Розрахунок мультивібратора на біполярних транзісторах

Сутність та характеристика мультивібраторів. Їх застосування в якості генераторів імпульсів, дільників частоти, формувачів імпульсів. Параметри елементів і схеми пристрою: біполярні транзистори, резистори, конденсатори, їх характеристики та класифікація.

Рубрика Физика и энергетика
Вид курсовая работа
Язык украинский
Дата добавления 06.12.2015
Размер файла 258,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Міністерство освіти і науки України

Гірничий коледж

Державного вищого навчального закладу

"Криворізького національного університету"

Курсовий проект

Розрахунок мультивібратора на біполярних транзісторах

Студента

групи ЕТ - 13 1/9

Смолякова Б.С.

Вступ

У данному курсовому проекті розраховується мультівібратор на біполярних транзісторах, який представляє собою генератор релаксаційних імпульсів котрий містить два підсілювача охопленних взаємним зворотнім додатнім зв'язком.

Мультивібратори застосовують в якості генераторів імпульсів, дільників частоти, формувачів імпульсів, безконтактних перемикачів і т.п. в пристроях автоматики, обчислювальної та вимірювальної техніки, в тому числі в реле часу.

Автором було досліджено мультивібратор на біполярних транзисторах у якого були вказано вхідну напругу, довжину імпульсу та час періоду, дослідження показало, що від вибраного транзистора буде залежати мінімальні ті максимальні параметри опору, ємності конденсаторів та час їх зарядки які сприяють рішенню нашої умови.

У спеціальній частині представлені загальні відомості про мультивібратори та саме на біполярних транзисторах. За цим йде розрахункова частина, де розраховуються параметри елементів і схеми. Спочатку обирається схема пристрою. Виходячи з функціональної схеми обираються потрібні транзистори. І відповідно обраним транзисторам розраховуються інші елементи.

1. Загальна частина

1.1 Загальні відомості про мультивібратори

Виконуються мультивібратори на основі електронних приладів, що мають на вольт-амперній характеристиці ділянку з негативним опором (наприклад, тунельні діоди, тиристори), а також на підсилювачах постійного струму з позитивними зворотними зв'язками (на транзисторах, ОП, цифрових і спеціальних ІМС). Електронні прилади, що використовуються в мультивібраторах працюють у ключових режимах.

Мультивібратори можуть працювати у трьох режимах: чекаючому, автоколивальному та режимі синхронізації. Найчастіше вони працюють у автоколивальному режимі, коли мультивібратор має два квазісталих (нестійких) стани рівноваги і переходить із одного стану в інший самочинно під впливом внутрішніх перехідних процесів. У такому режимі мультивібратор використовується як генератор прямокутної напруги.

У чекаючому режимі мультивібратор має один сталий і один квазісталий стани рівноваги. Зазвичай він знаходиться у сталому стані і переходить до квазісталого під дією зовнішнього електричного сигналу. Час перебування у квазісталому стані визначається внутрішніми процесами в схемі мультивібратора. Такі мультивібратори використовуються для формування імпульсів напруги необхідної тривалості, а також для затримки імпульсів на визначений час. Мультивібратор, що працює у такому режимі, має назву одновібратора.

У режимі синхронізації використовується мультивібратор, що працює в автоколивальному режимі, але його перехід із одного стану в інший забезпечується зовнішньою синхронізуючою напругою. Для його нормальної роботи в цьому режимі необхідно, щоб частота синхронізуючого сигналу перевищувала частоту власних коливань. У результаті частота коливань мультивібратора практично не залежить від дестабілізуючих факторів, що впливають на його елементи. Використовуються такі мультивібратори для створення генераторів стабільної частоти і при керуванні складними електронними пристроями, робота яких синхронізована якоюсь зовнішньою дією (наприклад, синхронізація розгортки електронного осцилографа).

Загалом, мультивібратори повинні забезпечувати стабільність частоти і довжини імпульсів, а також необхідну (зазвичай мінімальну) тривалість їх фронтів.

1.2 Мультивібратори на польових транзисторах

Цей мультивибратор на польових транзисторах, вигідно відрізняється від схем на біполярних напівпровідниках тим, що витримує струм навантаження до 10 Ампер, без необхідності додаткового посилення вихідного струму, і може без проблем працювати на наднизьких частотах при порівняно невеликих ємностях времязадающіх конденсаторів.

При зазначених номіналах деталей, частота мультивібратора дорівнює приблизно 1 Гц, але пристрій з успіхом можна використовувати і для генерації частот звукового діапазону, якщо лампи розжарювання замінити динаміками і зменшити ємність C1 і C2 в десятки разів, а зміною опору резисторів R1, R2 можна плавно регулювати частоту роботи.

Принципова схема :

Рис.1 - Схема мультивібратора на польових транзисторах

Схема мультивібратора містить всього два польових транзистора з n-каналом, які можна замінити будь-якими такий же провідності, але обов'язково з ізольованим затвором і підходящої потужністю, яка залежить від застосовуваної навантаження.

Конденсатори встановлюються з мінімальним граничним напругою не менше 16 вольт, R1, R2 можна замінити спареним змінним резистором, для зручності підстроювання частоти генератора. Максимальний опір резисторів може досягати десятки МОм, забезпечуючи цим широкий діапазон регулювання. Стабілітрони встановлені в пристрій для запобігання пробою польових транзисторів, змінюються на будь-які малопотужні, напруга стабілізації яких дорівнює 8-10 вольт.

Побудований за цією схемою мультивибратор, працює на два навантаження, якщо Вам потрібно комутувати тільки одну, то замість EL1 можна встановити постійний резистор опором 100-500 Ом, що дозволить генератору працювати в одноканальному режимі, область застосування конструкції на польових транзисторах досить широка, від створення світлових ефектів до пристроїв звукової сигналізації. Застосування потужних напівпровідників забезпечує надійну роботу з великим навантаженням, за умови установки VT1 і VT2 на хороший радіатор охолодження.

1.3 Елементи на яких будуються мультивібратори

1.3.1 Біполярні транзистори

Польовими транзисторами називають активні напівпровідникові прилади, в яких вихідним струмом керують за допомогою електричного поля (в біполярних транзисторах вихідний струм управляється вхідним струмом). Польові транзистори називають також уніполярними, тому що в процесі протікання електричного струму бере участь тільки один вид носіїв.

Розрізняють два види польових транзисторів: з керуючим переходом і з ізольованим затвором. Всі вони мають три електроди: витік (джерело носіїв струму), затвор (керуючий електрод) і стік (електрод, куди стікають носії).

Транзистор з керуючим p-n - переходом . Його схематичне зображення наведено на рис. 1.21 , а умовне графічне позначення цього транзистора - на рис. 1.22 , а , б ( p- і n - типів відповідно). Стрілка вказує напрямок від шару р до шару п (як і стрілка в зображенні емітера біполярного транзистора ) . У інтегральних мікросхемах лінійні розміри транзисторів можуть бути істотно менше 1 мкм.

Рис. 2 Устрій транзистора

Рис. 3 Графічне зображення транзистора: а) - канал р-типа; б) - канал n-типа

За принципом дії польовий транзистор дуже схожий на водопровідний кран. Носії заряду протікають через канал, обмежений з одного боку підкладкою, в якій не може протікати струм, бо в ній немає носіїв заряду, та областю збіднення, яка утворюється під затвором завдяки контактній різниці потенціалів. Шириною області збіднення можна керувати, прикладаючи до затвора напругу. При прикладенні зворотної напруги область збіднення розширюється і перекриває більшу частину каналу. В канал наче висувається заслінка. При певному значенні зворотної напруги область збіднення повністю перекриває канал. Струм через канал зменшується. В цьому випадку говорять, що транзистор закритий. Відповідне значення напруги називається напругою запирання. При прикладенні до затвора прямої напруги, канал розширюється, пропускаючи більший струм.

Польовий транзистор з керівним p-n переходом - це польовий транзистор, затвор якого ізольований (тобто відокремлений в електричному відношенні) від каналу p-n переходом, зміщеним у зворотньому напрямку.

Такий транзистор має два невипрямлювані контакти до області, по якій проходить керований струм основних носіїв заряду, і один або два керівних електронно-діркових переходи, зміщених у зворотному напрямку. При зміні зворотної напруги на p-n переході змінюється його товщина і, отже, товщина області, по якій проходить керований струм основних носіїв заряду. Область, товщина і поперечний переріз якої управляється зовнішньою напругою на керівному p-n переході і по якій проходить керований струм основних носіїв, називають каналом. Електрод, з якого в канал входять основні носії заряду, називають витоком або джерелом (англ. Source). Електрод, через який з каналу йдуть основні носії заряду, називають стоком (Drain). Електрод, який слугує для регулювання поперечного перетину каналу, називають затвором (Gate).

Електропровідність каналу може бути як n-, так і p-типу. Тому по електропровідності каналу розрізняють польові транзистори з n-каналом і р-каналом. Всі полярності напруг зсуву, що подаються на електроди транзисторів з n-і з p-каналом, протилежні.

Управління струмом стоку, тобто струмом від зовнішнього щодо потужного джерела живлення в колі навантаження, відбувається при зміні зворотної напруги на p-n переході затвора (або на двох p-n переходах одночасно). У зв'язку з малістю зворотних струмів потужність, необхідна для управління струмом стоку і споживана від джерела сигналу в колі затвора, виявляється мізерно малою. Тому польовий транзистор може забезпечити посилення електромагнітних коливань як по потужності, так і по струму і напрузі.

Таким чином, польовий транзистор за принципом дії аналогічний вакуумного тріода. Витік у польовому транзисторі подібний катоду вакуумного тріода, затвор - сітці, стік - аноду. Але при цьому польовий транзистор істотно відрізняється від вакуумного тріода. По-перше, для роботи польового транзистора не потрібно підігріву катода. По-друге, будь-яку з функцій витоку і стоку може виконувати кожен з цих електродів. По-третє, польові транзистори можуть бути зроблені як з n-каналом, так і з p-каналом, що дозволяє вдало поєднувати ці два типи польових транзисторів в схемах.

Від біполярного транзистора польовий транзистор відрізняється, по-перше, принципом дії: в біполярному транзисторі управління вихідним сигналом проводиться вхідним струмом, а в польовому транзисторі - вхідною напругою або електричним полем. По-друге, польові транзистори мають значно більший вхідний опір, що пов'язано із зворотним зсувом p-n-переходу затвора в розглянутому типі польових транзисторів. По-третє, польові транзистори можуть мати низький рівень шуму (особливо на низьких частотах), так як в польових транзисторах не використовується явище інжекції неосновних носіїв заряду і канал польового транзистора може бути відділений від поверхні напівпровідникового кристала. Процеси рекомбінації носіїв в p-n переході і в базі біполярного транзистора, а також генераційно-рекомбінаційні процеси на поверхні кристала напівпровідника супроводжуються виникненням низькочастотних шумів.

Застосування

Із розробкою технології інтегральних схем польові транзистори майже витіснили біполярні транзистори з більшості галузей електроніки. Понад 100 млн транзисторів у процесорі комп'ютера є польовими транзисторами. Вони використовуються також у мікросхемах, які входять до складу більшості радіоелектронних приладів: мобільних телефонів, телевізорів, пральних машин, холодильників тощо.

Стрімко розвиваються галузі застосування потужних польових транзисторів. У силовій електроніці потужні польові транзистори успішно замінюють і витісняють потужні біполярні транзистори. В підсилювачах потужності звукових частот класу Hi-Fi і Hi-End потужні польові транзистори успішно замінюють потужні електронні лампи, оскільки мають малі нелінійні і динамічні спотворення.

1.3.2 Резистори

Резистор - елемент електричного кола, призначений для використання його електричного опору. Основною характеристикою резистора є величина його електричного опору. Для випадку лінійної характеристики значенняелектричного струму через резистор в залежності від електричної напруги описується законом Ома.

Основні параметри резисторів

Резистори характеризують номінальним значенням електричного опору (від доль Ом до 1000 ГОм), прийнятним відхиленням від нього (0,001...20 %), максимальною потужністю розсіювання (від сотих часток Вт до декількох сотень Вт), граничною електричною напругою та температурним коефіцієнтом електричного опору.

Класифікація резисторів

В залежності від призначення резистори діляться на дві групи: резистори загального призначення та резистори спеціального призначення, до яких належать: високоомні резистори, високовольтні резистори, високочастотні резистори та прецизійні резистори.

За видом резистивного матеріалу резистори класифікуються на:

дротяні резистори (найдавніші) -- відрізок дроту з високим питомим опором , намотаний на неметалевий каркас. Можуть мати значну паразитну індуктивність;

плівкові металеві резистори -- тонка плівка металу з високим питомим опором, напилена на керамічне осердя, на кінці якого надіті металеві ковпачки з дротяними виведеннями. Це найпоширеніший тип резисторів;

металофольгові резистори -- як резистивний матеріал використовується тонка металева стрічка;

вугільні резистори -- бувають плівковими і об'ємними. Використовують високий питомий опір графіту;

напівпровідникові резистори -- використовують опір слабколегованого напівпровідника. Ці резистори можуть бути як лінійними, так і мати значну нелінійність вольт-амперної характеристики. В основному використовуються в складі інтегральних мікросхем, де інші типи резисторів застосувати важче.

За характером зміни опору резистори поділяються на:

резистори сталого опору;

регульовані резистори змінного опору (потенціометри);

підлаштовні резистори змінного опору.

За видом монтажу резистори бувають:

для навісного монтажу (з дротяними виводами);

для поверхневого монтажу (англ. SMD -- Surface mount device);

комбінації резисторів в одному загальному блоці, зазвичай мініатюрного виконання (збірки, мікромодулі, матриці, мікросхеми).

За видом вольт-амперної характеристики:

лінійні резистори;

нелінійні (напівпровідникові) резистори:

варистори -- опір залежить від прикладеної напруги;

терморезистори -- опір залежить від температури;

фоторезистори -- опір залежить від освітленості;

тензорезистори -- опір залежить від деформації резистора;

магніторезистори -- опір залежить від величини напруженості магнітного поля.

Характеристики

Для резистора з електричним опором при проходженні струму із силою падіння напруги на ньому складає:

.

Потужність , що розсіюється на резисторі, дорівнює

.

Резистори, що випускаються промисловістю

Промислові резистори одного й того ж номіналу різняться між собою за опором за законами випадковості. Величина можливого відхилення від номінального значення визначається точністю резистора. Випускають резистори з точністю 20%, 10%, 5%, і т. д. аж до 0,01% [5]. Номінали резисторів не довільні: їх значення вибираються зі спеціальних номінальних рядів за ГОСТ 28884-90 (IEC 63-63)[6], найчастіше з номінальних рядів E6 (20%), E12 (10%) або E24 (для резисторів з точністю до 5%), для точніших резисторів використовуються точніші ряди (наприклад, E48).

Резистори, що випускаються промисловістю, характеризуються також певним значенням максимальної потужностірозсіювання(випускаються резистори потужністю 0,065 Вт; 0,125 Вт; 0,25 Вт; 0,5 Вт; 1 Вт; 2 Вт; 5 Вт аж до 150 Вт)

Таблиця 1 - Позначення резисторів на принципових електричних схемах

Позначення за ГОСТ 2.728-74

Опис

Сталий резистор без вказання номінальної потужності, що розсіюється

Сталий резистор з номінальною потужністю, що розсіюється, 0,05 Вт

Сталий резистор з номінальною потужністю, що розсіюється, 0,125 Вт

Сталий резистор з номінальною потужністю, що розсіюється, 0,25 Вт

Сталий резистор з номінальною потужністю, що розсіюється, 0,5 Вт

Сталий резистор з номінальною потужністю, що розсіюється, 1 Вт

Сталий резистор з номінальною потужністю, що розсіюється, 2 Вт

Сталий резистор з номінальною потужністю, що розсіюється, 5 Вт

Сталий резистор з номінальною потужністю, що розсіюється, 10 Вт

1.3.3 Конденсатори

Таблиця 2 - Позначення за ГОСТ 2.728-74

Позначення за ГОСТ 2.728-74

Опис

Конденсатор сталої ємності

Поляризований конденсатор

Поляризований електролітичний конденсатор

Підлаштувальний конденсатор змінної ємності

Конденсатор змінної ємності

Конденсатор -- система з двох чи більше електродів (обкладок), які розділені діелектриком, товщина якого менша у порівнянні з розміром обкладок. Така система має взаємну електричну ємність і здатна зберігати електричний заряд.

Прикладання електричної напруги до обкладок конденсатора спричиняє накопичення на них електричного заряду. Після відключення від джерела напруги, заряд утримується на обкладках силами електростатики. Якщо конденсатор, як цілісний елемент, не є наелектризованим, то заряд, що накопичений на обох обкладках є однаковим за величиною і протилежний за знаком. Здатність конденсатора накопичувати заряд характеризує його електрична ємність:

де: C -- ємність конденсатора у фарадах;

Q -- електричний заряд, що накопичений на одній з обкладок в кулонах;

U -- електрична напруга між обкладками у вольтах.

Ємність виражається у фарадах. Одна фарада є досить значною одиницею, тому на практиці ємність конденсаторів виражається у піко-, нано-, мікро- та міліфарадах.

У загальному випадку, напруга і електричний струм конденсатора у момент часу t пов'язані залежністю:

Робота dW, яку слід виконати, щоб перенести елементарний заряд dq з однієї обкладки конденсатора ємності C, на іншу, при допущенні, що одна з обкладок містить заряд з поточним значенням q.

Енергію, яка накопичена в конденсаторі можна визначити інтегруванням рівняння, записаного вище з отриманням виразу:

де: Q -- початкове значення заряду конденсатора.

Зміну величини заряду конденсатора у часі характеризує електричний струм у момент заряджання, на основі чого можна записати:

Основна класифікація конденсаторів проводиться за типом діелектрика в конденсаторі. Тип діелектрика визначає основні електричні параметри конденсаторів: опір ізоляції, стабільність ємності, величину втрат та ін.

За видом діелектрика розрізняють:

Вакуумні конденсатори (обкладки без діелектрика знаходяться у вакуумі);

Конденсатори з газоподібним діелектриком;

Конденсатори з рідким діелектриком;

Конденсатори з твердим неорганічним діелектриком: скляні, слюдяні, керамічні, тонкошарові із неорганічних плівок (К10, К15, К26, К32,);

Конденсатори з твердим органічним діелектриком: паперові, металопаперові, плівкові, комбіновані (К41, К42, К71, К72);

Електролітичні та оксидо-напівпровідникові конденсатори. В якості діелектрика використовується шар оксиду металу. Наприклад для

конденсаторів оксидно-алюмінієвих (К50) це Al2O3, а для оксидно-танталових (К51) -- Ta2O3. Однією обкладинкою слугує металева фольга (анод), а друга (катод) -- це або електроліт (у електролітичних конденсаторах) або шар напівпровідника (у оксидно-напівпровідникових), нанесений безпосередньо на оксидний шар. Анод виготовляється, в залежності від типу конденсатора, з алюмінієвої, ніобієвої чи танталової фольги. Такі конденсатори відрізняються від інших типів перш за все своєю великою питомою ємністю, але здатні працювати при відносно низьких напругах і мають значні діелектричні втрати.

Крім того, конденсатори розрізняються за можливістю зміни своєї ємності:

Постійні конденсатори -- основний клас конденсаторів, який має сталу ємність (окрім як зменшення з часом використання);

Змінні конденсатори -- конденсатори, які дозволяють зміни ємності в процесі функціонування апаратури. Керування ємністю може відбуватися механічно, електричною напругою (варіконди) та температурою (термоконденсатори). Використовуються, наприклад, у радіоприймачах для налаштування частоти резонансного контуру.

Конденсатори підлаштування -- конденсатори, ємність яких змінюється при разовому чи періодичному регулюванню і не змінюється в процесі функціонування апаратури. Їх використовують для підлаштування та вирівнювання початкових ємностей сполучених контурів, для періодичного підлаштування та регулювання ланцюгів схем, де потрібна незначна зміна ємності.

В залежності від призначення конденсатори можна умовно розділити на конденсатори загального та спеціального призначення. Конденсатори загального призначення використовуються практично у більшості видів і класів апаратури. Традиційно до них відносять найбільш розповсюджені низьковольтні конденсатори, до яких не висуваються особливі вимоги. Решта конденсаторів є спеціальними. До них відносяться високовольтні, імпульсні, дозиметричі, пускові та інші конденсатори.

Характеристики конденсаторів

Ємність

Основною характеристикою конденсатора є його електрична ємність (точніше номінальна ємність), яка визначає накопичений заряд. Типові значення ємності конденсаторів складають від одиниць пікофарад до сотень мікрофарад. Але існують конденсатори з ємністю десятків фарад.

Ємність плоского конденсатора, яка складається з двох паралельних металічних пластин площиною S кожна, які розташовані на відстані dодна від одної, в системі СІ виражена формулою

,

де е -- відносна діелектрична проникність середовища, яке заповнює простір між пластинами. Ця формула справедлива лише при малих d.

Для отримання великих ємностей конденсатори з'єднують паралельно. Загальна ємність батареї паралельно з'єднаних конденсаторів дорівнює сумі ємностей всіх конденсаторів, які входять у батарею.

При послідовному з'єднанні конденсаторів заряди усіх конденсаторів однакові. Загальна ємність батареї послідовно з'єднаних конденсаторів дорівнює

Ця ємність завжди менша мінімальної ємності конденсатора, який входить в батарею. Але при послідовному з'єднанні зменшується загроза пробою конденсаторів, оскільки на кожний конденсатор надходить лише частина різниці потенціалів джерела напруги.

Питома ємність

Конденсатори також характеризуються питомою ємністю -- відношення ємності до об'єму (або маси) конденсатора.

Ємність у А·год

Ємність конденсатора можна виразити у Ампер·годинах виходячи з визначення Фаради:

мультивібратор генератор біполярний транзистор

Ф = Кл/В = A·c/В

прийнявши А·год = 3600 А·с, отримуємо:

Ф = 3600·A·год/В

звідси, при напрузі в 1В і ємності конденсатора в 1Ф ємність в А·год буде:

A·год = (1/3600)·В·Ф

Номінальна напруга

Іншою не менш важливою характеристикою конденсаторів є номінальна напруга -- значення електричної напруги, яке позначається на конденсаторі, при якому він може працювати у заданих умовах під час строку служби із зберіганням параметрів у допустимих межах.

Номінальна напруга залежить від конструкції конденсатора і властивостей застосованих матеріалів. При експлуатації напруга на конденсаторі не повинна перевищувати допустимої. Для більшості типів конденсаторів із збільшенням температури допустима напруга знижується.

Напругу, при якій впродовж 1-5 с виникає пробій, називають пробивною. Допустиму робочу напругу обирають у 3-10 разів меншою за пробивну.

Полярність

Більшість конденсаторів із оксидним діелектриком (електролітичні) мають уніполярну провідність, внаслідок чого їх експлуатація можлива тільки при позитивному потенціалі аноду.

Електричний опір ізоляції конденсатора

Електричний опір ізоляції -- це опір конденсатора постійному струму, яке визначається співвідношенням

Rіз=U/Iвит,

де U -- напруга, що спрямована на конденсатор,Iвит -- струм витоку.

Температурний коефіцієнт ємності (ТКЄ)

ТКЄ -- це параметр, який характеризує залежність ємності конденсатора від температури. Практично ТКЄ визначають як відношення зміни ємності конденсатора при зміні температури на 1°С. Але ТКЄ визначається не для всіх типів конденсаторів.

Размещено на Allbest.ru

...

Подобные документы

  • Застосування індуктивних нагромаджувачів, розрахунок параметрів. Процеси розмикання струму та генерації електронного пучка. Дослідження характеристик електронного прискорювача з плазмоерозійним розмикачем в залежності від індуктивності нагромаджувача.

    дипломная работа [1,8 M], добавлен 22.09.2011

  • Визначення вхідної напруги та коефіцієнтів заповнення імпульсів. Визначення індуктивності дроселя і ємності фільтрувального конденсатора. Визначення струмів реактивних елементів. Розрахунок підсилювача неузгодженості, широтно-імпульсного модулятора.

    курсовая работа [13,9 M], добавлен 10.01.2015

  • Розподільні пристрої (РУ) підвищених напруг електричних станцій. Вибір генераторів і блокових трансформаторів, розподіл генераторів між РУ. Варіанти схем РУ всіх напруг, провідників. Визначення втрат електроенергії від потоків відмов елементів схем.

    курсовая работа [122,7 K], добавлен 16.12.2010

  • Техніко-економічне обґрунтування технічного завдання та структурної схеми пристрою. Електричний розрахунок ключа, випрямляча напруги та надійності за відмовами. Перевірка генератора на основну похибку встановленої частоти, на зменшення напруги живлення.

    дипломная работа [549,3 K], добавлен 21.11.2010

  • Розрахунок і побудова механічної характеристики робочої машини. Визначення та розрахунок режиму роботи електродвигуна. Перевірка вибраного електродвигуна на перевантажувальну здатність. Розробка конструкції і схеми внутрішніх з’єднань пристрою керування.

    курсовая работа [2,9 M], добавлен 09.01.2014

  • Вибір генераторів та силових трансформаторів. Техніко-економічне порівняння варіантів схем проектованої електростанції. Розрахунок струмів короткого замикання та захисного заземлення. Конструкція розподільчого пристрою. Вибір теплотехнічного устаткування.

    дипломная работа [319,7 K], добавлен 08.04.2015

  • Історія створення напівпровідникового тріоду, або транзистора, загальні відомості та його значення для розвитку напівпровідникової електроніки. Розгляд схем включення та принципів дії транзисторів. Вплив температури на роботу біполярного транзистора.

    курсовая работа [161,3 K], добавлен 19.12.2010

  • Галузі застосування стабілізованих джерел живлення. Основне призначення блоку живлення. Огляд існуючих елементів. Розрахунок компенсаційного стабілізатора послідовного типу. Синтез структурної схеми. Розрахунок однофазного випрямляча малої потужності.

    курсовая работа [612,7 K], добавлен 21.11.2010

  • Властивості конденсатора, його позначення на схемах. Характеристики конденсаторів, основні параметри (ємність, щільність енергії, номінальна напруга та полярність). Класифікація конденсаторів за типом діелектрика. Основні області їх застосування.

    реферат [526,0 K], добавлен 18.10.2013

  • Властивості електронно-діркового переходу. Напівпровідникові діоди. Біполярні та польові транзистори. Структурна схема підсилювача, його технічні показники, коефіцієнт корисної дії та визначення зворотного зв'язку. Аналогові логічні елементи та фільтри.

    курс лекций [2,0 M], добавлен 08.04.2013

  • Сутність імпульсної модуляції. Спектральне представлення АІМ-, ШІМ-, ФІМ- та ЧІМ-сигналів. Структура амплітудного спектра АІМ-сигналу з відеоімпульсним переносником при стовідсотковій однотональній модуляції. Послідовність імпульсів прямокутної форми.

    реферат [168,4 K], добавлен 07.01.2011

  • Опис топкового пристрою в газощільному виконанні з двозавитковими пальниками. Характеристики середовища і тепловий баланс у газоповітряному тракті котла. Розрахунок теплообміну та вибір пальникового пристрою, його економічна та екологічна оцінка.

    дипломная работа [362,9 K], добавлен 01.07.2010

  • Розрахунок коефіцієнту підсилення напруги. Попередній розподіл лінійних спотворень між каскадами. Обґрунтування вибору схеми електричної принципової. Розрахунок базового кола транзисторів вихідного каскаду. Розрахунок номіналів конденсаторів.

    курсовая работа [1,5 M], добавлен 12.12.2010

  • Вимірювання змінної напруги та струму. Прецизійний мікропроцесорний вольтметр: структурні схеми. Алгоритм роботи проектованого пристрою. Розробка апаратної частини. Розрахунок неінвертуючого вхідного підсилювача напруги. Оцінка похибки пристрою.

    курсовая работа [53,8 K], добавлен 27.10.2007

  • Характеристика електрообладнання об’єкта, розрахунок параметрів електричного освітлення. Вибір схеми електропостачання та його обґрунтування, розрахунок навантажень. Вибір числа і типу силових трансформаторів. Параметри зони захисту від блискавки.

    курсовая работа [66,4 K], добавлен 17.02.2014

  • Реактивні двигуни: класифікація; принцип роботи. Повітряно-реактивні двигуни: принцип роботи; цикли. Схеми і параметри двоконтурних турбореактивних двигунів. Типи рідинних ракетних двигунів. Застосування реактивних двигунів в народному господарстві.

    курсовая работа [524,6 K], добавлен 07.10.2010

  • Розгляд вихідних даних для виробництва мережевого протизавадового фільтра. Вибір конденсаторів та визначення максимального значення їх сумарної ємності. Розрахунок індуктивності та значення частоти резонансу. Врахування паразитних параметрів елементів.

    практическая работа [302,8 K], добавлен 26.04.2014

  • Передумови створення квантової електроніки. Основні поняття квантової електроніки. Методи створення інверсного заселення рівнів. Характеристика типів квантових генераторів. Параметричні підсилювачі. Основні області застосування квантових генераторів.

    курсовая работа [938,5 K], добавлен 24.06.2008

  • Розрахунок режиму та застосування методу динамічного програмування для визначення оптимальної схеми електричної мережі. Вибір потужності трансформаторів для підстастанцій, схеми розподільчих пристроїв. Визначення витрат на розвиток електричної мережі.

    курсовая работа [1,8 M], добавлен 10.05.2012

  • Теплова схема паротурбінної електростанції. Побудова процесу розширення пари в проточній частині турбіни в Н-S діаграмі. Параметри конденсату в точках ТС. Розрахунок мережевої підігрівальної установки. Визначення попередньої витрати пари на турбіну.

    курсовая работа [1,2 M], добавлен 30.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.