешний компонент присоединен через точки измерения); он обычно используется с емкостным элементом в паре с диафрагмой, которая позволяет емкостному телу двигаться вместе или отдельно, генерируя сигнал (через изменение емкости), который может быть интерпретирован к падению давления. Они часто используются для обнаружения небольших различий в больших перепадах давления. Его размещение похоже на присоединение вольтметра параллельно с резистором, чтобы измерить "падение" его напряжения (аналогично падению давления).

Диапазон измеряемого давления и чувствительность датчика дифференциального давления зависит от электрических и упругих компонентов, используемых в самом датчике. Это отличный датчик, используемый при измерении перепада давления, однако, для всех остальных приложений, он довольно бесполезен.

1.1.13 Вакуумные датчики

Такие датчики могут измерять чрезвычайно низкие давления или вакуум, ссылаясь на давления ниже атмосферного. Кроме диафрагмы и электрических датчиков, предназначенных для измерения низких давлений, есть также тепловые датчики проводимости и датчики ионизации.

Тепловые вакуумметры. Принцип используемый в данном типе датчиков заключается в изменении газовой теплопроводности под действием давления. Однако из-за отклонения от идеального поведения газа, в котором связь между этими двумя свойствами линейна, датчики такого рода, которые также называются датчиками Пирани, могут быть использованы только при низких давлениях, в диапазоне (0.4E-3 до 1.3E-3) МПа. Это чрезвычайно чувствительные элементы. Они могут обнаруживать изменения давления в 6E-13 МПа.

В этих датчиках спиральная нить проводит ток нагревающий катушку. Изменение давления изменяет скорость теплопередачи от нити накала, тем самым заставляя варьироваться её температуру. Эти изменения в температуре могут быть обнаружены с помощью термопар, которые также подключены к нитям накала - частям мостовой схемы Уитстона.

1.2 Принципы измерения, применяемые в датчиках давления

1.2.1 Емкостный принцип измерения

В 60-х годах XX в. были разработаны первые аналоговые электронные датчики давления, в которых использовался емкостный принцип измерения.

Атмосферное для датчиков избыточного давления и вакуум для датчиков абсолютного давления. Емкостный сенсор в его современном варианте представляет собой конденсатор, образованный диэлектрической оболочкой сенсора, помещенной внутри прочного металлического корпуса, измерительными электродами, выполняющими функцию обкладок конденсатора, и упругой металлической или керамической мембраной. Пространство между мембраной и электродами заполнено силиконовым маслом, служащим для передачи давления на мембрану и одновременно для увеличения емкости конденсатора. При подаче разности давлений на сенсор мембрана деформируется, и емкость между обкладками изменяется. Измерение емкости производится электронным модулем датчика, подключенным к обкладкам сенсора. Кроме того, сенсор обычно содержит еще термопреобразователь (на рисунке не показан). Преимуществами емкостного принципа измерения являются сравнительно простая (на первый взгляд) конструкция сенсора, достаточно высокая чувствительность (?C/C = 15...20%) и большой практический опыт разработки датчиков с емкостными сенсорами, накопленный к настоящему времени.

1.2.2 Тензо или пьезорезистивный принцип измерения

Следующим после емкостного был предложен тензо- или пьезорезистивный принцип измерения давления, основанный на изменении удельного сопротивления вещества при деформации (тензорезистивный эффект). Термин "тензорезистивный" употребляется, как правило, по отношению к сенсорам, в которых используются тонкопленочные тензопреобразователи, либо структуры КНС (кремний на сапфире). В таких сенсорах упругим элементом является металлическая или керамическая мембрана, на которую наклеивается полупроводниковый тензопреобразователь. "Пьезорезистивными" обычно называют монокристаллические кремниевые сенсоры с диффузионными пьезорезисторами, в которых упругим элементом служит сама кремниевая мембрана. Типичный тензорезистивный сенсор давления на основе структуры КНС состоит из упругой металлической мембраны, к которой припаян тензопреобразователь, представляющий собой подложку из сапфира, на которой методом гетероэпитаксиального наращивания сформирован измерительный мост Уитстона из кремниевых тензорезисторов. Кроме тензомоста, на подложке сформирована схема температурной компенсации (на рисунке не показана). Мембрана по технологическим соображениям делается достаточно толстой, поскольку поверхность, на которую припаивается КНС, должна быть отполирована с высокой чистотой. Достоинствами тензорезистивного принципа измерения давления являются сравнительная простота в изготовлении, невысокая стоимость и потенциально широкий диапазон рабочих температур.

Рисунок 12 - Конструкция пьезорезистивного сенсора

Так же, как и емкостные, современные тензорезистивные датчики подвергаются при выпуске характеризации. Данный тип сенсора нашел применение в аналоговых однопредельных датчиках избыточного и абсолютного давления, требования к которым существенно менее жесткие, чем к многопредельным датчикам давления. Ведущими мировыми производителями тензорезистивные многопредельные датчики давления сейчас практически не выпускаются.

Как и тензорезистивный, он содержит упругую мембрану, закрепленную на стеклянном основании, на которой имеется мост Уитстона, преобразующий деформацию мембраны в электрический сигнал. Однако в данном случае мембрана изготавливается из монокристаллического кремния, а вместо тензорезисторов используются сформированные методом диффузии пьезорезисторы. Поскольку жесткость кремниевой мембраны значительно ниже, чем металлической, разность давлений передается от наружных разделительных мембран через силиконовое масло непосредственно на сенсор без использования рычагов, тяг и т. п.

Обобщенная функциональная схема датчика давления с аналоговым сигналом сенсора представлена на рисунке. Несмотря на наличие микропроцессора, такой датчик не может полностью реализовать все преимущества цифровой схемотехники, поскольку аналоговые цепи измерительного усилителя и АЦП являются потенциальным источником шумов, нелинейности и дрейфа. Кроме того, в этой схеме при перенастройке шкалы для максимального использования разрядности АЦП изменяется коэффициент усиления сигнала с сенсора. Это приводит к необходимости проверки и подстройки нуля после перенастройки шкалы (для лучших датчиков такого типа) и даже к многократной итерационной подстройке нуля и шкалы с использованием калибратора давления и тока (для менее совершенных датчиков). Использование цифровых коммуникационных протоколов (типа HART и других) не избавляет от этой процедуры, просто подстройка производится с клавиатуры коммуникатора, а не с помощью потенциометров и кнопок.

Рисунок 13 - Обобщенная функциональная схема датчика давления с аналоговым сигналом сенсора

1.2.3 Резонансный принцип измерения давления

Резонансный принцип измерения давления основан на преобразовании резонатора деформации в частоту колебаний.

Рисунок 14 - Конструкция и схема подключения резонансного сенсора

Сенсор представляет собой монокристаллическую кремниевую мембрану специальной конструкции, на которой методом эпитаксиального наращивания сформированы два резонатора Н-образной формы. Мембрана закреплена на стеклянной подложке, разность давлений от внешних разделительных мембран датчика передается на сенсор через силиконовое масло. Резонаторы находятся в поле постоянного магнита, и каждый из них подключен в качестве частотно-задающего элемента в цепь обратной связи генератора переменного напряжения. За счет пьезоэлектрического эффекта, которым обладает кремний, напряжение на одной паре контактов резонатора преобразуется в его деформацию, а затем обратно в напряжение на другой паре контактов. В результате в цепи генерируется синусоидальное переменное напряжение на собственной частоте резонатора, поскольку он обладает очень высокой добротностью. Кварцевые резонаторы более простой конструкции повсеместно используются в электронике в качестве высокостабильных частотнозадающих элементов.

2. Электрические манометры

2.1 Назначение манометров

Электрические манометры используются главным образом для измерения очень высоких давлений или разряжений, а также для измерения давлений, пульсирующих с высокой частотой. Пьезоэлектрические манометры используют явление прямого пьезоэффекта, заключающегося в появлении разности электрических потенциалов на противоположных стенках пластины из пьезоматериала при сдавливании (или растягивании) пластины. Величина возникшей э.д.с. пропорциональна приложенному давлению и площади пластины пьезоматериала. В качестве пьезоматериала используют пьезокерамики из титана бария или цирконат-титаната свинца.

На рис.15 показана схема пьезоманометра с двумя пластинами пьезокерамики. Наружные обкладки пластин заземляются через корпус манометра, а потенциал внутренних обкладок снимается экранированным кабелем в измерительную схему.

Выходная мощность пьезоэлектрических преобразователей мала, поэтому полезный сигнал должен быть обязательно усилен усилителем с большим входным сопротивлением. Емкостные манометры представляют собой упругий мембранный манометр, в котором мембрана является одной из обкладок плоского конденсатора. При изменении давления меняется расстояние /между обкладками конденсатора, что изменяет величину его емкости.

Емкостной датчик имеет малую мощность и высокое сопротивление, доходящее до десятков мега Ом. Для увеличения мощности емкостных манометров их применяют в цепях повышенной частоты.

Рисунок 15 - Пьезоэлектрический манометр

Индуктивные манометры представляют собой мембранный упругий манометр с индуктивным преобразователем перемещения мембраны. Преобразователь состоит из катушки с ферромагнитным сердечником. Часть магнитопровода расположена на мембране. При выгибании мембраны в сторону катушки магнитное сопротивление уменьшается и индуктивность катушки возрастает.Манометры сопротивления используют преобразование движения упругого органа - мембраны в величину электрического сопротивления путем перемещения движка резистора. Реостатным преобразователем свойственна погрешность квантования из-за ступенчатого изменения сопротивления при плавном движении движка. Для ее уменьшения увеличивают число витков провода до 200 и уменьшают его диаметр. Наличие трущегося контакта делает эти манометры наименее предпочтительными в смысле надежности эксплуатации.

Частным случаем манометров сопротивления можно считать те изометрические манометры, в которых чувствительным элементом является тензорезистор, сопротивление которого зависит от приложенного давления или деформации. Обычно тонкопленочный полупроводниковый тензорезистор приклеивается к упругой мембране манометра. Манометры, рассчитанные на большое давление (0,4 МПа и более) могут не иметь упругой мембраны вообще. В этом случае давление подводится к тензорезисторам. Измерение осуществляется с помощью мостовой измерительной схемы, плечами которой являются тензорезисторы. Тензометрические манометры малогабаритны, имеют высокую точность, просты и надежны в эксплуатации. Предел показаний 0,1-40 МПа, класс точности 1 и 1,5.

Преобразователи давления (манометры, вакуумметры и мановакуумметры) типа МЭД предназначены для непрерывного преобразования избыточного или вакуумметрического давления в унифицированный выходной сигнал переменного тока, основанный на изменении взаимной индуктивности.

Приборы применяются на неподвижных объектах (в стационарных условиях) для работы в комплекте со вторичными взаимозаменяемыми дифференциально-трансформаторными приборами, машинами централизованного контроля и другими приемниками информации, способными принимать стандартный сигнал в виде взаимной индуктивности.

Свойство взаимозаменяемости обеспечивает возможность совместной работы вторичного прибора с несколькими приборами при периодическом подключении точек измерения, а также быструю замену вышедшего из строя прибора без тарировки комплекта.

2.2 Принцип действия

Принцип действия приборов основан на использовании деформации упругого чувствительного элемента при воздействии на него измеряемого давления.

Упругим чувствительным элементом прибора служит трубчатая пружина 1, которая смонтирована б держателе 5. К держателю 5 привернута планка 10, на которой закреплена катушка 9 дифференциального трансформатора. На держателе смонтированы также постоянное и переменное сопротивления. Катушка закрыта экраном. К держателю подводится измеряемое давление. Держатель прикреплен к корпусу 2 винтами 4. Корпус, отлитый из алюминиевого сплава, закрыт крышкой; на корпусе укреплен штепсельный разъем 3.

Сердечник 8 дифференциального трансформатора связан с подвижным концом трубчатой пружины специальным винтом 6.

При подаче в прибор давления трубчатая пружина деформируется, что вызывает пропорциональное измеряемому давлению перемещение подвижного конца пружины и связанного с ним сердечника дифференциального трансформатора

Компенсация температурной погрешности, вызванной изменением линейных размеров деталей, осуществлена подбором металлов с определенными коэффициентами линейного расширения.

Рисунок 16 - Прибор модели 22364

Размещено на Allbest.ru

...

Подобные документы

  • Виды давления, классификация приборов для его измерения и особенности их назначения. Принцип действия мановакуумметров, характеристика их разновидностей. Многопредельные измерители и преобразователи давления. Датчики-реле давления, виды манометров.

    презентация [1,8 M], добавлен 19.12.2012

  • Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие [1,3 M], добавлен 18.05.2014

  • Основные понятия и виды давления, его физические параметры и единицы измерения для жидкой и газообразной среды. Назначение манометров и измерительных преобразователей, особенности их эксплуатации. Характеристика основных методов преобразования давления.

    курсовая работа [457,5 K], добавлен 14.07.2012

  • Применение, устройство и принцип действия приборов для измерения давления: барометр-анероид, жидкостный и металлический манометр. Понятие атмосферного давления. Загадки об атмосферных явлениях. Причины различия в показателях давления с ростом высоты.

    презентация [524,5 K], добавлен 08.06.2010

  • Основные типы, устройство, принцип действия датчиков, применяемых для измерения давления. Их достоинства и недостатки. Разработка пьезоэлектрического преобразователя. Элементы его структурной схемы. Расчет функций преобразования, чувствительности прибора.

    курсовая работа [782,1 K], добавлен 16.12.2012

  • Электрические измерения неэлектрических величин. Датчики температуры, давления, скорости. Понятие и типы электроприводов. Устройства включения ультрафиолетовых облучателей. Магнитное поле и ионизация воздуха. Использование электрогидравлического эффекта.

    контрольная работа [271,9 K], добавлен 19.07.2011

  • Атмосфера, единицы измерения давления воздуха. Барическая ступень и градиент. Барометрическая формула Лапласа. Приборы для измерения атмосферного давления, его изменчивость и влияние на погоду, приведение к уровню моря с помощью таблиц. Плотность воздуха.

    контрольная работа [45,3 K], добавлен 04.11.2014

  • Гидростатическое давление и его свойства. Дифференциальное уравнение равновесия жидкости. Распределение гидростатического давления. Приборы для измерения давления. Сила гидростатического давления на плоские стенки и на криволинейную поверхность.

    курс лекций [449,2 K], добавлен 20.12.2011

  • Магнитоэлектрические измерительные механизмы. Метод косвенного измерения активного сопротивления до 1 Ом и оценка систематической, случайной, составляющей и общей погрешности измерения. Средства измерения неэлектрической физической величины (давления).

    курсовая работа [407,8 K], добавлен 29.01.2013

  • Исследование истории изобретения и развития жидкостного манометра. Характеристика основных особенностей компрессионных, пружинных, мембранных, колокольных и кольцевых манометров. Изучение составляющих дифманометра поплавкового с масляным заполнением.

    курсовая работа [1,6 M], добавлен 24.04.2012

  • Положения метрологического обеспечения. Полномочия Комитета по стандартизации, метрологии и сертификации при Совете Министров РБ (Госстандарта). Классификация СИ и их характеристики. Основные характеристики средств измерения электрических величин.

    дипломная работа [24,1 K], добавлен 12.11.2008

  • Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.

    реферат [1,5 M], добавлен 08.01.2015

  • Чувствительность датчиков, их классификация по тем величинам, которые они должны измерять (датчики давления, датчики уровня). Основные типы датчиков сопротивления и их характеристики. Устройство емкостных и струнных датчиков, свойства фотоэлементов.

    реферат [23,4 K], добавлен 21.01.2010

  • Понятия и устройства измерения абсолютного и избыточного давления, вакуума. Определение силы и центра давления жидкости на цилиндрические поверхности. Границы ламинарного, переходного и турбулентного режимов движения. Уравнение неразрывности для потока.

    контрольная работа [472,2 K], добавлен 08.07.2011

  • Понятие и общая характеристика фотоупругого эффекта и его применение для получения картины распределения напряжения. Основные методы измерения физических величин: параметров светового излучения, давления и ускорения с помощью фотоупругого эффекта.

    курсовая работа [2,3 M], добавлен 13.12.2010

  • Состав атмосферы Земли и особенности влияния на нее вращения планеты. Последствия исчезновения воздушной массы. Изобретение ртутного и электронного барометров. Применение их при измерении давления воздуха. Единица измерения атмосферного давления.

    презентация [562,5 K], добавлен 17.03.2015

  • Описание экспериментальной установки, принцип измерения давления воздуха и определение его оптимального значения. Составление журнала наблюдения и анализ полученных данных. Вычисление барометрического давления аналитическим и графическим методом.

    лабораторная работа [59,4 K], добавлен 06.05.2014

  • Общая характеристика внутреннего фотоэффекта, его особенности, история открытия и изучения. Использование данного эффекта для измерения фотоэлектрических преобразователей, датчиков положения, двухкоординатного измерения положения и датчиков шероховатости.

    курсовая работа [2,2 M], добавлен 13.12.2010

  • Состояние системы мер и измерительной техники в различные исторические периоды. Измерение температуры, давления и расхода жидкости с применением различных методов и средств. Приборы для измерения состава, относительной влажности и свойств вещества.

    курсовая работа [589,2 K], добавлен 11.01.2011

  • Знакомство с измеряемыми параметрами в теплоэнергетике и способами их измерения, применяемых на современных станциях. Контроль над установками пылеприготовления. Применение дифференциальных манометров в технологических процессах, их виды и принцип работы.

    реферат [775,5 K], добавлен 23.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.