Акустические методы
Акустический каротаж на преломленных волнах. Схема работы скважинного прибора каротажа. Последовательное распространение деформации, первое отклонение частицы от положения покоя. Локализация трещиноватых пород, интервалов напряженного состояния пород.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 07.12.2015 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
АКУСТИЧЕСКИЕ МЕТОДЫ
Теоретические основы метода
Акустический каротаж
Теоретические основы
Горные породы являются упругими телами, которые под действием внешней возбуждающей силы, претерпевают деформации объема (растяжение и сжатие) и деформации формы (сдвига).
Последовательное распространение деформации называется - упругой волной. Первое отклонение частицы от положения покоя называется - вступлением волны.
В акустическом каротаже различают (регистрируют) несколько типов волн:
Продольные волны связаны с деформациями объема твердой или жидкой среды, а поперечные с деформациями только твердой среды. Продольная волна представляет собой перемещение зон сжатия и растяжения вдоль луча, а поперечная - перемещение зон скольжения слоев относительно друг друга в направлении перпендикулярном лучу.
Продольные волны распространяются в 1,5-10 раз быстрее поперечных
Упругие (акустические) волны, как и все прочие волны, характеризуются определенным набором свойств. К этим свойствам относят: частоту волны, длину волны, скорость и амплитуду (затухание).
При проведении акустического каротажа наибольший практический интерес представляют два параметра волн - скорость и амплитуда. Следовательно, горные породы вскрытые скважиной можно изучать как по скорости распространения колебаний, так и по их затуханию.
Простейший измерительный зонд АК (рис.1) содержащий в своем составе излучатель (И) упругих волн звукового (2-20 кГц) и ультразвукового(2-60 кГц) диапазонов частот и расположенный от него на определенном расстоянии (1,4-3,5 м) широкополосный приемник.
Для проведения АК применяются и более сложные трех - и более элементные приборы.
Акустический каротаж на преломленных волнах
Акустический каротаж на преломленных волнах предназначен для измерения интервальных времен t (t =1/v, где v - скорость распространения волны, м/с), амплитуд А и коэффициентов эффективного затухания преломленной продольной, поперечной, Лэмба - Стоунли продольных волн, распространяющихся в горных породах, обсадной колонне и по границе жидкости, заполняющей скважину, с горными породами или обсадной колонной. Единицы измерения - микросекунда на метр (мкс/м), безразмерная (для А) и -децибел на метр (дБ/м) соответственно.
Данные АК применяют: волна порода деформация каротаж
1. для литологического расчленения разрезов и расчета упругих свойств пород;
2. локализации трещиноватых пород, трещин гидроразрывов и интервалов напряженного состояния пород;
3. определения коэффициентов межзерновой и вторичной (трещинно-каверновой) пористости коллекторов и характера их насыщенности;
4. выделения проницаемых интервалов в чистых и глинистых породах;
5. расчета синтетических сейсмограмм и интеграции результатов скважинных измерений с наземными и скважинными сейсмическими данными.
Измерения выполняют в необсаженных и, при определенных ограничениях, обсаженных скважинах, заполненных любой негазирующей промывочной жидкостью.
Скважинные приборы центрируют.
Рис.1. Схема работы скважинного прибора акустического каротажа.
Итак, данные АК применяются для решения следующих задач:
В открытом стволе:
Литологическое расчленение разреза.
Определение коэффициента пористости коллекторов.
Определение кинематических свойств горных пород для корреляции данных сейсморазведки.
В обсаженной скважине:
Контроля качества цементажа эксплуатационных колонн.
Контроля технического состояния труб эксплуатационной колонны.
Акустический метод контроля качества цементажа ,использующий свойства преломленной волны, позволяет:
-определять высоту подьема сформировавшегося цементного кольца (при определенных условиях);
-определять интервалы бездефектного цементного кольца;
-выделять интервалы с дефектами цементного кольца и оценивать размеры дефектов;
-определять влияние механических и других воздействий на состояние цементного кольца;
При излучении упругого импульса в обсаженной скважине ,вдоль оси скважины ,распространяются упругие волны различного типа (см рис 2).В общем случае ,при наличии контакта цементного камня с колонной и горной породой, волновые картины ,представляют собой
волну по обсадной колонне(1), продольную волну (2) по горной породе, поперечную волну(3) по горной породе,гидроволны(4) по промывочной жидкости,поверхностные волны (5) Лэмба -Стоунли. Можно выделить следующие параметры сигналов ВК:
- Т1-время распространения от излучателя до первого приемника первой полжительной фазы колебаний,превышающей по амплитуде установленный пороговый уровень Ип;
- Т2- время распространения от излучателя до второго приемника первой положительной фазы колебаний,превышающий по амплитуде установленный пороговый уровень Ип;
- А1п-амплитуда сигнала первой полжительной фазы колебаний, которая превышает установленный пороговый уровень Ип ,и регистрируется во временном окне, открывающемся в момент времени Т1;
- А2п-амплитуда сигнала первой полжительной фазы колебаний, которая превышает установленный пороговый уровень Ип ,и регистрируется во временном окне, открывающемся в момент времени Т2 на втором приемнике;
- А1к-амплитуда упругих волн, регистрируемая в фиксированном временном окне, которое устанавливается в интервале прихода на первый приемник первого положительного вступления волны по колонне;
- А2к-амплитуда упругих волн, регистрируемая в фиксированном временном окне, которое устанавливается в интервале прихода на второй приемник первого положительного вступления волны по колонне рис.2
Кинематические и динамические параметры упругих волн ,распространяющихся в околоскважинном пространстве , изучают по результатам измерений широкополосного акустического каротажа .Кинематические параметры характеризуют скорость и направление этих волн в породах , динамические -затухание энергии и их частотные особенности.
Для регистрации этих параметров используют схему приведенную на рис 3.
Расстояние от излучателя до приемника П называется размером (длиной) зонда-L1, L2, расстояние между сближенными одноименными преобразователями-базой зонда l.
Информация регистрируется в виде волновых картинок ВК, фазокорреляционных диаграмм(ФКД),и кривых.
Волновая картинка-графическое отображение электрического сигнала ,снятого с приемника в конкретной точке наблюдения.
ФКД-графическое отображение изменения сигнала ,снятых с приемника при его перемещении по скважине, см рис.3
Итервальное время t(измеренное время распространения волны на фиксированной базе L) определяется по формуле t = t2-t1 /L ,мкс/м
Для поканальных параметров t1, t2 ,A1, A2, точками записи (рис3) являются:
для первого канала - середина расстояния от ближнего приемника до излучателя (точка О1)
для второго - середина расстояния от дальнего приемника до излучателя (точка О2)
Применяемая аппаратура и оборудование
Требования к измерительным зондам АК:
- диапазоны измерения t преломленных продольных волн - 120-660 мкс/м, поперечных - 170-660 мкс/м;
- диапазон измерения коэффициента эффективного затухания по длине измерительного зонда - 0-30(40) дБ/м;
- диапазон измерения амплитуд при эффективном затухании 0-40 дБ/м - 0-78 дБ/м в статическом положении прибора и 0-66 дБ/м при движении прибора в скважине;
- пределы допускаемых основных относительных погрешностей измерения t и - 1-3 и 12,5% соответственно;
- дополнительные погрешности измерения t, А, , вызванные изменениями напряжения на 10%, давления на 1 МПа, температуры на 10С относительно стандартного значения, равного 20С, не должны превышать 0,3; 0,01 и 0,1 значений основных погрешностей соответственно.
Модуль АК комплексируют с любыми другими модулями при условии, что механическое соединение модулей не нарушает центрирование измерительного зонда.
Коэффициент усиления электронной схемы скважинного прибора выбирают таким образом, чтобы в диапазоне оцифровки акустических сигналов сохранялся минимальный уровень шумов, вызванных движением прибора, а сигналы регистрируемых волн (либо одной выбранной волны) не ограничивались. Правильность выбора контролируется по экрану монитора, на котором отображаются волновые пакеты всех двухэлементных зондов, фазокорреляционные диаграммы (ФКД) одного или двух зондов и значения t в текущей точке исследования.
Необходимость выполнения нескольких записей с разными коэффициентами усиления для неискаженной регистрации амплитуд и затухания упругих волн разных типов определяется эксплуатационной документацией на скважинный прибор.
Скорость каротажа - не более 1000 м/ч.
Модуль АК-М
1. Назначение
Скважинный прибор (модуль) акустического каротажа АК-М (в дальнейшем - модуль)
предназначен для проведения исследований нефтяных и газовых скважин диаметром от110 до300мм, заполненных водной промывочной жидкостью. Обеспечивает решение широкого
круга геофизических задач методом акустического каротажа, позволяет определить параметры
упругих волн всех типов (продольных, поперечных и волн Лэмба - Стоунли ) и выполнить
контроль цементирования скважин.
2. Данные по аппаратуре
Модуль позволяет проведение исследований в скважинах при температуре до120 С и
с гидростатическим давлением до 80 Мпа в комплексе с прогаммно-управляемой каротажной станцией МЕГА и трехжильным каротажным кабелем типа КГ-3-60-180 длиной до 6000 м.
Формула зонда модуля - И 2.2 П1 0.4 П2(см рисунок)
Напряжение питания модуля - (40±2)В по первой жиле кабеля. Сила электрического тока потребляемая модулем в режиме излучения (160±20) мА, в режиме ожидания - (60±20) мА
Излучатель акустического зонда модуля имеет два режима излучения - НЧ (низкая частота) и ВЧ (высокая частота). Средняя видимая частота излучаемых упругих колебаний, создаваемых излучателем, измеренная в металлической трубе по первым трём полупериодам волнового пакета, - (12±3) кГц при работе в режиме НЧ и (22±5) кГц при работе в режиме ВЧ. Модуль обеспечивает: 4-х ступенчатую регулировку уровня сигнала , измерение интервального времени дельтаT в диапазоне от 120 до 660 мкс/м и кажущегося коэффициента затухания в диапазоне от 0 до 30 дб/м . Работа модуля основана на возбуждении упругих колебаний и их приеме после прохождения ими исследуемой среды с целью определения кинематических и динамических параметров этих колебаний связанных с характеристиками среды пересеченных скважиной.
Возбуждение упругих колебаний осуществляется с помощью расположенного в модуле магнитострикционного двухчастотного излучателя.
Прием упругих колебаний осуществляется с помощью двух поочередно работающих пьезокерамических звукоприемников, разнесенных по длине модуля на величину базы акустического зонда. Поступившие на звукоприемник упругие колебания преобразуются в колебания электрического тока - информационный сигнал (волновой пакет), который усиливается и вместе со служебными сигналами (синхроимпульсы и т.д.) передается по геофизическому трехжильному кабелю на регистратор.
Обмен информацией между скважинным прибором и каротажной станцией осуществляется по протоколу «Манчестер». Пакеты управляющих импульсов, соответствующих этому протоколу, формируются в ADSP 350h станции МЕГА и через БУСП поступают на 2-ю и 3-ю жилы кабеля и далее, в скважинный прибор. Ответные посылки от скважинного прибора, в соответствии с протоколом "Манчестер", следуют в паузах между посылками запросов по тем же жилам кабеля.
Габаритные размеры 5700 мм
диаметр 90 мм
длина с гибкой вставкой 7000
Масса, кг 107
АКЦ-М
1. Назначение
Аппаратура акустического контроля качества цементирования АКЦ-М предназначена для контроля качества цементирования обсаженных скважин.
2. Данные по аппаратуре
Аппаратура обеспечивает исследование скважин с обсадными колоннами диаметром от 130 до 350 мм с температурой до 120 С, с гидростатическим давлением до 80 МПа.
Аппаратура эксплуатируется с трехжильным геофизическим кабелем типа КГ3-60-180 длиной до 6500м.
Прибор содержит магнитострикционный излучатель (И) и пьезокерамический приемник (П). Формула зонда И 1.6 П. Схема прибора изображена на рисунке.
Прибор в комплексе со станцией обеспечивает регистрацию следующих параметров акустического сигнала, характеризующих качество цементирования скважин:
- времени распространения сигнала по породе - Тп (шифр TP);
- амплитуды сигнала, распространяющегося по породе- Ап (шифр AP);
- амплитуды сигнала, распространяющегося по колонне- Ак (шифр AK).
Диапазон регистрации параметра Тп от 350 до 1600 мкс, динамический диапазон регистрации параметров Ап и Ак - 36 дБ.
Диаметр прибора без центраторов- не более 73 мм ;
Длина прибора- не более 4000 мм ;
Масса прибора- не более 90 кг.
Прибор АКВ-1
1.Назначение
Аппаратура акустического каротажа АКВ-1 предназначена для регистрации волновых картин и измерения интервальных времен, амплитуд и затуханий всех типов упругих волн (продольных, поперечных, Лэмба-Стоунли) в необсаженных и обсаженных колонной нефтяных и газовых скважинах диаметром от 110 мм до 300 мм .
2.Данные по аппаратуре
Зондовая установка включает магнитострикционный излучатель упругих волн с частотой излучения 123 кГц и 225 кГц и шесть широкополосных пьезокерамических приемников упругих волн.
Формулы зондов - И(1.5)П1(0.2)П2 (0.2)П3;
И(1.5)П1(0.2)П2 (0.2)П3 П4(0.2)П5 (0.2)П6;
И(1.5)П4(0.2)П5 (0.2)П6(0,5)П1(0,2)П2(0,2)П3;
Излучатель может работать в следующих режимах: НЧ (низкие частоты), ВЧ (высокие частоты) и ВНЧ, когда излучатель упругих волн поочередно работает в режимах НЧ и ВЧ.
Аппаратура АКВ-1 обеспечивает преобразование в диапазоне 0-30 дБ/м.
характеристика прибора и условия применения:
Длина скважинного прибора . 6470 мм.
Максимальный диаметр 73 мм.
Масса прибора 94 кг.
Приемник упругих волн пьезометрический
Источник упругих волн магнитострикционный
Допустимая относительная погрешность
в пределах диапазона измерений: - по Т. 3 %
- по .5 дБ/м.
Условия эксплуатации:
Максимальная температура 150 С.
Максимальное рабочее давление . 100 МПа.
Диаметр скважины 100-300 мм.
Каротажный кабель трёхжильный.
СПАК-6
1. Назначение.
Аппаратура акустического каротажа СПАК-6 предназначена для измерения и регистрации кинематических и динамических характеристик упругих волн в нефтяных и газовых скважинах.
2. Данные по аппаратуре.
Аппаратура обеспечивает исследование скважин диаметром от 140 до 400 мм с температурой до 115 С, с гидростатическим давлением до 100 МПа, в водной промывочной жидкости.
Аппаратура эксплуатируется с трехжильным геофизическим кабелем типа КГ3-60-180 длиной до 5500м.
Формула зонда И2 0,4 И1 1,2 П. Схема прибора изображена на рисунке.
Частота излучаемых колебаний - 25 кГц.
Передача информационного сигнала на наземный измерительный пульт осуществляется по первой и второй жилам кабеля. Передача напряжения частоты 400 Гц для питания скважинного прибора осуществляется по средней точке цепи, образованной первой и второй жилами кабеля, согласующим трансформатором скважинного прибора и броней кабеля. По третьей жиле и броне кабеля осуществляется передача в скважинный прибор пусковых импульсов и постоянного напряжения для управления переключателем усиления, а также передача синхроимпульсов на скважинный прибор.
Диапазон измерений интервального времени Т от 140 до 600 мкс/м. Диапазон измерений декремента затухания не менее 30 дБ/м.
Сопротивление первой и сопротивление второй жилы кабеля по отношению к оплетке кабеля должны быть равны между собой и примерно соответствовать сопротивлению одной жилы на данной длине кабеля. Сопротивление первой жилы кабеля по отношению ко второй жиле должно быть равно сопротивлению двух жил кабеля. Сопротивление третьей жилы кабеля по отношению к корпусу должно быть порядка 3,5 кОм.
Габаритные размеры:
- длина - не более 3527 мм;
- диаметр без центраторов - не более 90,3 мм
- диаметр с центраторами в свободном состоянии - не более 500 мм;
- диаметр с центраторами при предельной деформации полозьев - не более 126 мм.
Масса без центраторов - 75 кг.
СПАК -2Т
1.Назначение
Аппаратура акустического каротажа СПАК 2Т предназначена для измерения кинематических (dТ,
Т1,Т2) и динамических ( , А1,А2),характеристик упругих волн в нефтяных и газовых скважинах.
2.Данные по аппаратуре
Аппаратура обеспечивает исследование скважин заполненых негазированной промывочной жидкостью диаметром от 127 до 400 мм с температурой до 180 С, с гидростатическим давлением до 120 МПа.
Аппаратура эксплуатируется с трехжильным геофизическим кабелем типа КГ3-60-180 длиной до 7000м.
Формула зонда И2 0,4 И1 1,2 П. Схема прибора изображена на рисунке.
Прибор использует 3 жилы кабеля и оба источника питания.
По 1-й и 2-й жилам относительно ОК подается синфазное переменное напряжение питания прибора 50 Гц 150В, при потребляемом токе не более 500мА(реально 350мА ). По этим же жилам ,
относительно друг друга ,от прибора поочередно передаются две волновые картинки от обеих зондов со средней частотой 25кГц и синфазные ,относительно ОК, синхроимпульсы, соответствующие моментам срабатывания излучателей зондов(отрицательные-1 -й зонд, положительные- 2-й).
По 3-й жиле кабеля на прибор поступает постоянное напряжение питания + 200В,при потребляемом токе до 100 мА.
Диапазон измерений интервального времени Т от 130 до 600 мкс/м. Диапазон измерений декремента затухания от1,5до30 дБ/м.
Габаритные размеры:
- длина - не более 4000 мм;
- диаметр без центраторов - не более 93,0 мм
Масса с центраторами - 87 кг.
АКЦ -НВ - 48
1. Назначение
Аппаратура акустического контроля качества цементирования АКЦ-НВ предназначена для контроля качества цементирования обсаженных скважин.
2. Данные по аппаратуре
Аппаратура обеспечивает исследование скважин, оборудованные обсадными колоннами и НКТ внутренним диаметром от 60 до 250 мм с углом наклона до 50 , с температурой до 180 С, с гидростатическим давлением до 100 Мпа, заполненные негазированными буррастворами.
Аппаратура эксплуатируется с трехжильным геофизическим кабелем типа КГ3-60-180 длиной до 6500м.
Формула зонда И2 0,25 И1 1,75 П.
Схема прибора представлена на рисунке:
Диапазон измерений интервального времени Тp от 120 до 550 мкс/м
Частота излучаемых колебаний - 13 кГц.
Диаметр прибора без центраторов- не более 48 мм ;
Длина прибора- не более 3500 мм ;
Масса прибора- не более 30 кг.
Размещено на Allbest.ru
...Подобные документы
Гамма-каротаж интегральный и гамма-каротаж спектрометрический. Радиоактивность осадочных горных пород. Плотность потока излучения кусочно-однородного пространства. Показания скважинного прибора в однородной среде. Суммарная концентрация радионуклидов.
презентация [737,0 K], добавлен 28.10.2013Теории и методики измерения плотности горных пород способом гидростатического взвешивании. Метрологический контроль измерительного прибора. Плотность пород в естественном залегании. Определение плотности песчаника, гипса, аргиллита, гранита, алевролита.
лабораторная работа [401,7 K], добавлен 28.02.2016Физические основы метода гамма-гамма каротаж. Его виды, преимущество и применение. Взаимодействия квантов с веществом. Измерение характеристик рассеянного гамма-излучения, возникающего при облучении горных пород внешним источником гамма-излучения.
презентация [146,3 K], добавлен 23.03.2015Физические основы метода гамма-гамма каротажа, применение этого метода при решении геологических и геофизических задач. Методы рассеянного гамма-излучения. Изменение характеристик потока гамма-квантов. Глубинность исследования плотностного метода.
курсовая работа [786,8 K], добавлен 01.06.2015Электрические линии задержки: понятие и функциональные особенности, внутренняя структура и принцип действия. Методика разработки многоотводной линии задержки на поверхностных акустических волнах с заданными характеристиками, анализ эффективности.
курсовая работа [96,3 K], добавлен 12.06.2013Определение начальной энергии частицы фосфора, длины стороны квадратной пластины, заряда пластины и энергии электрического поля конденсатора. Построение зависимости координаты частицы от ее положения, энергии частицы от времени полета в конденсаторе.
задача [224,6 K], добавлен 10.10.2015Плоское напряженное состояние главных площадок стального кубика. Определение величины нормальных и касательных напряжений по граням; расчет сил, создающих относительные линейные деформации, изменение объема; анализ удельной потенциальной энергии.
контрольная работа [475,5 K], добавлен 28.07.2011Принцип работы и электромагнитная схема трансформатора. Назначение трансформатора тока, схема его включения. Классификация трансформаторов, их активные элементы, первичная и вторичная обмотки. Режим работы, характерный для рассматриваемого прибора.
презентация [426,9 K], добавлен 18.05.2012Звук и его основные характеристики. Субъективная оценка спектрального состава звука. Организация защиты речевой информации. Основные каналы утечки речевой информации. Акустические характеристики устной речи. Разборчивость речи и методы ее измерения.
лабораторная работа [529,5 K], добавлен 25.11.2013Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.
курсовая работа [111,3 K], добавлен 28.11.2009Принцип работы Кирлиан-прибора. Устройство и принцип действия искрового генератора, катушки прерывателя, резонатора. Современные схемы Кирлиан–прибора и компоненты для их сборки. Влияние напряжения и частоты. Проблемы применения Кирлиан-прибора.
курсовая работа [630,7 K], добавлен 29.11.2010Общая характеристика планарных резонаторов на прямых объемных магнитостатических волнах. Особенности и порядок моделирования эквивалентной схемы резонатора на сосредоточенных элементах с помощью компьютерной программы Serenade Design Environment 8.0.
дипломная работа [1,7 M], добавлен 30.08.2010Расчет показателей работы газотурбинного двигателя. Проверка напряженного состояния рабочей лопатки последней ступени. Распределение параметров по ступеням компрессора, степени повышения давления, входной закрутки потока на входе в рабочее колесо.
курсовая работа [1,1 M], добавлен 08.01.2015Свойства независимых комбинаций продольной и поперечной объемных волн. Закон Гука в линейной теории упругости при малых деформациях. Коэффициент Пуассона, тензоры напряжения и деформации. Второй закон Ньютона для элементов упругой деформированной среды.
реферат [133,7 K], добавлен 15.10.2011Формирование статического магнитного поля. Петрофизические основы метода. Диапазон измерений времен поперечной релаксации. Обработка и интерпретация данных. Контроль процесса измерений в реальном времени. Геолого–технологические характеристики разрезов.
курсовая работа [46,0 K], добавлен 14.01.2011Анализ теорий РВУ. Построение релятивистского волнового уравнения отличающегося от даффин-кеммеровского для частицы со спином 1, содержащее кратные представления. Расчет сечений рассеяния на кулоновском центре и Комптон-эффекта для векторной частицы.
дипломная работа [172,2 K], добавлен 17.02.2012Газ как агрегатное состояние вещества. Свойства водорода, кислорода, углекислого газа, этилена и аммиака. Текучесть и сопротивление деформации. Формулирование закона Авогадро. Сущность парникового эффекта. Фотоны, электроны, броуновские частицы и плазма.
презентация [1,2 M], добавлен 21.11.2013Область горения частицы топлива в топке котельного агрегата при заданной температуре. Расчет времени выгорания частиц топлива. Условия выгорания коксовой частицы в конечной части прямоточного факела. Расчет константы равновесия реакции, метод Владимирова.
курсовая работа [759,2 K], добавлен 26.12.2012Показатели качества электроэнергии. Причины, вызывающие отклонения параметров сети от номинальных значений. Отклонение напряжения и его колебания. Отклонение фактической частоты переменного напряжения. Несинусоидальность формы кривой напряжения и тока.
контрольная работа [153,4 K], добавлен 13.07.2013Гравитационные, электромагнитные и ядерные силы. Взаимодействие элементарных частиц. Понятие силы тяжести и тяготения. Определение силы упругости и основные виды деформации. Особенности сил трения и силы покоя. Проявления трения в природе и в технике.
презентация [204,4 K], добавлен 24.01.2012