Темная материя
Гипотетическая форма материи, которая не испускает электромагнитного излучения и напрямую не взаимодействует с ним. Радиальные скорости галактик в скоплении Кома. Рассмотрение классификации темной материи. Попытки обнаружения потоков вторичных частиц.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 11.11.2015 |
Размер файла | 99,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное автономное образовательное учреждение высшего профессионального образования
НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Реферат
по дисциплине «Современные проблемы физики»
Темная материя
Выполнил студент гр.5ФМ51 В.А. Блинов
Проверил профессор каф. ОФ Ю.И. Тюрин
Томск 2015
Оглавление
- Введение
- 1. Темная материя
- 2. Кандидаты на роль тёмной материи
- 2.1 Барионная тёмная материя
- 2.2 Небарионная тёмная материя
- 3. Классификация тёмной материи
- 3.1 Горячая тёмная материя
- 3.2 Холодная тёмная материя
- 4. Обнаружение
- Заключение
- Список литературы
Введение
В истории науки встречались ситуации, когда движение небесных тел не подчинялось законам небесной механики; как правило, это явление находило объяснение в существовании неизвестного материального тела (или нескольких тел). Именно так были открыты планета Нептун и звезда Сириус B. В 1922 году астрономы Джеймс Джинс и Якобус Каптейн исследовали движение звёзд в нашей Галактике и пришли к выводу, что большая часть вещества в галактике невидима; в этих работах, вероятно, впервые появился термин «тёмная материя». Ян Оорт использовал тот же термин в статье 1932 года.
Широкое распространение термин получил после работ Фрица Цвикки, который употребил его в 1933 году в своей работе. Цвикки измерил радиальные скорости восьми галактик в скоплении Кома (созвездие Волосы Вероники) и обнаружил, что для устойчивости скопления приходится предположить, что его полная масса в десятки раз больше, чем масса входящих в него звёзд. Вскоре другие астрономы пришли к таким же выводам для многих других галактик. Особенный интерес вызвала туманность Андромеды (Хорес Бэбкок, 1939) -- скорость вращения звёзд вокруг её центра не уменьшалась, как предсказывала небесная механика, обратно пропорционально (где -- расстояние до центра), а оставалась почти постоянной. Это могло означать, что галактика на всём своём протяжении содержит значительную массу невидимого вещества («галактическое гало»).
Начиная с 1960-х годов, когда начался бурный прогресс наблюдательных средств астрономии, число аргументов в пользу существования тёмной материи быстро росло. При этом оценки её параметров, полученные из разных источников и разными методами, в целом согласуются между собой.
1. Описанное выше не убывание скорости вращения звёзд оказалось не аномалией, а типичной ситуацией в мире галактик.
2. При исследовании движения спутников галактик и близко расположенных шаровых скоплений было подтверждено, что общая масса каждой галактики в несколько раз превышает массу её звёзд.
3. Было проведено изучение движения в системах двойных галактик и в галактических скоплениях. Оказалось, что в этих масштабах доля тёмной материи намного выше, чем внутри галактик.
4. Звёздная масса эллиптических галактик, согласно расчётам, недостаточна для удержания входящего в галактику горячего газа, если не учесть тёмную материю.
5. Оценка массы скоплений галактик, осуществляющих гравитационное линзирование, даёт результаты, включающие вклад тёмной материи и близкие к полученным другими методами.
Большой вклад внесла в конце 1960-х и начале 1970-х годов астроном Вера Рубин из Института Карнеги -- она была первой, кто провел точные и надёжные вычисления, указывающие на наличие тёмной материи. Она работала с новым, более чувствительным спектрографом, который мог гораздо точнее измерять скорость вращения диска спиральных галактик даже при виде «с ребра». Вместе с соавтором (Кент Форд), Рубин заявила на конференции Американского Астрономического Общества в 1975 году об открытии: большинство звёзд в спиральных галактиках двигаются по орбитам примерно с одинаковой угловой скоростью, что приводит к мысли, что плотность массы в галактиках одинакова и для тех регионов, где большинство звёзд, и для тех регионов на краю диска, где звёзд мало. Похожий вывод был сделан независимо в 1978 году. В 1980 году работа Рубин была окончательно признана астрономическим сообществом.
Интересно, что сама Вера Рубин предпочитала Модифицированную ньютоновскую динамику (MOND) как причину найденного ей эффекта, замечая: «Если бы я выбирала, то я бы хотела открыть, что это именно ньютоновские законы должны быть изменены для правильного описания гравитационных взаимодействий на больших расстояниях. Это более привлекательно, чем Вселенная наполненная новым типом суб-ядерных частиц».
Известно, что тёмное вещество взаимодействует со «светящимся» (барионным), по крайней мере, гравитационным образом и представляет собой среду со средней космологической плотностью, в несколько раз превышающей плотность барионов. Последние захватываются в гравитационные ямы концентраций тёмной материи. Поэтому, хотя частицы тёмной материи и не взаимодействуют со светом, свет испускается оттуда, где есть тёмное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения тёмной материи по наблюдательным данным от радиодиапазона до рентгеновского излучения.
Опубликованное в 2012 году исследование движения более 400 звёзд, расположенных на расстояниях до 13 000 световых лет от Солнца, не нашло свидетельств присутствия тёмной материи в большом объёме пространства вокруг Солнца. Согласно предсказаниям теорий, среднее количество тёмной материи в окрестности Солнца должно было составить примерно 0,5 кг в объёме Земного шара. Однако измерения дали значение 0,00±0,06 кг тёмной материи в этом объёме. Это означает, что попытки зарегистрировать тёмную материю на Земле, например, при редких взаимодействиях частиц тёмной материи с «обычной» материей, вряд ли могут быть успешными.
Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк», интерпретированным с учётом стандартной космологической модели Лямбда-CDM, общая масса-энергия наблюдаемой Вселенной состоит на 4,9 % из обычной (барионной) материи, на 26,8 % из тёмной материи и на 68,3 % из тёмной энергии. Таким образом, Вселенная на 95,1 % состоит из тёмной материи и тёмной энергии.
Основная трудность при поиске частиц тёмной материи заключается в том, что все они электрически нейтральны. Имеются два варианта поиска: прямой и косвенный.
При прямом поиске изучаются следствия взаимодействия этих частиц с электронами или атомными ядрами с помощью наземной аппаратуры.
Косвенные методы основаны на попытках обнаружения потоков вторичных частиц, которые возникают, например, благодаря аннигиляции солнечной или галактической тёмной материи.
1. Темная материя
темная материя частица
Тёмная материя в астрономии и космологии, а также в теоретической физике -- гипотетическая форма материи, которая не испускает электромагнитного излучения и напрямую не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение.
Вывод о существовании тёмной материи сделан на основании многочисленных, согласующихся друг с другом, но косвенных признаков поведения астрофизических объектов и по создаваемым ими гравитационным эффектам. Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.
Темная материя темная не потому, что черного цвета, а потому что представляет собой «темную лошадку» в прямом смысле: никто не знает, что это такое. Физикам темная материя нужна для того, чтобы объяснить расхождение в ускорении расширения вселенной и несоответствии видимой массы материи. Темная материя берет на себя более 95 % невидимой материи от всего ее количества во вселенной. Проблема в том, что темная материя слабо взаимодействует с реальным миром, только на уровне гравитации, поэтому поймать, зафиксировать или создать ее не представляется возможным на данный момент. И наши средства мониторинга и поиска чересчур слабы, чтобы уловить частицы темной материи, хотя работы в этой сфере определенно ведутся.
2. Кандидаты на роль тёмной материи
2.1 Барионная тёмная материя
Наиболее естественным кажется предположение, что тёмная материя состоит из обычного, барионного вещества, по каким-либо причинам слабо взаимодействующего электромагнитным образом и потому не обнаружимого при исследовании, к примеру, линий излучения и поглощения. В состав тёмного вещества могут входить многие уже обнаруженные космические объекты, как-то: тёмные галактические гало, коричневые карлики и массивные планеты, компактные объекты на конечных стадиях эволюции: белые карлики, черные карлики -- они же остывшие белые карлики, нейтронные звёзды, чёрные дыры. Кроме того, такие гипотетические объекты, как кварковые звёзды, Q-звёзды и преонные звёзды также могут являться частью барионной тёмной материи.
Проблемы такого подхода проявляются в космологии Большого взрыва: если вся тёмная материя представлена барионами, то соотношение концентраций лёгких элементов после первичного нуклеосинтеза, наблюдаемое в самых старых астрономических объектах, должно быть другим, резко отличающимся от наблюдаемого. Кроме того, эксперименты по поиску гравитационного линзирования света звёзд нашей Галактики показывают, что достаточной концентрации крупных гравитирующих объектов типа планет или чёрных дыр для объяснения массы гало нашей Галактики не наблюдается, а мелкие объекты достаточной концентрации должны слишком сильно поглощать свет звёзд.
2.2 Небарионная тёмная материя
Теоретические модели предоставляют большой выбор возможных кандидатов на роль небарионной невидимой материи. Перечислим некоторые из них.
Лёгкие нейтрино.
В отличие от остальных кандидатов, нейтрино обладают явным преимуществом: известно, что они существуют. Поскольку число нейтрино во Вселенной сравнимо с числом фотонов, то, обладая даже малой массой, нейтрино вполне могут определять динамику Вселенной. Для достижения
,
где -- так называемая критическая плотность, необходимы нейтринные массы порядка эВ, где обозначает число типов лёгких нейтрино. Эксперименты, проводимые на сегодняшний день, дают оценку масс нейтрино порядка эВ. Таким образом, лёгкие нейтрино практически исключаются в качестве кандидата на доминирующую фракцию тёмной материи.
Тяжёлые нейтрино.
Из данных о ширине распада Z-бозона следует, что число поколений слабо взаимодействующих частиц (в том числе нейтрино) равно 3. Таким образом, тяжёлые нейтрино (по крайней мере, с массой менее 45 ГэВ) с необходимостью являются так называемыми «стерильными», то есть не взаимодействующими слабым образом частицами. Теоретические модели предсказывают массу в очень широком диапазоне значений (в зависимости от природы этого нейтрино). Из феноменологии для следует диапазон масс приблизительно эВ, таким образом, стерильные нейтрино вполне могут составлять существенную часть тёмной материи.
Аксионы.
Аксионы представляют собой гипотетические нейтральные псевдоскалярные частицы, введённые для решения проблемы сильного CP-нарушения в квантовой хромодинамике. Хотя считается, что аксионы должны быть очень лёгкими, они могут составлять существенную часть холодной тёмной материи. Космологические данные ограничивают массу аксиона на уровне не менее 10?5 эВ, иначе слишком много вещества было бы представлено аксионами.
Суперсимметричные частицы.
В рамках суперсимметричных (SUSY) теорий существует по меньшей мере одна стабильная частица, которая является новым кандидатом на роль тёмной материи. Предполагается, что эта частица (LSP) не принимает участия в электромагнитном и сильном взаимодействиях. В качестве LSP-частицы могут выступать фотино, гравитино, хиггсино (суперпартнёры фотона, гравитона и бозона Хиггса соответственно), а также снейтрино, вино, и зино. В большинстве теорий LSP-частица представляет собой комбинацию перечисленных выше SUSY-частиц с массой порядка 10 ГэВ.
Космионы.
Космионы были введены в физику для разрешения проблемы солнечных нейтрино, состоящей в существенном отличии потока нейтрино, детектируемых на Земле, от значения, предсказываемого стандартной моделью Солнца. Однако эта проблема нашла разрешение в рамках теории нейтринных осцилляций и эффекта Михеева -- Смирнова -- Вольфенштейна, так что космионы, по всей видимости, исключаются из претендентов на роль тёмной материи.
Топологические дефекты пространства-времени.
Согласно современным космологическим представлениям, энергия вакуума определяется неким локально однородным и изотропным скалярным полем. Это поле необходимо для описания так называемых фазовых переходов вакуума при расширении Вселенной, во время которых происходило последовательное нарушение симметрии, приводящее к разъединению фундаментальных взаимодействий. Фазовый переход -- это скачок энергии вакуумного поля, стремящегося к своему основному состоянию (состоянию с минимальной энергией при данной температуре). Различные области пространства могли испытывать такой переход независимо, в результате чего образовывались области с определённой «выстроенностью» скалярного поля, которые, расширяясь, могли войти в соприкосновение друг с другом. В точках встречи областей с различной ориентацией могли образоваться стабильные топологические дефекты различной конфигурации: точечно-подобные частицы (в частности, магнитные монополи), линейные протяжённые объекты (космические струны), двумерные мембраны (доменные стенки), трёхмерные дефекты (текстуры). Все эти объекты обладают, как правило, колоссальной массой и могли бы давать доминирующий вклад в тёмную материю. На текущий момент (2012 год) подобные объекты во Вселенной не обнаружены.
3. Классификация тёмной материи
Ключевое предположение приводимой ниже классификации состоит в том, что частицы ТМ находились в термодинамическом равновесии с частицами космической плазмы на ранних стадиях эволюции Вселенной. В определённый момент времени температура упала настолько, что среднее время пролёта частиц ТМ в плазме превысило хаббловское (реакция «заморозилась»), и взаимодействия с барионным веществом прекратились. В зависимости от температуры, при которой это произошло, ТМ делят на «горячую», «холодную» и «тёплую».
3.1 Горячая тёмная материя
Если в момент выхода из равновесия энергия частиц много превышала их массу, ТМ называют горячей. Такими могли бы быть лёгкие частицы типа нейтрино, но космологические данные исключают возможность того, что последние составляют значительную долю ТМ.
3.2 Холодная тёмная материя
Если частицы ТМ отщепились от космической плазмы уже будучи нерелятивистскими, такую ТМ называют «холодной». Она наиболее предпочтительна с точки зрения космологии, так как частицы горячей ТМ при движении с релятивистскими скоростями разглаживали бы неоднородности плотности материи на масштабах порядка хаббловского в ту эпоху и, таким образом, препятствовали бы образованию крупномасштабных структур, что противоречит наблюдательным данным. Фактически, поведение частиц уже с массами ?30 КэВ обнаруживает все свойства холодной ТМ. К числу кандидатов на роль частиц холодной ТМ относится в первую очередь класс частиц, называемых вимпами (WIMP -- weakly interacting massive particle), чья масса варьируется от нескольких десятков ГэВ до нескольких ТэВ, а сечения аннигиляции и рассеяния на частицах барионного вещества сравнимы с сечениями слабых процессов. Преимущество вимпов в том, что их остаточная концентрация естественным образом даёт нужный вклад в баланс энергии в современной Вселенной, а величина взаимодействий с частицами барионного вещества делает возможным их прямое обнаружение. Чаще всего на роль вимпа предлагается легчайшая (и, таким образом, стабильная) частица суперсимметричного расширения Стандартной модели, являющаяся суперпозицией суперпартнёров калибровочных и хиггсовских бозонов.
Проблема распределения холодной тёмной материи в реальности и при моделировании.
Существует так называемая «проблема сингулярного гало» возникающая из простой космологической симуляции (численного моделирования) распределения ТМ. Расчёты однозначно указывают на то, что холодная тёмная материя (CDM) будет образовывать касп или сингулярность (резкий пик в распределении) в центре галактики или в целом в более плотных областях Вселенной. Говоря примитивным языком, тёмная материя в галактике, например, в нашей Галактике Млечного Пути будет падать в центр, стягиваться в ядро галактики гораздо сильнее, чем в другие регионы. Однако все прямые астрономические наблюдения, приведшие к обнаружению эффекта тёмной материи, показывают обратную картину: тёмная материя образует гало вокруг галактики (заполняет пустоты между скоплениями галактик) и не показывает никаких сингулярностей (каспов) в своем распределении. Эта проблема пока неразрешима. Есть только голословные, ничем неподкреплённые предположения, что барионная материя как-то вытесняет, заменяет холодную тёмную материю в ядрах спиральных галактик (механизм этого никак не объясняется).
3.3 Тёплая тёмная материя
Тёплой называют ТМ, составленную из частиц массой больше или порядка 1 эВ. Естественно, они были релятивистскими в момент выхода из равновесия. В отдельный вид ТМ эти частицы выделяют потому, что горячая ТМ является релятивистской на момент перехода от радиационно-доминированной к пылевидной стадии расширения Вселенной (который случился при температурах порядка 1 эВ), а тёплая уже не является. Это важно, поскольку рост возмущений плотности происходит существенно по-разному на этих стадиях, и этот рост существенно зависит от того, является ли ТМ релятивистской или нет на пылевидной стадии. Хорошим кандидатом на роль тёплой ТМ являются так называемые стерильные нейтрино -- правовинтовые состояния, синглетные по группе калибровочных бозонов Стандартной модели. Так, в модели нMSM, расширяющей Стандартную модель за счёт включения трёх стерильных нейтрино, одно из них может иметь массу порядка 1 кэВ/cІ и являться, таким образом, кандидатом в ТМ. Другим кандидатом может являться LSP-гравитино из суперсимметричного расширения СМ.
4. Обнаружение
Астрономические наблюдения.
Четыре независимых друг от друга метода прямого астрономического наблюдения невидимой массы (тёмной материи):
Динамический -- распределение радиальных скоростей галактик в галактических скоплениях (или звёзд, шаровых скоплений в галактиках) по методу Цвикки, но с полным арсеналом современных инструментов и методик, с лучшей точностью и большей статистикой.
Газодинамический -- с помощью рентгеновского излучения горячего газа в скоплениях. Температура и плотность газа может быть определена на основе энергии и потока рентгеновских лучей, затем можно рассчитать температуру газа (из термодинамики), что даёт возможность оценить массовый профиль всего скопления, опираясь на равновесие давления и гравитации. Многие из публикаций по работе рентгеновской орбитальной обсерватории Чандра основаны на этом подходе определения масс скоплений. В целом, в этих публикациях было показано отношение барионной массы к полной массе на уровне 12--15 %, что не сильно противоречит данным с орбитальной обсерватории Планка дающим оценку в районе 15,5--16 %.
Расчёт сильного гравитационного линзирования -- этот метод требует точных изображений сильно удалённых огромных структур: самых крупных галактических скоплений.
Непосредственное изучение распределения тёмной материи в скоплениях галактик стало возможным после получения их высокодетализированных изображений в 1990-х годах. При этом изображения более удалённых галактик, проецирующихся на скопление, в силу эффекта гравитационного линзирования оказываются искажёнными (слабое гравитационное линзирование) или даже расщепляются на несколько «копий» (сильное гравитационное линзирование). По характеру этих искажений становится возможным восстановить распределение и величину массы внутри скопления независимо от наблюдений галактик самого скопления (их движения).
Такие подсчёты были произведены для гигантского скопления галактик Abell 1689, которое состоит из 160 000 шаровых скоплений и демонстрирует чёткие признаки сильного и слабого гравитационного линзирования. Точное измерение геометрии искажений позволяет вычислить полную массу скопления и массу тёмной материи скопления, после чего результат сравнивается с массой тёмной материи, определённой другим, независимым динамическим методом (по скорости движения удалённых от скопления галактик). Подобные подсчёты были проведены для более чем десяти скоплений и соотношение невидимой/видимой материи в целом соответствует динамическому методу измерения массы тёмной материи данных скоплений.
Расчёт слабого гравитационного линзирования -- на снимках наблюдаются небольшие (слабые) искажения удаленных галактик по причине того, что массивный объект (или объекты) расположены перед ними на прямой к наблюдателю.
Данный метод требует большой статистики и аккуратной обработки -- только тогда он приводит к результатам, совпадающим с результатами вышеизложенных методов, что и убедило большую часть учёных в реальности тёмной материи.
Хорошим примером применения двух последних методов и газодинамического метода является исследование уникального скопления Пули, где, как выяснилось в ходе анализа снимков в разных диапазонах, тёмная и барионная материя оказались чётко разделены в результате прямого столкновения двух галактических скоплений. Это уникальное разделение было вызвано тем, что горячий газ одного скопления, взаимодействующий электромагнитно, столкнулся с горячим газом другого скопления, нагрелся ещё больше, замедлился и застрял в центре новообразованного скопления, а тёмная материя обоих первоначальных скоплений прошла сквозь друг друга, не испытывая электромагнитного взаимодействия (не нагреваясь, не излучая, не замедляясь) и в результате оказалась распределённой симметрично по обе стороны от скопления Пуля. Это доказательство наличия тёмной материи (в отличие от распределения радиальных скоростей в галактиках) не зависит от деталей Ньютоновой механики и гравитации на дальних дистанциях (так как столкновение скоплений прямое, без вращения) и потому считается лучшим прямым доказательством.
Таким образом, прямыми методами подтверждается наличие скрытой массы (в виде тёмной материи или в другом виде) в галактических скоплениях.
Заключение
Астрофизики знают, чем темная материя не является, но это определение их совсем не устраивает: хотя мы не может видеть ее даже с помощью самых мощных телескопов, мы знаем, что во Вселенной ее больше, чем обычной материи. Она не поглощает и не излучает свет, но разница в гравитационных эффектах крупных тел (планет и т.п.) навела ученых на мысль, что что-то невидимое играет роль в их движении.
Теория, впервые предложенная в 1932 году, сводилась по большей части к проблеме «недостающей массы». Существование черной материи остается недоказанным, но научное сообщество вынужденно принимать ее существование как факт, чем бы она ни была.
Список литературы
1. Naked science. Научно популярный портал [Электронный ресурс] // URL: http://naked-science.ru/article/sci/dark-matter-maybe-real (дата обращения: 15.10.2015).
2. Википедия. Свободная энциклопедия. Темная материя. [Электронный ресурс] // URL: https://ru.wikipedia.org/wiki/темная материя (дата обращения: 16.10.2015).
3. Новости высоких технологий. Темная материя. [Электронный ресурс] // URL: http://hi-news.ru/tag/temnaya-materiya (дата обращения: 20.10.2015).
4. Nature. Dark matter. [Электронный ресурс] // URL: http://www.nature.com/news/dark-matter-may-feel-a-dark-force-that-the-rest-of-the-universe-does-not-1.17350 (дата обращения: 20.10.2015).
5. Успехи физических наук. Темная материя: от начальных условий до образования структуры Вселенной. В.Н. Лукаш, Е.В. Михеева. [Электронный ресурс] // URL: http://ufn.ru/ru/articles/2007/9/h/ (дата обращения: 20.10.2015).
Размещено на Allbest.ru
...Подобные документы
Свидетельства существования темной материи, кандидаты на роль ее частиц. Нейтрино, слабовзаимодействующие массивные частицы (вимпы). Магнитные монополи, зеркальные частицы. Прямая регистрация вимпов. Регистрация сильновзаимодействующей темной материи.
курсовая работа [3,3 M], добавлен 27.08.2012Особенности протекания экзотермических и экзоэргических процессов. Понятие материи как сущности мира и того общего, что входит в состав всех объектов природы. Исследование двойственной корпускулярно-волновой сущности микрочастиц. Теория "кипения" вакуума.
контрольная работа [24,8 K], добавлен 08.09.2009Непрерывность материи как исходный принцип миропонимания, его место в теории дифференциального исчисления. Этапы развития кинетической теории газов. История изучения атома, истоки противоречий сплошности и атомности. Темпы и развития современных идей.
реферат [16,1 K], добавлен 20.09.2009Поляризация вакуума как единственный механизм образования материи и информации и их пространственно-временных многообразий. Дифференциальный оператор и его место среди поляризационных векторных. Поляризация пространственно-временных состояний.
контрольная работа [529,7 K], добавлен 23.11.2009Материя как параметрический резонанс в меняющейся плотности эфира. Каждому времени соответствует своя частота вращения спинов частиц и электронных облаков. От скорости течения времени зависят гравитационная постоянная, масса частиц. Время во вселенной.
реферат [414,0 K], добавлен 24.09.2008Уравнение плоской бегущей волны материи. Операторы импульса и энергии. Общая схема вычислений физических наблюдаемых в квантовой механике. Понятие о конфигурационном пространстве системы частиц. Уравнение Шрёдингера для простейших стационарных движений.
реферат [56,2 K], добавлен 28.01.2009Тепловое излучение, квантовая гипотеза Планка. Квантовые свойства электромагнитного излучения. Формула Эйнштейна для фотоэффекта. Корпускулярно-волновой дуализм материи. Соотношения неопределенностей Гейзенберга. Стационарное уравнение Шредингера.
учебное пособие [1,4 M], добавлен 06.05.2013Электромагнитное излучение как распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля, его виды. Применение радиоволн, инфракрасного излучения. Распространение и краткая характеристика электромагнитного излучения.
презентация [2,6 M], добавлен 31.03.2015Элементарная частица — частица без внутренней структуры, то есть не содержащая других частиц. Классификация элементарных частиц, их символы и масса. Цветовой заряд и принцип Паули. Фермионы как базовые составляющие частицы всей материи, их виды.
презентация [214,8 K], добавлен 27.05.2012Рассмотрение идей Максвелла о возможности локализации энергии в пространстве, лишенном "обычной материи". Изучение теории первичного поля как источника специальной теории относительности. Представление элементарных частиц в виде автоволновых процессов.
книга [793,6 K], добавлен 13.01.2015Основные принципы действия электронных, ионных и полупроводниковых приборов. Движение свободных частиц. Четыре группы частиц, используемых в полупроводниковых приборах: электроны, ионы, нейтральные атомы, или молекулы, кванты электромагнитного излучения.
реферат [619,2 K], добавлен 28.11.2008Пространство - единственная объективно существующая не материальная субстанция. Материальные субстанции - вещество, энергия, эфир. Время - последовательность изменения расположения материи. Магнетизм и электричество. Строение звезды. Черная дыра.
статья [18,0 K], добавлен 07.03.2008Исполнение сборки высоковольтного преобразователя и конструкции альфа спектрометра. Рассмотрение метода обнаружения энергии альфа частиц коронным торцевым газоразрядным счетчиком. Обнаружение в воздухе подвального помещения радона и продуктов его распада.
дипломная работа [1,0 M], добавлен 30.07.2010Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.
реферат [34,2 K], добавлен 26.04.2007Фотон как основная частица электромагнитного излучения, его свойства и схема движения. Характеристика спектров испускания. Взаимодействие фотонов электромагнитного излучения с веществом, поглощение света. Особенности человеческого цветовосприятия.
контрольная работа [740,3 K], добавлен 25.01.2011История зарождения и развития атомистической теории. Представления Платона и Аристотеля о непрерывности материи. Корпускулярно-кинетическая теория тепла, открытие радиоактивности. Ранняя планетарная модель атома Нагаоки. Определение заряда электрона.
презентация [1,8 M], добавлен 28.08.2013Поля и излучения низкой частоты. Влияние электромагнитного поля и излучения на живые организмы. Защита от электромагнитных полей и излучений. Поля и излучения высокой частоты. Опасность сотовых телефонов. Исследование излучения видеотерминалов.
реферат [11,9 K], добавлен 28.12.2005Законы природы, строение атома и гравитация. Корпускулярно-волновой дуализм. Магнитное поле и электрический ток, шаровая молния. Процесс образования планет, их движение. Пространство и время. Математика и физический смысл. Модели протона и электрона.
эссе [1,5 M], добавлен 15.11.2012Различие между веществом и полем. Взаимодействия между частицами в Стандартной модели. Внутренние характеристики кварков. Барионы и барионная материя. Пион-нуклонное взаимодействие в ядре атома. Роль полевой переменной для фундаментальных полей.
реферат [1,1 M], добавлен 14.12.2015Лазер - источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул, их виды. История создания генераторов электромагнитного излучения; области применения лазеров.
презентация [4,0 M], добавлен 13.05.2013