Генрих Рудольф Герц

Биографическая справка о немецком физике Г. Герце. Характеристика его научных открытий и идей в области электротехники, электродинамики и механики контактного взаимодействия. Содержание опытов по исследованию электромагнитных волн и внешнего фотоэффекта.

Рубрика Физика и энергетика
Вид биография
Язык русский
Дата добавления 10.11.2015
Размер файла 440,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Генрих Рудольф Герц

Генрих Рудольф Герц (нем. Heinrich Rudolf Hertz; 22 февраля 1857, Гамбург - 1 января 1894, Бонн) - немецкий физик.

Окончил Берлинский университет, где его учителями были Герман фон Гельмгольц и Густав Кирхгоф. С 1885 по 1889 год был профессором физики Университета в Карлсруэ. С 1889 года - профессор физики университета в Бонне.

Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн. Он подробно исследовал отражение, интерференцию, дифракцию и поляризацию электромагнитных волн, доказал, что скорость их распространения совпадает со скоростью распространения света, и что свет представляет собой не что иное, как разновидность электромагнитных волн. Он построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его теория электродинамики не подтвердилась опытами и позднее уступила место электронной теории Хендрика Лоренца. Результаты, полученные Герцем, легли в основу создания радио.

В 1886-87 годах Герц впервые наблюдал и дал описание внешнего фотоэффекта. Герц разрабатывал теорию резонансного контура, изучал свойства катодных лучей, исследовал влияние ультрафиолетовых лучей на электрический разряд. В ряде работ по механике дал теорию удара упругих шаров, рассчитал время соударения и т. д. В книге "Принципы механики" (1894) дал вывод общих теорем механики и её математического аппарата, исходя из единого принципа (принцип Герца).

Именем Герца с 1933 года называется единица измерения частоты Герц, которая входит в международную метрическую систему единиц СИ.

Ранние годы. Генрих Рудольф Герц родился 22 февраля 1857 года в Гамбурге. Его отец, адвокат и в 1887-1904 годах сенатор Густав Фердинанд Герц (1827-1914), родился под именем Давид Густав Герц в весьма состоятельной еврейской семье. Густав Фердинанд Герц был процветающим коммерсантом и членом городского совета Гамбурга в 1860-1862 годах; [2] мать - Бетти Августа Оппенгейм (1802-1872), [3] [4] была дочерью крупного банкира Соломона Оппенгейма (1772-1828) из Кёльна, [5] основателя ныне действующего банка Sal. Oppenheim. [6] [7] [8] И дед и отец Генриха Герца приняли лютеранство. [9]

Мать Генриха Герца, урождённая Анна Элизабет Пфефферкорн (1835-1910), была дочерью армейского врача из Франкфурта-на-Майне Йоханнеса Пфефферкорна (1793-1850) и Сузанны Гадройтер (1797-1872). У Генриха было три младших брата и сестра.

Во время учёбы в гимназии при университете Гамбурга Генрих Герц проявил способности к наукам, а также к языкам, изучив арабский и санскрит. Он изучал науку и технику в Дрездене, Мюнхене и Берлине, где был студентом Кирхгофа и Гельмгольца. В 1880 году Герц получил степень доктора философии в Берлинском университете, и остался на последокторское обучение под руководством Гельмгольца. В 1883 году он занимает должность лектора теоретической физики в Кильском университете, а в 1885 году Герц стал полным профессором в Университете Карлсруэ, где он и сделал своё научное открытие о существовании электромагнитных волн.

Метеорология. У Герца всегда был глубокий интерес к метеорологии, вероятно, приобретённый в результате его контактов с Вильгельмом фон Бецольдом (он был профессором Герца по лабораторному курсу в Мюнхенском Политехникуме летом 1878). Герц, однако, не сделал особого вклада в данную область, за исключением некоторых ранних статей в качестве ассистента Гельмгольца в Берлине. Сюда входит исследование испарения жидкостей, разработка нового вида гигрометра, а также разработка графических средств для определения свойств влажного воздуха, подвергнутого адиабатическим изменениям.

Механика контактного взаимодействия. В 1881-1882 годах Герц опубликовал две статьи по тематике, которая позже стала называться механикой контактного взаимодействия. Хотя Герц знаменит за свой вклад в электродинамику (о чём речь ниже), однако эти две статьи тоже не остались незамеченными. Они стали источником важных идей, и большинство статей, в которых рассматривается фундаментальная природа контакта, на них ссылаются. Жозеф Буссинеск сделал несколько важных критических замечаний по работам Герца, признавая при этом их огромную важность.

В этих работах Герц рассматривает поведение под нагрузкой двух асимметричных объектов, находящихся в контакте. Полученные результаты основываются на классической теории упругости и механике сплошных сред. Самым существенным недостатком его теории было пренебрежение адгезией любой природы между двумя твёрдыми телами, которая оказывается важна, когда эти тела начинают вести себя упруго. В те времена было вполне естественно пренебречь ею, поскольку тогда не было никаких экспериментальных методов её исследования.

Для обоснования своей теории Герц исследовал поведение эллиптических колец Ньютона, образующихся при размещении стеклянной сферы на линзе. Он полагал, что давление, оказываемое сферой на линзу, вызовет изменение колец Ньютона. Он снова использовал кольца Ньютона, когда проверял свою теорию в экспериментах по вычислению сдвига, которое вызывает сфера в линзе.

Исследование электромагнитных волн. С 1885 по 1889 годы Герц работал профессором физики технического университета в Карлсруэ. Именно в эти годы он провёл свои знаменитые опыты по распространению электрической силы, доказавшие реальность электромагнитных волн. Аппаратура, которой пользовался Герц, может показаться теперь более чем простой, но тем замечательнее полученные им результаты. Источниками электромагнитного излучения у него были искры в разрядниках.

Рис. Экспериментальный аппарат Герца 1887 года

Электромагнитные волны от разрядников вызывали искровые разряды между шариками в "приёмниках" - расположенных в нескольких метрах контурах, настроенных в резонанс. Герцу удалось не только обнаружить волны, в том числе, и стоячие, но и исследовать скорость их распространения, отражение, преломление и даже поляризацию. Все это очень напоминало оптику, с тем только (весьма существенным!) отличием, что длины волн были почти в миллиард раз больше.

Радиопередатчик Герца на основе катушки Румкорфа (с ударным возбуждением колебательного контура ключевым прерывателем). Постоянный ток от источника, проходя через катушку намагничивает её железный сердечник, он притягивает подвижной контакт и цепь разрывается, когда магнитное поле исчезает контакт замыкается снова. [10] Для проведения опытов Герц придумал и сконструировал свой знаменитый излучатель электромагнитных волн, названный впоследствии "вибратором Герца". Вибратор представлял собой два медных прутка с насаженными на концах латунными шариками и по одной большой цинковой сфере или квадратной пластине, играющей роль конденсатора. Между шариками оставался зазор - искровой промежуток. К медным стержням были прикреплены концы вторичной обмотки катушки Румкорфа - преобразователя постоянного тока низкого напряжения в переменный ток высокого напряжения. При импульсах переменного тока между шариками проскакивали искры и в окружающее пространство излучались электромагнитные волны. Перемещением сфер или пластин вдоль стержней регулировались индуктивность и ёмкость цепи, определяющие длину волны.

Чтобы улавливать излучаемые волны, Герц придумал простейший резонатор - проволочное незамкнутое кольцо или прямоугольную незамкнутую рамку с такими же, как у "передатчика" латунными шариками на концах и регулируемым искровым промежутком. В результате проведённых опытов Герц обнаружил, что если в генераторе будут происходить высокочастотные колебания (в его разрядном промежутке проскакивает искра), то в разрядном промежутке резонатора, удалённом от генератора даже на 3 м, тоже будут проскакивать маленькие искры. Таким образом, искра во второй цепи возникала без всякого непосредственного контакта с первой цепью. Проведя многочисленные опыты при различных взаимных положениях генератора и приёмника, Герц приходит к выводу о существовании электромагнитных волн, распространяющихся с конечной скоростью. Будут ли они вести себя, как свет? Герц проводит тщательную проверку этого предположения. После изучения законов отражения и преломления, после установления поляризации и измерения скорости электромагнитных волн он доказал их полную аналогию со световыми. Всё это было изложено в работе "О лучах электрической силы", вышедшей в декабре 1888 году. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла.

Благодаря своим опытам Герц пришёл к следующим выводам:

волны Максвелла "синхронны" (справедливость теории Максвелла, что скорость распространения радиоволн равна скорости света);

можно передавать энергию электрического и магнитного поля без проводов.

В 1887 году по завершении опытов вышла первая статья Герца "Об очень быстрых электрических колебаниях", а в 1888 году - ещё более фундаментальная работа "Об электродинамических волнах в воздухе и их отражении". биографическая герц электромагнитная фотоэффект

Герц считал, что его открытия были не практичнее максвелловских: "Это абсолютно бесполезно. Это только эксперимент, который доказывает, что маэстро Максвелл был прав. Мы всего-навсего имеем таинственные электромагнитные волны, которые не можем видеть глазом, но они есть". "И что же дальше?" - спросил его один из студентов. Герц пожал плечами, он был скромный человек, без претензий и амбиций: "Я предполагаю - ничего".

Но даже на теоретическом уровне достижения Герца были сразу отмечены учёными как начало новой "электрической эры".

Открытие внешнего фотоэффекта. Чтобы лучше видеть искру в своих опытах, Герц поместил приёмник в затемнённую коробку. При этом он заметил, что в коробке длина искры в приёмнике становится меньше. Тогда Герц стал экспериментировать в этом направлении, в частности, он исследовал зависимость длины искры в случае, когда между передатчиком и приёмником помещается экран из различных материалов. Герц нашёл, что электромагнитные волны проходили через одни виды материалов и отражались другими, что привело в будущем к появлению радаров. Кроме того, Герц заметил, что заряженный конденсатор теряет свой заряд быстрее при освещении его пластин ультрафиолетовым излучением. Полученные результаты явились открытием нового явления в физике, названного фотоэффектом. Теоретическое обоснование этого явления позже дал Альберт Эйнштейн, получивший за это Нобелевскую премию в 1921 году.

Смерть. В 1892 году у Герца была диагностирована инфекция (после серьёзной мигрени). Его несколько раз прооперировали, чтобы вылечить болезнь, но бесполезно. Он умер от гранулематоза Вегенера [источник не указан 263 дня] в возрасте 36 лет в Бонне. Похоронен в Гамбурге на Ольсдорфском кладбище.

Рис. Могила Генриха Рудольфа Герца

Его жена Элизабет Герц (в девичестве Элизабет Долль) замуж больше не выходила. Герц оставил двух дочерей, Джоанну и Матильду. Все трое в 1930-е годы, после прихода Гитлера к власти, эмигрировали в Англию. В 1960-е годы Чарльз Зюскинд взял у Матильды интервью, которое затем опубликовал в книге о Генрихе Герце. Согласно книге Зюскинда дочери Герца в браке не состояли, поэтому потомков у него не осталось. Матильда Кармен Герц (1891-1975), которой было всего три года, когда умер её отец, стала известным психологом.

Хотя Герц был лютеранин и вряд ли считал себя евреем, его портрет был снят нацистами с почётного места в городской ратуше Гамбурга, поскольку он "частично еврейского происхождения".

Наследие. Племянник Г. Герца - Густав Людвиг Герц (1887-1975) - стал известным физиком и лауреатом Нобелевской премии, а сын последнего - Карл Хельмут Герц (1920-1990) - создателем медицинской сонографии.

18 декабря 1897 года один из изобретателей радио - Александр Попов - передал с помощью телеграфного аппарата, присоединённого к прибору, слова "Генрих Герц", которые являются одними из первых, переданных по радио.

Рис. Памятная почтовая марка ФРГ, 1957

Рис. Памятная почтовая марка ФРГ, 1994

В 1930 году Международная Электротехническая Комиссия в честь Герца установила новую единицу измерения - Герц (Гц), применяемую как мера количества повторяющихся событий в единицу времени (её также называют "количество циклов в секунду"). Она была принята Международным бюро мер и весов в 1964 году как единица частоты в системе СИ.

В 1969 году в Восточной Германии была выпущена памятная медаль в честь Генриха Герца. В 1987 году IEEE учредила Медаль Генриха Герца "за выдающиеся достижения в изучении волн Герца", присуждаемая ежегодно учёным-теоретикам и экспериментаторам.

В честь Герца назвали кратер, который находится на востоке обратной стороны Луны. В Нижнем Новгороде, Россия, в честь Герца назван городской рынок радиоэлектроники. Городская теле-радиокоммуникационная башня в Гамбурге названа в честь знаменитого уроженца города.

Награды. В 1889 Итальянское общество наук в Неаполе наградило его медалью имени Маттеучи, Парижская академия наук - премией Лаказа, а Венская императорская академия - премией Баумгартнера. Через год Лондонское королевское общество награждает Герца медалью Румфорда, а в 1891 Королевская академия в Турине - премией Бресса. Прусское правительство награждает его орденом Короны. Кроме того, Герц был удостоен японского ордена Священного сокровища.

Литература

1. Герц Г.Р. Исследования о распространении электрической силы. М. -Л., 1938.

2. Герц Г.Р. Принципы механики, изложенные в новой связи. М.: Изд. АН СССР, 1959.

3. Григорьян А.Т., Вяльцев А.Н. Генрих Герц. 1857-1894. - М.: Наука, 1968. - 312 с.

4. Храмов Ю.А. Герц Генрих Рудольф (Hertz Heinrich Rudolf) // Физики: Биографический справочник / Под ред. А.И. Ахиезера. - Изд. 2-е, испр. и дополн. - М.: Наука, 1983. - С. 82. - 400 с. - 200 000 экз. (в пер.).

Размещено на Allbest.ru

...

Подобные документы

  • Предсказание Максвелла Дж.К. - английского физика, создателя классической электродинамики о существовании электромагнитных волн. Их экспериментальное получение немецким ученым Г. Герцем. Изобретение радио А.С. Поповым, основные принципы его действия.

    реферат [13,5 K], добавлен 30.03.2011

  • Амедео Авогадро. Нильс Бор. Андре Мари Ампер. Даниил Бернулли. Людвиг Больцман. Александр Вольт. Галилео Галилей. Генрих Рудольф Герц. Роберт Гук. Николай Егорович Жуковский. Шарль Огюстен Кулон. Игорь Васильевич Курчатов. Лев Давидович Ландау.

    реферат [21,8 K], добавлен 05.04.2007

  • Понятие электромагнитных волн, их сущность и особенности, история открытия и исследования, значение в жизни человека. Виды электромагнитных волн, их отличительные черты. Сферы применения электромагнитных волн в быту, их воздействие на организм человека.

    реферат [776,4 K], добавлен 25.02.2009

  • Значение физики в современном мире. Общая характеристика научных открытий ХХ века, самые значительные научные открытия. Вклад современной физики в выработку нового стиля планетарного мышления. Выдающиеся физики столетия и характеристика их открытий.

    реферат [741,3 K], добавлен 08.02.2014

  • Описание классических задач механики контактного взаимодействия. Определение контакта между шаром и упругим полупространством, двумя шарами, двумя скрещивающимися цилиндрами, индентором и упругим полупространством. Учет шероховатости поверхности.

    реферат [376,0 K], добавлен 23.12.2015

  • Изучение ключевых научных открытий Альберта Эйнштейна. Закон внешнего фотоэффекта (1921 г.). Формула связи потери массы тела при излучении энергии. Постулаты специальной теории относительности Эйнштейна (1905 г.). Принцип постоянства скорости света.

    презентация [1,1 M], добавлен 25.01.2012

  • Анализ взаимодействия электромагнитных волн с биологическими тканями. Разработка вычислительного алгоритма и программного обеспечения для анализа рассеяния монохроматических электромагнитных волн неоднородными контрастными объектами цилиндрической формы.

    дипломная работа [3,3 M], добавлен 08.05.2012

  • Связь между переменным электрическим и переменным магнитным полями. Свойства электромагнитных полей и волн. Специфика диапазонов соответственного излучения и их применение в быту. Воздействие электромагнитных волн на организм человека и защита от них.

    курсовая работа [40,5 K], добавлен 15.08.2011

  • Система уравнений Максвелла в дифференциальной и интегральной формах. Исследования Р. Герца. Скорость распространения электромагнитных волн. Открытие фотоэлектрического эффекта. Расчет давления света. Энергия, импульс и масса ЭМП. Вектор Умова-Пойнтинга.

    презентация [2,7 M], добавлен 14.03.2016

  • Краткая биография Г. Герца. Экспериментальное подтверждение теории Максвелла в результате создания немецким физиком вибратора (излучателя) и резонатора (приемника) электромагнитных волн. Конструкция вибратора, механизм возникновения электрической искры.

    презентация [807,5 K], добавлен 15.01.2013

  • Анализ теорий распространения электромагнитных волн. Характеристика дисперсии, интерференции и поляризации света. Методика постановки исследования дифракции Фраунгофера на двух щелях. Влияние дифракции на разрешающую способность оптических инструментов.

    курсовая работа [2,0 M], добавлен 19.01.2015

  • Открытие внешнего фотоэффекта немецким физиком Генрихом Герцем. Вывод уравнения фотоэффекта Эйнштейном. Корпускулярные свойства света. Внутренний, внешний и вентильный фотоэффект. Применение фотоэффекта в медицине. Внутренний фотоэффект в полупроводниках.

    реферат [34,4 K], добавлен 29.10.2011

  • Виды фотоэлектрического эффекта. Внутренний и вентильный фотоэффект. Вольт-амперная его характеристика. Закон Столетова. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света. Масса и импульс фотона.

    реферат [53,2 K], добавлен 24.06.2015

  • Основные методы описания распространения электромагнитных волн в периодических средах с использованием волновых уравнений. Теории связанных волн, вывод уравнений. Выбор метода для описания генерации второй гармоники в периодически поляризованной среде.

    дипломная работа [1,1 M], добавлен 17.03.2014

  • Понятие волны и ее отличие от колебания. Значение открытия электромагнитных волн Дж. Максвеллом, подтверждающие опыты Г. Герца и эксперименты П. Лебедева. Процесс и скорость распространения электромагнитного поля. Свойства и шкала электромагнитных волн.

    реферат [578,5 K], добавлен 10.07.2011

  • Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Получение модуля вектора плотности потока энергии. Вычисление давления электромагнитных волн и уяснение его происхождения.

    реферат [28,2 K], добавлен 08.04.2013

  • Электрическое поле Земли. Атмосферики, радиоизлучения Солнца и галактик. Физические основы взаимодействия электромагнитных полей с биологическими объектами. Главные преимущества и недостатки лазеротерапии. Глубина проникновения волн в различные ткани.

    курсовая работа [179,2 K], добавлен 16.05.2016

  • Энергия электромагнитных волн. Вектор Пойнтинга, свойства. Импульс, давление электромагнитного поля. Излучение света возбужденным атомом. Задача на определение тангенциальной силы, действующей на единицу поверхности зеркала со стороны падающего излучения.

    контрольная работа [116,0 K], добавлен 20.03.2016

  • Исследование оптических характеристик интерференционных покрытий. Физика распространения электромагнитных волн оптического диапазона в диэлектриках. Интерференция электромагнитных волн в слоистых средах. Методики нанесения вакуумно-плазменных покрытий.

    дипломная работа [6,1 M], добавлен 27.06.2014

  • Эволюция электромагнитных волн в расширяющейся Вселенной. Параметры поляризационной сферы Пуанкаре. Электромагнитное излучение поля с LV нарушением, принимаемое от оптического послесвечения GRB. Вектор Стокса электромагнитной волны с LV нарушением.

    курсовая работа [1,1 M], добавлен 06.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.