Основные законы механики
Общая характеристика проблем, рассматриваемых в механике. Рассмотрение законов Ньютона, законов, определяющих основы механики силы и энергии. Изучение правил инерции, ускорения, массы и силы, поведения тела, изолированного от воздействия других тел.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 22.10.2015 |
Размер файла | 14,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
4
Основные законы механики
Введение
Наука о механическом движении и взаимодействии материальных тел называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов.
К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности: сопротивление материалов, статика сооружений (строительная механика), теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины.
Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Знание основных законов механики и применение их на производстве, очень важно для будущих горных инженеров. Законы механики должны быть фундаментом знаний горного инженера электромеханика.
Законы механики базируются на законах Ньютона, а также законах определяющих законов механики силы и энергии.
1. Закон Ньютона. Ньютон дал следующую формулировку закона инерции "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние".
Тогда закон инерции можно сформулировать следующим образом:
- Инерция - это стремление тела, как единого целого сохранить состояние покоя или скорость (энергию) своего движения в любой момент этого движения как при действии на него сил, так и при отсутствии такого воздействия; при прекращении силового воздействия тело будет двигаться в соответствии с имеющейся у него на данный момент скоростью в любой выбранной системе отсчета. Можно дать и другую формулировку закона инерции:
- В любой момент своего движения материальный объект стремится двигаться с имеющейся у него на данный момент скоростью (энергией) независимо от выбранной системы отсчета, и только внешние воздействия препятствуют такому движению.
2. Закон Ньютона. Второй закон Ньютона связывает вместе три, на первый взгляд, совершенно не связанные друг с другом величины: ускорение, массу и силу. Мы знаем, что скорость тела изменяется под действием приложенной к нему силы. Если на тело действуют несколько сил, то находят равнодействующую этих сил, то есть некую общую суммарную силу, обладающую определенным направлением и числовым значением. То есть, фактически, все случаи приложения различных сил в конкретный момент времени можно свести к действию одной равнодействующей силы. Таким образом, чтобы найти, как изменилась скорость тела, нам надо знать, какая сила действует на тело. В зависимости от величины и направления силы тело получит то или иное ускорение. Чем больше сила воздействия, тем большее ускорение приобретает тело. То есть, второй вывод это то, что масса тела напрямую связана с ускорением, приобретаемым телом в результате воздействия силы. При этом масса тела обратно пропорциональна полученному ускорению. Чем больше масса, тем меньше будет величина ускорения.
Исходя из всего вышесказанного, приходим к тому, что можно записать второй закон Ньютона в виде следующей формулы:
механика ньютон сила инерция
a =F/m,
где a - ускорение, F - сила воздействия, m - масса тела.
Соответственно, второму закону Ньютона можно дать такое определение: ускорение, приобретаемое телом в результате воздействия на него, прямо пропорционально силе или равнодействующей сил этого воздействия и обратно пропорционально массе тела.
3. Закон Ньютона. В первом законе Ньютона говорится о поведении тела, изолированного от воздействия других тел. Второй закон говорит о прямо противоположной ситуации. В нем рассматриваются случаи, когда тело или несколько тел воздействуют на данное. Оба эти закона описывают поведение одного конкретного тела. Но во взаимодействии всегда участвуют минимум два тела. Что будет происходить с обоими этими телами? Как описать их взаимодействие? Анализом этой ситуации и занялся Ньютон после формулировки своих первых двух законов.
Сила действия равна силе противодействия. В этом и состоит суть третьего закона Ньютона. Определение его таково: силы, с которыми два тела действуют друг на друга, равны по величине и противоположны по направлению.
Третий закон Ньютона можно записать в виде формулы:
F_1 = - F_2,
где F_1 и F_2 силы действия друг на друга соответственно первого и второго тела.
Справедливость третьего закона Ньютона была подтверждена многочисленными экспериментами. Этот закон справедлив как для случая, когда одно тело тянет другое, так и для случая, когда тела отталкиваются. Все тела во Вселенной взаимодействуют друг с другом, подчиняясь этому закону.
Размещено на Allbest.ru
...Подобные документы
Понятие массы тела и центра масс системы материальных точек. Формулировка трех законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Силы гравитационного притяжения и тяжести.
презентация [636,3 K], добавлен 21.03.2014Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.
контрольная работа [29,8 K], добавлен 16.08.2009Демонстрация первого закона Ньютона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Формулирование и математическое представление основных законов, лежащих в основе классической механики.
презентация [588,4 K], добавлен 05.10.2011Определение динамики, классической механики. Инерциальные системы отсчета. Изучение законов Ньютона. Основы фундаментального взаимодействия тел. Импульс силы, количество движения. Единицы измерения работы и мощности. Свойства потенциального поля сил.
презентация [0 b], добавлен 25.07.2015Сущность, особенности и свойства взаимодействия тел. Понятие силы как меры ускорения, ее характерные признаки и единицы измерения, а также формулы расчета ее основных видов в электродинамике и механике. Общая характеристика законов динамики И. Ньютона.
презентация [317,7 K], добавлен 15.12.2010Описание основных законов Ньютона. Характеристика первого закона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Принципы закона ускорения тела. Особенности инерционных систем отсчета.
презентация [551,0 K], добавлен 16.12.2014Краткая биография Исаака Ньютона. Явление инерции в классической механике. Дифференциальный закон движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил. Третий закон Ньютона: принцип парного взаимодействия тел.
презентация [544,5 K], добавлен 20.01.2013Определение механики, ее место среди других наук, подразделения механики. Развитие методов механики с XVIII в. до нашего времени. Механика в России и СССР. Современные проблемы теории колебаний, динамики твердого тела и теории устойчивости движения.
реферат [47,3 K], добавлен 19.06.2019Изучение законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Анализ причин изменения движения тел. Исследование инерциальных систем отсчета. Взаимодействие тел с разной массой.
презентация [531,3 K], добавлен 08.11.2013Построение графиков координат пути, скорости и ускорения движения материальной точки. Вычисление углового ускорения колеса и числа его оборотов. Определение момента инерции блока, который под действием силы тяжести грузов получил угловое ускорение.
контрольная работа [125,0 K], добавлен 03.04.2013Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.
курс лекций [1,0 M], добавлен 13.10.2011Кинематика вращательного и динамика поступательного движения тела. Определение инерциальных систем отсчета как таких, которые находятся в покое или движутся равномерно и прямолинейно относительно гелиоцентрической системы. Описание законов Ньютона.
курс лекций [936,6 K], добавлен 14.12.2011Характеристика законов Ньютона и законов сил в механике. Инерциальные системы отсчета. Принцип относительности Галилея. Принцип суперпозиции. Фундаментальные взаимодействия. Система частиц. Центр масс (центр инерции). Алгоритм решения задач динамики.
презентация [3,0 M], добавлен 25.05.2015Классификация средств измерений и определение их погрешностей. Рассмотрение законов Ньютона. Характеристика фундаментальных взаимодействий, сил тяготения и равнодействия. Описание назначений гравиметров, динамометров, прибора для измерения силы сжатия.
курсовая работа [323,0 K], добавлен 28.03.2010Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.
презентация [303,7 K], добавлен 08.04.2012Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.
презентация [39,7 M], добавлен 13.02.2016Изучение закона инерции, явления сохранения телом скорости движения, когда на него не действуют никакие силы. Характеристика инерционных систем отсчета, относительно которых тела движутся с постоянной скоростью при компенсации внешних воздействий на них.
презентация [365,5 K], добавлен 12.01.2012Движение тела по эллиптической орбите вокруг планеты. Движение тела под действием силы тяжести в вертикальной плоскости, в среде с сопротивлением. Применение законов движения тела под действием силы тяжести с учетом сопротивления среды в баллистике.
курсовая работа [1,2 M], добавлен 17.06.2011Основные понятия и определения теоретической механики. Типы и реакции связей. Момент силы относительно точки, ее кинематика и виды движения в зависимости от ускорения. Динамика и колебательное движение материальной точки. Расчет мощности и силы трения.
курс лекций [549,3 K], добавлен 17.04.2013Главные этапы открытия и исследования законов Ньютона, их место и значение в современной картине мира и концепциях естествознания. Порядок применения трех законов Ньютона в различных областях научного знания, их физическая сущность и обоснование.
реферат [16,2 K], добавлен 12.02.2010