Радиоактивное излучение

Действие радиоактивного излучения на человеческий организм. Область массового использования радионуклидов. Установление природы лучей. Трудности в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 14.12.2015
Размер файла 556,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

У ксеноновой анестезии имеется потенциальный резерв снижения стоимости за счет применения способа рециклинга (газ, выдыхаемый из наркозного аппарата, утилизируется путем адсорбции специальным устройством (блок адсорбера), который после заполнения подвергается температурной десорбции, очищенный ксенон возвращается потребителю для повторного использования, что резко снижает стоимость и дефицит ксеноновой анестезии), чего нет у перечисленных анестетиков. Кроме того, окислы закиси азота и радикалы углерода при использовании галогеносодержащих жидких анестетиков, рассеиваются в окружающей среде и представляют экологическую опасность.

Ксенон может быть применен в качестве средства анестезии при различных хирургических операциях, болезненных манипуляциях, снятия болевого приступа и лечения болевых синдромов. Он применяется в масочном или и в эндотрахеальном варианте как в виде мононаркоза, так и в виде комбинированной анестезии в сочетании с различными внутривенными седативными средствами, наркотическими и ненаркотическими аналгетиками, нейроплегиками, транквилизаторами, ганглиолитиками и другими средствами. Практически ксенон может применяться в качестве анестетика в тех же ситуациях, что и закись азота: в общей хирургии, урологии, травматологии, ортопедии, неотложной хирургии, особенно у больных с сопутствующими заболеваниями сердечнососудистой системой, находящихся в группе высокого риска.

Незаменим ксенон при операция в нейрохирургии центральной и периферической нервной системы в особенности при использовании микрохирургической техники когда необходим словесный контакт с пациентом для дифференциации чувствительных и двигательных пучков при операциях на нервных стволах, в детской хирургии в масочном и эндотрахеальном вариантах, в акушерстве и оперативной гинекологии (оперативное родоразрешение, аборты, расширенные операции в гинекологии, диагностические исследования, обезболивание родов), при болезненных манипуляциях, перевязках, биопсиях, обработке ожоговой поверхности, с лечебной целью при снятии болевого приступа (при травматическом шоке, при стенокардии, инфаркте миокарда, почечной и печеночной колике), а также при моторной афазии, лечении дизартрии, снятия эмоционального стресса и других функциональных неврологических расстройств.

Ксенон может быть использован как в варианте мононаркоза при сохранении спонтанного дыхания, так и в сочетании с различными внутривенными средствами анестезии.

Противопоказаний к ксенону не установлено, однако, применение ксенона в качестве анестетика, возможно лишь при наличии сертифицированной аппаратуры и специалиста врача-анестезиолога-реаниматолога, прошедшего специальную подготовку по «технологии ксенон - сберегающей анестезии»

4. Инновации в сфере использования радиоактивных элементов в медицине

4.1 Понятие инновации

Инновация -- нововведение в области техники, технологии, организации труда или управления, основанное на использовании достижений науки и передового опыта, обеспечивающее качественное повышение эффективности производственной системы или качества продукции. Понятие инновация относится как к радикальным, так и постепенным (инкрементальным) изменениям в продуктах, процессах и стратегии организации (инновационная деятельность). Исходя из того, что целью нововведений является повышение эффективности, экономичности, качества, удовлетворенности клиентов организации, понятие инновационности можно отождествлять с понятием предприимчивости -- бдительности к новым возможностям улучшения работы организации (коммерческой, государственной, благотворительной).

Всякое инновационное развитие - это не только основной инновационный процесс, но и развитие системы факторов и условий, необходимых для его осуществления.

Переход России на инновационный путь развития важен и для научно-технической сферы, и для повышения конкурентоспособности отечественной экономики. При этом развитие инновационной сферы было провозглашено на государственном уровне в качестве важнейшей стратегической задачи.

Потребность в инновациях возникает под воздействием как внешних, так и внутренних факторов. К внешним относятся: конкурентная борьба, задачи завоевания новых рынков, изменение политической, демографической, правовой ситуации и пр.; к внутренним: неблагоприятные условия труда, рост производственных затрат.

4.2 Элемент с радиоактивным веществом и способ его производства

Настоящее изобретение относится к радиотерапии. Конкретнее, изобретение относится к радиоактивным источникам в брахитерапии и способам подготовки этих источников. Брахитерапию предложено использовать для лечения различных состояний, включая артриты и рак, например рак груди, мозга, печени, яичников и в особенности рак простаты у мужчин. Радиоактивный источник находится вблизи участка тела, подвергаемого лечению. Достоинством последнего является то, что высокая доза радиации достигает участка лечения, а окружающие и здоровые ткани при этом получают сравнительно малые дозы радиации.

Рис. 1. Элемент с радиоактивным веществом

Представленное изобретение, как показано на рис. 1. является элементом 10 с радиоактивным веществом для использования в брахитерапии. Элемент 10 с радиоактивным веществом включает удлиненный биоабсорбируемый носитель 12 с размещенными в нем через промежутки радиоактивными источниками 14. В одном варианте осуществления представленного изобретения элемент 10 с радиоактивным веществом образуется формованием. Далее, в представленном изобретении рассматривается, что носитель 12 является, в основном, сплошным. Как показано на рис. 1 носитель 12 включает множество участков 18 размещения зерен и промежуточных участков 20. Носитель 12 может определять наличие одного или более отверстий 22, образованных в результате процесса формования в соответствии с представленным изобретением, в которых расположены маленькие стержни. Эти стержни находятся на любом из концов участков 18 размещения зерен, чтобы сохранять и регулировать положение радиоактивных источников 14 внутри носителя 12.Элементы с радиоактивным веществом в соответствии с данным изобретением могут быть использованы для лечения различных заболеваний, включая рак головы и шеи (включая рак полости рта, губ и языка), опухоли мозга, опухоли легких, опухоли шейки матки, вагинальные опухоли и рак простаты. Они могут использоваться как первичное лечение (например, при лечении рака простаты или неоперабельных опухолей) или для лечения остаточных явлений после удаления первичной опухоли. Они могут быть использованы совместно с другими методами лечения или при завершении других курсов лечения, например лучевой терапии, химиотерапии или гормонотерапии. [8]

4.3 Устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам

Изобретение относится к устройствам для разделения и глубокой очистки радиоактивных элементов, обладающих различной способностью к образованию амальгам, и может найти применение в радиохимической промышленности для выделения радиоактивных изотопов, используемых в медицине, в аналитической химии для выделения анализируемого элемента. Изобретение содержит полупротивоточное устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, методом цементации одного из элементов, электролизную, разделительную и регенерационные ячейки, расположенные вертикально одна под другой, снабженные мешалками, расположенными на одном валу, емкость для сбора регенерированной ртути и транспортирующим шнеком, плотно посаженным в трубу и вращающимся вместе с трубой, а ртуть перемещается из ячейки в ячейку через гидрозатворы под действием силы тяжести. Техническим результатом заявленного изобретения является работа дистанционно управляемого устройства в условиях радиационно-защитных камер.

Рис. 2.Устройство для разделения радиоактивных элементов

Устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, представленное на чертеже, состоит из электролизной ячейки 1, разделительной ячейки 2, регенерационных ячеек 3, емкости для сбора ртути 4, транспортирующего шнека 5, привода шнека 6, мешалок 7, с электроприводом 8 и гидрозатворов 9.Образование амальгамы натрия происходит в электролизной ячейке под действием электрического тока. Анодом служит платиновое кольцо, расположенное в растворе натриевой щелочи, постоянно протекающей через ячейку, ртуть является катодом. Дозирование ртути в электролизную ячейку осуществляется транспортирующим шнеком, плотно посаженным в трубу и вращающимся вместе с трубой с помощью отдельного привода. При вращении шнека ртуть поднимается по винтовой канавке и поступает в электролизную ячейку. Концентрация образующейся амальгамы в ячейке регулируется скоростью вращения шнека и силой тока.

Амальгама натрия заданной концентрации из электролизной ячейки перетекает через гидрозатвор в разделительную ячейку, расположенную под электролизной. В разделительную ячейку заливают водный раствор разделяемых элементов такого состава, при котором амальгама натрия восстанавливает только один элемент, оставляя другой в ионном виде. Образовавшаяся в результате этого процесса амальгама поступает через гидрозатвор в регенерирующие ячейки, расположенные под разделительной ячейкой.

Из регенерационных ячеек очищенная ртуть поступает в сборник ртути и далее шнеком в электролизную ячейку. Таким образом, элемент, обладающий большей способностью к образованию амальгамы, выводится из системы с регенерирующим раствором в отдельную фракцию. Второй разделяемый элемент остается в неподвижной водной фазе в разделительной ячейке и по окончании процесса извлекается из нее. [9]

Заключение

Применение радиоактивных элементов оказывает огромное значение в достижениях современной медицины. Радиоактивные элементы нашли широкое применение как в диагностике, так и в лечении различных заболеваний.

В настоящее время с помощью радионуклидной диагностики можно исследовать практически любой орган или ткань организма, а некоторые из них несколькими способами. При четко поставленной задаче и непрерывно действующей обратной связи между врачом-радиологом и врачами клинических отделений, возможности радионуклидной диагностики практически безграничны, а помощь в постановке сложных диагнозов неоценима. В развитых странах удвоение числа радионуклидных обследований происходит каждые 3-5 лет.

В немалой мере этому способствует внедрение в медицинскую практику этих стран исследований РФП 99 m Tc, а также короткоживущих циклотронных радио нуклидов (67 Ga, 111 In, 113 I, 201 Tl)и ультракороткоживущих позитроноизлучающих радионуклидов (11 C,13 N, 15 O, 18 F).Число обследованных с помощью методов радионуклидной диагностики составило в расчете на 1000 человек населения в Канаде - 59, в США - 32, в Австрии - 18, в Японии и Швеции - 15, в Англии - 10, и в России - 7 [8]В США в 1990 году было проведено 10 млн. диагностических процедур с радионуклидами.

Количество процедур по изучению перфузии Миокарда с 201 Tl увеличилось с 700000 в 1988 году до 1000000 в 1989 году и до 1300000 в 1990 году. В нашей стране до последнего времени РФП с 99 m Tc применялись только у 15% пациентов, тогда как меченные 131 I и 198 Au препараты, создающие значительные дозы облучения - у 80%. В коллективной дозе, вызванной применением радионуклидов в диагностике в нашей стране, препараты на основе 131 I обеспечивают 20-30% облучения почек и печени, 40-50% облучения всего тел. В настоящее время радиоактивные генераторы практически вытеснили другие радиоактивные изотопы из клинической практики.

Развитие химии радиофармпрепаратов идет по пути создания новых наборов для 99mTc. За прошедшие несколько лет в России прошли клинические испытания и допущены к применению препараты Российского производства: 99mTc-макротех - для исследования легочного кровотока, 99mTc-теоксим - для исследования перфузии головного мозга, 99mTc-технетрил - для исследования перфузии миокарда.

Практически завершены клинические испытания препарата 99mTc-глюкорат, который является маркером некроза и может быть использован для визуализации инфарктных зон сердца. Использование радиофармацевтики лицензировано администрацией США. Предусмотрены программы по обучению физиков, фармацевтов и радиохимиков, работающих в этой области. На данный момент в США существует около 5000 центров ядерной медицины, производящих порядка 18 млн. процедур ежегодно. Примерно столько же процедур выполняется центрами ядерной медицины, существующими в других странах мира. Их количество непрестанно растет. Благодаря тесному сотрудничеству ученных разных стран мировая медицина добилась существенного прогресса в области применения радиоактивных элементов.

Размещено на Allbest.ru

...

Подобные документы

  • История открытия радиации. Радиоактивное излучение и его виды. Цепная реакция деления. Ядерные реакторы. Термоядерные реакции. Биологическое действие излучения. Действие ядерных излучений на структуру вещества. Естественные источники радиации.

    дипломная работа [180,6 K], добавлен 25.02.2005

  • Характеристика открытия явления радиоактивного излучения, которое положило начало эре изучения и использования ядерной энергии. Особенности ядерного оружия - оружия массового поражения взрывного действия. Исследование поражающих факторов ядерного взрыва.

    презентация [6,1 M], добавлен 26.04.2010

  • Электромагнитное поле, его характеристики и источники. Влияние электромагнитных лучей, исходящих от сотовых телефонов, на организм человека. Источники радиационного излучения: естественные и созданные человеком. Термины и единицы измерения радиации.

    курсовая работа [134,2 K], добавлен 10.04.2014

  • Ядерно-физические свойства и радиоактивность тяжелых элементов. Альфа- и бета-превращения. Сущность гамма-излучения. Радиоактивное превращение. Спектры рассеянного гамма-излучения сред с разным порядковым номером. Физика ядерного магнитного резонанса.

    презентация [1,0 M], добавлен 15.10.2013

  • Природа ультрафиолетового излучения, его диапазон и действие на клетку, кожу и атмосферу. Искусственные источники ультрафиолетового излучения: бактерицидные лампы и облучатели. Бактерицидное и биологическое действие ультрафиолетового излучения.

    курсовая работа [83,1 K], добавлен 01.02.2011

  • Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Анализы, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Метод изотропного разбавления, радиометрическое титрование.

    реферат [23,4 K], добавлен 11.03.2012

  • Строение вещества, виды ядерных распадов: альфа-распад, бета-распад. Законы радиоактивности, взаимодействие ядерных излучений с веществом, биологическое воздействие ионизирующего излучения. Радиационный фон, количественные характеристики радиоактивности.

    реферат [117,7 K], добавлен 02.04.2012

  • Понятие и классификация радиоактивных элементов. Основные сведения об атоме. Характеристики видов радиоактивного излучения, его проникающая способность. Периоды полураспада некоторых радионуклидов. Схема процесса индуцированного нейтронами деления ядер.

    презентация [5,0 M], добавлен 10.02.2014

  • Открытие рентгеновского излучения. Источники рентгеновских лучей, их основные свойства и способы регистрации. Применение рентгеновского излучения в металлургии. Определение кристаллической структуры и фазового состава материала, анализ их несовершенств.

    курсовая работа [2,0 M], добавлен 21.02.2013

  • Дифракционный структурный метод. Взаимодействие рентгеновского излучения с электронами вещества. Основные разновидности рентгеноструктурного анализа. Исследование структуры мелкокристаллических материалов с помощью дифракции рентгеновских лучей.

    презентация [668,0 K], добавлен 04.03.2014

  • История открытия рентгеновского излучения. Источники рентгеновских лучей, их основные свойства и способы регистрации. Рентгеновская трубка, ускорители заряженных частиц. Естественная и искусственная радиоактивность. Применение рентгеновского излучения.

    презентация [427,3 K], добавлен 28.11.2013

  • Источники и свойства инфракрасного, ультрафиолетового и рентгеновского излучений. Характеристики границ видимого излучения. Положительные и отрицательные воздействия ультрафиолетового излучения. Функции и применение рентгеновских лучей в медицине.

    презентация [398,7 K], добавлен 03.03.2014

  • Лазер и его классификация. Лазерное излучение и его особенности, типы и характер воздействия, особенности действия на организм человека. Факторы лазерного излучения. Обеспечение лазерной безопасности, методы защиты от данного типа излучения на сегодня.

    реферат [29,6 K], добавлен 13.07.2011

  • Тепловое излучение как электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Основные характеристики и законы этого явления. Излучение реальных тел и тела человека.

    презентация [262,0 K], добавлен 23.11.2015

  • История открытия инфракрасного излучения, источники, основное применение. Влияние инфракрасного излучения на человека. Особенности применения ИК-излучения в пищевой промышленности, в приборах для проверки денег. Эффект теплового воздействия на организм.

    презентация [373,2 K], добавлен 21.05.2014

  • Открытие катодных лучей. Действие катодных лучей на коллекторе. Отклонение катодных лучей под действием внешнего электрического поля. Исследования А.Г. Столетова, Леннарда и Томсона. Коротковолновая граница спектра тормозного рентгеновского излучения.

    презентация [2,9 M], добавлен 23.08.2013

  • Свойства, длина волны, спектр, источники, применение невидимого глазом электромагнитного ультрафиолетового излучения. Положительное и негативное воздействие УФ-излучения на человека. Действие облучения на кожу во время высокой солнечной активности.

    презентация [64,7 K], добавлен 12.04.2015

  • Длина электромагнитных волн рентгеновского излучения, его виды и их характеристика. Взаимодействие рентгеновского излучения с веществом. Основные виды рентгенодиагностики. Естественная и искусственная радиоактивность. Виды радиоактивного распада.

    презентация [2,4 M], добавлен 30.09.2013

  • Диапазоны инфракрасного и ультрафиолетового излучения. Изучение влияния рентгеновского излучения на организм человека. Использование микроволн в современной технике, в междугородней и международной телефонной связи, передачи телевизионных программ.

    презентация [2,1 M], добавлен 06.01.2015

  • Электромагнитное излучение, которое занимает спектральный диапазон между концом красного света и коротковолновым радиоизлучением. История открытия инфракрасного излучения, его основные свойства. Применение в медицине. Воздействие на организм человека.

    презентация [1,5 M], добавлен 20.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.