Успехи и перспективы ядерной энергетики
История развития, перспективы и основы атомной энергетики. Особенности ядерного реактора как источника теплоты. Устройство энергетических ядерных реакторов. Цепная ядерная реакция в реакторе и использование замедлителя. Безопасное хранение отходов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 02.12.2015 |
Размер файла | 25,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИРКУТСКОЙ ОБЛАСТИ
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
«АНГАРСКИЙ ПОЛИТЕХНИЧЕСКИЙ ТЕХНИКУМ»
РЕФЕРАТ
УСПЕХИ И ПЕРСПЕКТИВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ
Выполнил
Студент гр. Э-14-1
Назаров Вадим
Преподаватель
Бирюкова
Елена Викторовна
Ангарск
2015
Содержание
Введение
1. История развития атомной энергетики
2. Перспективы атомной энергетики
3. Основы ядерной энергии
4. Ядерные реакторы
5. Особенности ядерного реактора как источника теплоты
6. Устройство энергетических ядерных реакторов
7. Классификация ядерных реакторов
8. Экология
Вывод
Список литературы
Введение
Энергетика - важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа экономики государства.
В мире идет процесс индустриализации, который требует дополнительного расхода материалов, что увеличивает энергозатраты. С ростом населения увеличиваются энергозатраты на обработку почвы, уборку урожая, производство удобрений и т.д.
В настоящее время многие природные легкодоступные ресурсы планеты исчерпываются. Добывать сырье приходится на большой глубине или на морских шельфах. Ограниченные мировые запасы нефти и газа, казалось бы, ставят человечество перед перспективой энергетического кризиса. Однако использование ядерной энергии дает человечеству возможность избежать этого, так как результаты фундаментальных исследований физики атомного ядра позволяют отвести угрозу энергетического кризиса путем использования энергии, выделяемой при некоторых реакциях атомных ядер.
1. История развития атомной энергетики
В 1939 году впервые удалось расщепить атом урана. Прошло еще 3 года, и в США был создан реактор для осуществления управляемой ядерной реакции. Затем в 1945 г. была изготовлена и испытана атомная бомба, а в 1954 г. в нашей стране была пущена в эксплуатацию первая в мире атомная электростанция. Во всех этих случаях использовалась огромная энергия распада атомного ядра. Еще большее количество энергии выделяется в результате синтеза атомных ядер. В 1953 году в СССР впервые была испытана термоядерная бомба, и человек научился воспроизводить процессы, происходящие на солнце. Пока использовать для мирных целей ядерный синтез нельзя, но, если это станет возможным, то люди обеспечат себя дешевой энергией на миллиарды лет. Эта проблема - одно из важнейших направлений современной физики на протяжении последних 50 лет.
Приблизительно до 1800 года основным топливом было дерево. Энергия древесины получена из солнечной энергии, запасенной в растениях в течение их жизни. Начиная с Индустриальной революции, люди зависели от полезных ископаемых - угля и нефти, энергия которых также происходила из запасенной солнечной энергии. Когда топливо типа угля сжигается, атомы водорода и углерода, содержащиеся в угле, объединяются с атомами кислорода воздуха. При возникновении водного или углеродистого диоксида происходит выделение высокой температуры, эквивалентной приблизительно 1.6 киловатт-час на килограмм или приблизительно 10 электрон-вольт на атом углерода. Это количество энергии типично для химических реакций, приводящих к изменению электронной структуры атомов. Части энергии, выделенной в виде высокой температуры, достаточно для поддержания продолжения реакции.
Первая в мире АЭС опытно-промышленного назначения мощностью 5 МВт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).
В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 МВт) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 МВт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС - перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.
В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Себестоимость 1 кВт-Ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрационный объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноябре 1965 в г. Мелекессе Ульяновской области вступила в строй АЭС с водо-водяным реактором «кипящего» типа мощностью 50 МВт, реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 МВт).
За рубежом первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия). Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США
2. Перспективы атомной энергетики
Среди тех, кто настаивает на необходимости продолжать поиск безопасных и экономичных путей развития атомной энергетики, можно выделить два основных направления. Сторонники первого полагают, что все усилия должны быть сосредоточены на устранении недоверия общества к безопасности ядерных технологий. Для этого необходимо разрабатывать новые реакторы, более безопасные, чем существующие легководные. Здесь представляют интерес два типа реакторов: «технологически предельно безопасный» реактор и «модульный» высокотемпературный газоохлаждаемый реактор.
Прототип модульного газоохлаждаемого реактора разрабатывался в Германии, а также в США и Японии. В отличие от легководного реактора, конструкция модульного газоохлаждаемого реактора такова, что безопасность его работы обеспечивается пассивно - без прямых действий операторов или электрической либо механической системы защиты. В технологически предельно безопасных реакторах тоже применяется система пассивной защиты. Такой реактор, идея которого была предложена в Швеции, по-видимому, не продвинулся далее стадии проектирования. Но он получил серьезную поддержку в США среди тех, кто видит у него потенциальные преимущества перед модульным газоохлаждаемым реактором. Но будущее обоих вариантов туманно из-за их неопределенной стоимости, трудностей разработки, а также спорного будущего самой атомной энергетики.
Сторонники другого направления полагают, что до того момента, когда развитым странам потребуются новые электростанции, осталось мало времени для разработки новых реакторных технологий. По их мнению, первоочередная задача состоит в том, чтобы стимулировать вложение средств в атомную энергетику.
Но помимо этих двух перспектив развития атомной энергетики сформировалась и совсем иная точка зрения. Она возлагает надежды на более полную утилизацию подведенной энергии, возобновляемые энергоресурсы (солнечные батареи и т.д.) и на энергосбережение. По мнению сторонников этой точки зрения, если передовые страны переключатся на разработку более экономичных источников света, бытовых электроприборов, отопительного оборудования и кондиционеров, то сэкономленной электроэнергии будет достаточно, чтобы обойтись безо всех существующих АЭС. Наблюдающееся значительное уменьшение потребления электроэнергии показывает, что экономичность может быть важным фактором ограничения спроса на электроэнергию.
3. Основы ядерной энергии
Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным и электрическим квадрупольным моментом Q, определенным радиусом R, изотопическим спином Т и состоит из нуклонов - протонов и нейтронов. Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения.
Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку, Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температура, давление) и от того, находится ли уран в каких-либо химических соединениях.
4. Ядерные реакторы
При делении тяжелых ядер образуется несколько свободных нейтронов. Это позволяет организовать так называемую цепную реакцию деления, когда нейтроны, распространяясь в среде, содержащей тяжелые элементы, могут вызвать их деление с испусканием новых свободных нейтронов. Если среда такова, что число вновь рождающихся нейтронов увеличивается, то процесс деления лавинообразно нарастает. В случае, когда число нейтронов при последующих делениях уменьшается, цепная ядерная реакция затухает.
Для получения стационарной цепной ядерной реакции, очевидно, необходимо создать такие условия, чтобы каждое ядро, поглотившее нейтрон, при делении выделяло в среднем один нейтрон, идущий на деление второго тяжелого ядра.
Ядерным реактором называется устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.
Цепная ядерная реакция в реакторе может осуществляться только при определенном количестве делящихся ядер, которые могут делиться при любой энергии нейтронов. Из делящихся материалов важнейшим является изотоп 235U, доля которого в естественном уране составляет всего 0,714%.
Хотя 238U и делится нейтронами, энергия которых превышает 1,2 МэВ, однако самоподдерживающаяся цепная реакция на быстрых нейтронах в естественном уране не возможна из-за высокой вероятности неупругого взаимодействия ядер 238U с быстрыми нейтронами. При этом энергия нейтронов становится ниже пороговой энергии деления ядер 238U.
Использование замедлителя приводит к уменьшению резонансного поглощения в 238U, так как нейтрон может пройти область резонансных энергий в результате столкновения с ядрами замедлителя и поглотиться ядрами 235U, 239Pu, 233U, сечение деления которых существенно увеличивается с уменьшением энергии нейтронов. В качестве замедлителей используют материалы с малым массовым числом и небольшим сечением поглощения (вода, графит, бериллий и др.).
Для характеристики цепной реакции деления используется величина, называемая коэффициентом размножения К. Это отношение числа нейтронов определенного поколения к числу нейтронов предыдущего поколения. Для стационарной цепной реакции деления К=1. Размножающаяся система (реактор), в которой К=1, называется критической. Если К>1, число нейтронов в системе увеличивается, и она в этом случае называется надкритической. При К< 1 происходит уменьшение числа нейтронов и система называется подкритической. В стационарном состоянии реактора число вновь образующихся нейтронов равно числу нейтронов, покидающих реактор (нейтроны утечки) и поглощающихся в его пределах. В критическом реакторе присутствуют нейтроны всех энергий. Они образуют так называемый энергетический спектр нейтронов, который характеризует число нейтронов различных энергий в единице объема в любой точке реактора. Средняя энергия спектра нейтронов определяется долей замедлителя, делящихся ядер (ядра горючего) и других материалов, которые входят в состав активной зоны реактора. Если большая часть делений происходит при поглощении тепловых нейтронов, то такой реактор называется реактором на тепловых нейтронах. Энергия нейтронов в такой системе не превышает 0.2 эВ. Если большая часть делений в реакторе происходит при поглощении быстрых нейтронов, такой реактор называется реактором на быстрых нейтронах.
В активной зоне реактора на тепловых нейтронах наряду с ядерным топливом находится значительная масса замедлителя-вещества, отличающегося большим сечением рассеяния и малым сечением поглощения. атомный энергетика ядерный реактор
Активная зона реактора практически всегда, за исключением специальных реакторов, окружена отражателем, возвращающим часть нейронов в активную зону за счет многократного рассеяния. В реакторах на быстрых нейронах активная зона окружена зонами воспроизводства. В них происходит накопление делящихся изотопов. Кроме того, зоны воспроизводства выполняют и функции отражателя. В ядерном реакторе происходит накопления продуктов деления, которые называются шлаками. Наличие шлаков приводит к дополнительным потерям свободных нейтронов.
Ядерные реакторы в зависимости от взаимного размещения горючего и замедлителя подразделяются на гомогенные и гетерогенные. В гомогенном реакторе активная зона представляет собой однородную массу топлива, замедлителя и теплоносителя в виде раствора, смеси или расплава. Гетерогенным называется реактор, в котором топливо в виде блоков или тепловыделяющих сборок размещено в замедлителе, образуя в нем правильную геометрическую решетку.
5. Особенности ядерного реактора как источника теплоты
При работе реактора в тепловыводящих элементах (твэлах), а также во всех его конструктивных элементах в различных количествах выделяется теплота. Это связано, прежде всего, с торможением осколков деления, их бета - и гамма-излучениями, а также ядер, испытывающих взаимодействие с нейтронами, и, наконец, с замедлением быстрых нейтронов. Осколки при делении ядра топлива классифицируются по скоростям, соответствующим температуре в сотни миллиардов градусов.
Особенность ядерного реактора состоит в том, что 94% энергии деления превращается в теплоту мгновенно, т.е. за время, в течение которого мощность реактора или плотность материалов в нем не успевает заметно измениться. Поэтому при изменении мощности реактора тепловыделение следует без запаздывания за процессом деления топлива. Однако при выключении реактора, когда скорость деления уменьшается более чем в десятки раз, в нем остаются источники запаздывающего тепловыделения (гамма - и бета-излучение продуктов деления), которые становятся преобладающими.
Мощность ядерного реактора пропорциональна плотности потока нейронов в нем, поэтому теоретически достижима любая мощность. Практически же предельная мощность определяется скоростью отвода теплоты, выделяемой в реакторе. Удельный теплосъем в современных энергетических реакторах составляет 102 - 103 МВт/м3, в вихревых - 104 - 105 МВт/м3.
От реактора теплота отводится циркулирующим через него теплоносителем. Характерной особенностью реактора является остаточное тепловыделение после прекращения реакции деления, что требует отвода теплоты в течение длительного времени после остановки реактора. Хотя мощность остаточного тепловыделения значительно меньше номинальной, циркуляция теплоносителя через реактор должна обеспечиваться очень надежно, так как остаточное тепловыделение регулировать нельзя. Удаление теплоносителя из работавшего некоторое время реактора категорически запрещено во избежание перегрева и повреждения тепловыделяющих элементов.
6. Устройство энергетических ядерных реакторов
Энергетический ядерный реактор - это устройство, в котором осуществляется управляемая цепная реакция деления ядер тяжелых элементов, а выделяющаяся при этом тепловая энергия отводится теплоносителем. Главным элементом ядерного реактора является активная зона. В нем размещается ядерное топливо и осуществляется цепная реакция деления. Активная зона представляет собой совокупность определенным образом размещенных тепловыделяющих элементов, содержащих ядерное топливо. В реакторах на тепловых нейтронах используется замедлитель. Через активную зону прокачивается теплоноситель, охлаждающий тепловыделяющие элементы. В некоторых типах реакторов роль замедлителя
и теплоносителя выполняет одно и то же вещество, например обычная или тяжелая вода.
Для управления работой реактора в активную зону вводятся регулирующие стержни из материалов, имеющих большое сечение поглощения нейтронов. Активная зона энергетических реакторов окружена отражателем нейтронов - слоем материала замедлителя для уменьшения утечки нейтронов из активной зоны. Кроме того, благодаря отражателю происходит выравнивание нейтронной плотности и энерговыделения по объему активной зоны, что позволяет при данных размерах зоны получить большую мощность, добиться более равномерного выгорания топлива, увеличить продолжительность работы реактора без перегрузки топлива и упростить систему теплоотвода. Отражатель нагревается за счет энергии замедляющихся и поглощаемых нейтронов и гамма-квантов, поэтому предусматривается его охлаждение. Активная зона, отражатель и другие элементы размещаются в герметичном корпусе или кожухе, обычно окруженном биологической защитой.
7. Классификация ядерных реакторов
По назначению и мощности ядерные реакторы делятся на несколько групп:
1) экспериментальный реактор (критическая сборка), предназначенный для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов: мощность таких ядерных реакторов не превышает нескольких квт:
2) исследовательские реакторы, в которых потоки нейтронов и g-квантов, генерируемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерного реактора), для производства изотопов. Мощность исследовательского ядерного реактора не превосходит 100 Мвт: выделяющаяся энергия, как правило, не используется. К исследовательским ядерным реакторам относится импульсный реактор:
3) изотопные ядерные реакторы, в которых потоки нейтронов используются для получения изотопов, в т. ч. Pu и 3Н для военных целей;
4) энергетические ядерные реакторы, в которых энергия, выделяющаяся при делении ядер, используется для выработки электроэнергии, теплофикации, опреснения морской воды, в силовых установках на кораблях и т. д. Мощность (тепловая) современного энергетического ядерного реактора достигает 3-5 Гвт.
Ядерные реакторы могут различаться также по виду ядерного топлива (естественный уран, слабо обогащённый, чистый делящийся изотоп), по его химическому составу (металлический U, UO2, UC и т. д.), по виду теплоносителя (Н2О, газ, D2O, органические жидкости, расплавленный металл), по роду замедлителя (С, Н2О, D2O, Be, BeO. гидриды металлов, без замедлителя). Наиболее распространены гетерогенные Ядерный реактор на тепловых нейтронах с замедлителями -- Н2О, С, D2O и теплоносителями -- Н2О, газ, D2O.
8. Экология
Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему, имя которой - безопасное хранение отходов.
Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое.
Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Их смешивают с цементом и превращают в блоки или вместе с горячим битумом заливают в стальные емкости.
Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой «мусор» превращать в стекло и керамику.
Необходимо учитывать, что высокоактивные отходы долгое время выделяют значительное количество теплоты. Поэтому чаще всего их удаляют в глубинные зоны земной коры. Вокруг хранилища устанавливают контролируемую зону, в которой вводят ограничения на деятельность человека, в том числе бурение и добычу полезных ископаемых.
Эксплуатация АЭС сопровождается не только опасностью радиационного загрязнения, но и другими видами воздействия на окружающую среду. Основным является тепловое воздействие. Оно в полтора-два раза выше, чем от тепловых электростанций.
При работе АЭС возникает необходимость охлаждения отработанного водяного пара. Самым простым способом является охлаждение водой из реки, озера, моря или специально сооруженных бассейнов. Вода, нагретая на 5-15 °С, вновь возвращается в тот же источник. Но этот способ несет с собой опасность ухудшения экологической обстановки в водной среде в местах расположения АЭС.
Большее применение находит система водоснабжения с использованием градирен, в которых охлаждение воды происходит за счет ее частичного испарения и охлаждения.
Небольшие потери пополняются постоянной подпиткой свежей водой. При такой системе охлаждения в атмосферу выбрасывается огромного количество водяного пара и капельной влаги. Это может привести к увеличению количества выпадающих осадков, частоты образования туманов, облачности.
В последние годы стали применять систему воздушного охлаждения водяного пара. В этом случае нет потерь воды, и она наиболее безвредна для окружающей среды. Однако такая система не работает при высокой средней температуре окружающего воздуха. Кроме того, себестоимость электроэнергии существенно возрастает.
Вывод
Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.
На ближайшем этапе развития энергетики (первые десятилетия XXI в.) наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.
И ещё, атомная энергетика пока не выдержала испытаний на экономичность, безопасность и расположение общественности. Ее будущее теперь зависит от того, насколько эффективно и надежно будет осуществляться контроль за строительством и эксплуатацией АЭС, а также насколько успешно будет решен ряд других проблем, таких, как проблема удаления радиоактивных отходов. Будущее атомной энергетики зависит также от жизнеспособности и экспансии ее сильных конкурентов - ТЭС, работающих на угле, новых энергосберегающих технологий и возобновляемых энергоресурсов.
Список используемой литературы
1. ru.wikipedia.org «Википедия» энциклопедия
2. АТОМНАЯ ЭНЕРГЕТИКА Энциклопедия Кругосвет
3. Учебник по ядерной физике В.Г. Кириллов-Угрюмов
Размещено на Allbest.ru
...Подобные документы
История развития атомной энергетики. Особенности ядерного реактора как источника теплоты, физическое обоснование происходящих при этом процессов. Устройство и принцип работы энергетических ядерных реакторов. Ядерная энергия, ее преимущества и недостатки.
реферат [42,3 K], добавлен 09.12.2010История развития атомной энергетики. Типы ядерных энергетических реакторов. Переработка и хранение ядерных отходов. Проблема эксплуатационной безопасности. Оценка состояния на сегодняшний день и перспективы её развития. Строительство АЭС в Беларуси.
курсовая работа [41,8 K], добавлен 12.10.2011Прообраз ядерного реактора, построенный в США. Исследования в области ядерной энергетики, проводимые в СССР, строительство атомной электростанции. Принцип действия атомного реактора. Типы ядерных реакторов и их устройство. Работа атомной электростанции.
презентация [810,8 K], добавлен 17.05.2015Теоретические и технические основы ядерной энергетики. Особенности ядерного реактора как источника теплоты. Классификация реакторов по уровню энергии нейтронов, участвующих в реакции деления, по принципу размещения топлива, конструктивному исполнению.
реферат [181,6 K], добавлен 11.05.2011Физические основы ядерной энергетики. Основы теории ядерных реакторов - принцип вырабатывания электроэнергии. Конструктивные схемы реакторов. Конструкции оборудования атомной электростанции (АЭС). Вопросы техники безопасности на АЭС. Передвижные АЭС.
реферат [62,7 K], добавлен 16.04.2008Состояние атомной энергетики. Особенности размещения атомной энергетики. Долгосрочные прогнозы. Оценка потенциальных возможностей атомной энергетики. Двухэтапное развитие атомной энергетики. Долгосрочные прогнозы. Варианты структуры атомной энергетики.
курсовая работа [180,7 K], добавлен 13.07.2008Даты и события в мировой энергетической системе. Схема выработки электроэнергии. Изотопы естественного урана. Реакция деления ядер. Типы ядерных реакторов. Доступность энергетических ресурсов. Количество атомных блоков по странам. Атомные станции РФ.
презентация [3,4 M], добавлен 29.09.2014Сущность, устройство, типы и принцип действия ядерных реакторов, факторы и причины их опасности. Основное назначение реактора БН-350 в Актау. Особенности самообеспечения ядерной энергетики топливом. Технология производства реакторов с шаровой засыпкой.
контрольная работа [1,7 M], добавлен 27.10.2009Основные предпосылки быстрого роста ядерной энергетики. Устройство энергетических ядерных реакторов. Требования к конструкциям активной зоны и ее характеристики. Основные требования к безопасности атомных станций с реакторами ВВЭР нового поколения.
курсовая работа [909,2 K], добавлен 14.11.2019Мировой опыт развития атомной энергетики. Развитие атомной энергетики и строительство атомной электростанции в Беларуси. Общественное мнение о строительстве АЭС в республике Беларусь. Экономические и социальные эффекты развития атомной энергетики.
реферат [33,8 K], добавлен 07.11.2011Особенности осуществления ядерных реакций, их сопровождение энергетическими превращениями. Термоядерные реакции в природных условиях. Строение ядерного реактора. Цепные ядерные реакции, схема их развития. Способы и области применения ядерных реакций.
презентация [774,1 K], добавлен 12.12.2014История и перспективы развития атомной электроэнергетики. Основные типы атомных электростанций (АЭС), анализ их преимуществ и недостатков, а также особенности выбора для них реактора. Характеристика атомного комплекса РФ и действующих АЭС в частности.
курсовая работа [701,2 K], добавлен 02.11.2009Использование ядерного топлива в ядерных реакторах. Характеристики и устройство водоводяного энергетического реактора и реактора РБМК. Схема тепловыделяющих элементов. Металлоконструкции реактора. Виды экспериментальных реакторов на быстрых нейтронах.
реферат [1,0 M], добавлен 01.02.2012Мировой опыт развития атомной энергетики. Испытание атомной бомбы. Пуск первой АЭС опытно-промышленного назначения. Чернобыльская авария и ее ущерб людям и народному хозяйству страны. Масштабное строительство атомных станций. Ресурсы атомной энергетики.
курсовая работа [43,7 K], добавлен 15.08.2011Строение атома и атомного ядра. Явление радиоактивности. Взаимодействие нейтронов с атомными ядрами. Цепная ядерная реакция. История создания ядерного оружия. Виды ядерных зарядов. Поражающие факторы ядерного взрыва. Ядерный терроризм.
реферат [85,8 K], добавлен 05.05.2006Механизм действия ядерных сил. Искусство управлять ядерной энергией. Как не сделать атомную бомбу из реактора. Ядерно-топливный цикл. "Сердце" атомной станции. Саморегулирование и самоограничение ядерной реакции. Самозащищенность ядерного энергоблока.
презентация [6,7 M], добавлен 03.04.2014Динамика современного потребления ядерной энергии. Отсутствие выбросов в атмосферу продуктов сгорания. Минусы ядерной энергетики. Позиции государств, имеющих АЭС, по отношению к атомной энергетике. Глобальная структура энергетического потребления.
презентация [967,6 K], добавлен 14.12.2015Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.
реферат [430,1 K], добавлен 28.10.2013Взаимодействие между нуклонами. Особенности ядерных сил. Способы освобождения ядерной энергии: деление тяжёлых ядер и синтез лёгких ядер. Устройство, в котором поддерживается реакция их деления. Накопление радиоактивных элементов в организме человека.
презентация [8,5 M], добавлен 16.12.2014Современное состояние мировой энергетики. Направления энергетической политики Республики Беларусь. Оценка эффективности ввода ядерных энергоисточников в Беларуси. Экономия электрической, тепловой энергии в быту. Характеристика люминесцентных ламп.
контрольная работа [26,4 K], добавлен 18.10.2010