Оборудование на Северской ТЭЦ

Общая характеристика, производительность исследуемой теплоэлектростанции. График тепловых сетей города и промышленных объектов. Техническое описание используемого оборудования: котлов, турбин. Назначение, конструкция и эксплуатационная характеристика.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.12.2015
Размер файла 36,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Оборудование станции

Установленная мощность ТЭЦ СХК на начало 90-х годов составляла 849 Мвт.

Расчетные тепловые нагрузки ТЭЦ в это время составляли:

- отопление и вентиляция - 575 Гкал/час;

- горячее водоснабжение - 60 Гкал/час;

- теплоснабжение промышленных объектов - 391 Гкал/час;

пароснабжение промышленных объектов

- на пар 13 кгс/смІ -198 т/час;

- на пар 20 кгс/смІ -259 т/час;

График тепловых сетей города - (150 - 70)°С, промышленных объектов - (170-110/80)°С для второй северной магистрали и (150-70)°С для первой северной магистрали. Схема горячего водоснабжения для городских потребителей - открытая, для промышленных - закрытая.

1. Котлы

Тип

Производительность, т/час

Параметры острого пара

Р, ата

t,°С

1-11

12-17

18-19

Котел ТП-230

Котел ТП-10

Котел ТП-12

230

220

220

100

100

100

510

540

540

Предусматривается установка котлов №20-21

20-21

Котел БКЗ-210-140

210

140

560

Работа котлов 20-21 предусматривается постоянна на параметры острого пара 100 ата, 540°С со снижением паропроизводительности до 179 т/час.

Описание конструкции котла ТП-230

По характеру движения рабочей среды парогенератор ТП-230 относится к агрегатам с естественной циркуляцией. Рабочая среда непрерывно движется по замкнутому контуру, состоящему из обогреваемых и не обогреваемых труб, соединенных между собой промежуточными камерами - коллекторами и барабанами. В обогреваемой части контура вода частично испаряется, образовавшийся пар отделяется от воды в барабанах и, пройдя через пароперегреватель, подается на турбину. Испарившаяся часть котловой воды возмещается питательной водой, подаваемой питательным насосом в водяной экономайзер и далее в барабан.

Парогенератор ТП-230 выполнен по П-образной схеме. В одной его вертикальной шахте расположена топочная камера, в другой экономайзер и воздухоподогреватель, вверху в поворотном горизонтальном газоходе размещается конвективный пароперегреватель.

Характерной особенностью парогенераторов этой серии является наличие двух барабанов, соединенных по пару и воде между собой пароперепускными трубами. Начальная стадия отделения пара от воды происходит в основном в разделительном барабане меньшего диаметра. Последующее осушение пара происходит в основном барабане большего диаметра. Водоопускные трубы включены в основной барабан около его нижней образующей.

Размещение над топочной камерой двух барабанов хорошо компонуется с конструкцией топочных экранов. Сверху топка ограничивается потолочными трубами, которые являются продолжением труб фронтального экрана и включаются верхними концами непосредственно в разделительный барабан.

Дымовые газы выходят из топочной камеры через разведенные (фестонированные) в 4 ряда трубы заднего экрана, также включенные верхними концами в разделительный барабан.

Подъемные трубы работают друг с другом параллельно, однако их конфигурация, длина, освещенность факелом различна. Для обеспечения надежной циркуляции их группируют в отдельные контуры. В контур циркуляции включают подъемные трубы, идентичные по своему гидравлическому сопротивлению и тепловой нагрузке. Каждый отдельный контур имеет свои опускные трубы. В котле ТП-230 16 контуров циркуляции: по 3 контура на боковых экранах и по 5 на фронтовом и заднем экранах.

Пароперегреватель чисто конвективного типа. Регулирование температуры перегретого пара производится двумя пароохладителями поверхностного типа. Охлаждение и частичная конденсация пара осуществляется за счет нагрева части питательной воды, отводимой с этой целью из питательной линии в пароохладитель.

Двухступенчатый экономайзер, служащий для подогрева питательной воды уходящими газами, состоит из отдельных пакетов змеевиков.

Трубчатый воздухоподогреватель, предназначенный для нагрева дутьевого воздуха, транспортирующего угольную пыль при сжигании твёрдого топлива и подаваемого в зону горения топлива, состоит из двух ступеней, между которыми размещается нижняя часть (ступень) экономайзера.

Описание котла ТП-10

Назначение, конструкция и эксплуатационная характеристика котла.

Котел ТП-10 однобарабанный, изготовлен Таганрогским котельным заводом «Красный котельщик», работает в блоке с турбиной ПТ-60-90/13.

В цехе установлено два таких котла, станционный №1 и 2, производительностью 220т/час, рабочее давление в барабане 110 кгс/см2, температура перегретого пара 540 оС. Минимальная производительность 130 т/ час, КПД - 91,6%.

Топка котла - камерная для сжигания топлива в пылевидном состоянии. В качестве растопочного топлива применяется мазут марки М - 40 или М - 100. Котел оборудован четырьмя мазутными форсунками типа МФПР - 3, смонтированными под горелками №5,6,7,8. Распыл мазута производится паром 14 кгс/см. НА котлах №1,2 дополнительно выполнены врезки от воздушной разводки на распыл мазута.

Котлоагрегат оборудован индивидуальной системой пылеприготовления с промежуточным бункером угольной пыли. Для очистки дымовых газов от золы на котлоагрегате установлены мокрые золоуловители. Каждый агрегат оборудован дымососной, вентиляторной установками.

Каркас котла весом 290 тонн состоит из металлических колонн, связанных горизонтальными фермами и раскосами и служат для восприятия нагрузки от барабана, поверхностей нагрева, обмуровки, газовоздушных коробов, изоляции и площадок обслуживания котла. Балки, к которым подвешены экранные контуры с обмуровкой, крепятся к верхней раме каркаса. Каркас изготовлен сварным из профильного проката и листов стали. Вертикальные колонны опираются на железобетонный фундамент. Для повышения жесткости каркаса на случай сейсмического воздействия на боковых стенах котла установлены кронштейны жесткости из труб диаметром 150 мм.

Обмуровка - облегчённого типа. Стены топочной камеры и холодной воронки имеют натрубную обмуровку шпилечного типа, состоящую из следующих слоёв:

а) огнеупорный бетон толщиной 20 мм, нанесённый по сетке на трубы экрана;

б) маты из минеральной ваты, укреплённые с помощью шпилек к трубам экрана;

в) уплотнительная обмуровка толщиной 40 мм, нанесённая по сетке поверх ваты;

г) газонепроницаемая обмазка.

Потолок топочной камеры и горизонтального газохода изолируется так же, как топка, по потолочным трубам.

Обмуровка потолочного перекрытия вместе с трубами крепится с помощью подвесок к балкам каркаса. Стены поворотной камеры и конвективной шахты имеют обмуровку из шамотного или диатомитов ого кирпича.

Барабан и внутрибарабанное устройство

Над топочной камерой смонтирован сварной необогреваемый барабан диаметром 1778х89 мм, стали 22К. Подсоединение всех труб осуществлено электросваркой к заводским приварным штуцерам. Питательная вода после экономайзера по 8 трубам диаметром 108 х 8 мм. Через паровые рубашки поступает в барабан к питательному корыту, расположенному в чистом отсеке, и оттуда переливается на поверхность котловой воды. Две крайние трубы заведены в пространство соленых отсеков, для отмывки влажного пара от растворенных в нем солей.

Сепарация пара в барабане механическая и гравитационная без промывки питательной водой (за исключением соленых отсеков).

Пароводяная смесь из панелей экранных поверхностей нагрева по 36 трубам диаметром 130 х 10 мм. вводится в барабан котла под отбойные щитки, расположенные над каждой трубой вдоль чистого отсека с обеих сторон.

Пройдя через жалюзи, пар поступает в паровое пространство барабана, где происходит гравитационная сепарация. Влага стекает на поверхность зеркала воды. В верхней части барабана пар через дырчатый лист, где происходит вторая ступень сепарации, по 32 трубам диаметром 60 х 5 мм направляется в потолочный пароперегреватель.

В соленые отсеки пароводяная смесь поступает по 6 трубам (по 3 с каждой панели) под отбойные щитки. Пар из соленых отсеков в чистый поступает через вертикальные жалюзи, которые вместе с вертикальной стенкой по торцам барабана образуют объем соленых отсеков. Солесодержание котловой воды соленых отсеков достигает до 500 мг/ дм3. Для предотвращения выноса солей, перед выходом пара в вертикальные жалюзи смонтировано промывочное устройство (душ) пара питательной водой. Это поперечные трубы с заглушенными торцами и большим количеством отверстий направленных к низу, через которые разбрызгивается питательная вода.

Каждый отсек - два соленых и один чистый имеют свою водомерную колонку для контроля уровня воды в отсеках. Из соленых отсеков выполнены раздельные линии с регуляторами непрерывной продувки и заведены в барбатер.

Пароперегреватель

Насыщенный пар из барабана по 32 трубам диаметром 60 х 5 мм направляется в 4 входные камеры потолочного пароперегревателя (материал сталь 20), диаметром 60 х 5 мм. Потолочный пароперегватель состоит из 4х38=152 труб (материал сталь 20), 4 выходных камер потолочного пароперегревателя диаметром 219х25 мм (материал сталь 15ХМ).

К каждой выходной камере потолочного пароперегревателя приварено по 4 камеры ширмового пароперегревателя (всего 4х4=16 штук) диаметром 168х16 мм (материал ст. 15ХМ). Внутри каждой камеры установлено по одной перегородке, что способствует последовательному поступлению пара из первой ленты во вторую ленту ширмового пароперегревателя. Выходные змеевики второй ленты ШПП приварены к коротким выходным камерам, выполненным, сталь 12ХМФ, которые по 4 штуки приварены к четырем общим, поперечно расположенным выходным камерам, (сталь 15ХМ). Эти же камеры являются входными для второй части потолочного пароперегревателя.

Таким образом, по ширине котла перед входом в поворотную камеру расположено 16 двух ленточных ширм ШПП. Первые ленты ширм (по ходу газов) изготовлены из труб Ш 32х4 мм, сталь 20; допустимая температура стенки не более 430 о С.

Вторые ленты ширм из труб Ш 42х4,5 мм, сталь 12ХМФ. Первая лента состоит из 14, вторая - из 10 змеевиков; вдоль газового потока они образуют 14Ч2+10Ч2=48 рядов ШПП. Из 4-х общих выходных камер ШПП выходит 216 змеевиков Ш 42х4,5 мм (сталь 12ХМФ) потолочного пароперегревателя с перебросом пара из крайних пакетов змеевиков в змеевики средней части газахода и, наоборот, из средних - в крайние части. Потолочный пароперегреватель (вторая часть) расположен над поворотной камерой и конвективной шахтой; затем змеевики его переходят в петли первой ступени конвективного пароперегревателя, выполненного по принципу смешанного тока с преобладанием противотока (2 петли противоточные и 1 петля прямоточная). Петли выполнены из труб Ш 42х5,5 мм (сталь 12ХМФ). Из первой ступени конвективного пароперегревателя пар поступает в 4 камеры Ш 273х35 мм (сталь 15 ХМ), затем по 4 трубам Ш 133х10 мм из двух правых камер поступает в правый пароохладитель и из двух левых камер по 4 трубам Ш 133Ч10 мм в левый. Диаметр пароохладителей 273х35 мм.

Из правого пароохладителя по 4 трубам Ш 233Ч10 мм пар поступает в две входные камеры II ступени конвективного пароперегревателя, расположенного с левой стороны, а из левого пароохладителя - в две камеры правой стороны; диаметр всех 4-х камер 273Ч10 мм, сталь 15ХМ. Такой переброс пара предусматривает выравнивание температур в змеевиках по ширине газового потока и исключает влияние газовых перекосов по ширине поворотной камеры.

Вторая ступень конвективного пароперегревателя состоит из 108 труб Ш 42Ч5,5 мм сталь 12ХМФ и включена по принципу прямотока.

Пройдя змеевики II ступени пароперегревателя, пар выходит в 4 выходные камеры диаметром 325Ч45 мм, сталь 12ХМФ. Из выходных камер по 3Ч4=12 трубам диаметром 133Ч13 мм пар отводится в паросборную камеру Ш 325Ч58 мм, сталь 12ХМФ.

На паросборной камере расположены главные предохранительные клапаны. Пройдя главную паровую задвижку с байпасом, расположенную на потолке котла, пар из паросборной камеры по паропроводу Ш 273Ч28 мм, сталь 12ХМФ, направляется в турбину. Перед задвижкой ПП-2 от паропровода выполнен отвод на БРОУ, расположенную в турбинном отделении.

Пароохладитель

Для регулирования температуры перегретого пара котел оборудован пароохладителем смешанного типа, расположенным в рассечке между I и II ступенями конвективного пароперегревателя. Пароохладитель состоит из 2-х вертикальных камер Ш 273Ч35 мм, расположенных с левой и с правой сторон котла. Пар поступает в верхние части камер, ниже подвода пара расположены разбрызгивающие сопла, последние расположены по ходу пара. К соплам подводится питательная вода по специальной линии от питательного узла.

Экономайзер

Экономайзер расположен в конвективной шахте котла и состоит из двух ступеней. Первая ступень экономайзера (по ходу воды) размещена между I и II ступенями воздухоподогревателя. Питательная вода подводится к 4 входным камерам Ш 219х16 мм, сталь 20 (по две с каждой стороны) из них по 136 змеевикам Ш 32х3,5 мм, сталь20, пройдя 8 (4 выходных и 4 входных) промежуточных камер, вода выходит в 4 выходные камеры диаметром 219х16 мм, сталь20. Таким образом, I ступень экономайзера по глубине газохода состоит из двух секций и по высоте - из двух частей.

По ширине I и II ступени экономайзера состоят из двух частей: левой и правой. Причем, змеевики проходят по всей ширине газохода. Расположение змеевиков шахматное, движение воды по ним - встречное. Промежуточные камеры (4 выходные и 4 входные) соединены трубами Ш 60х5 мм, по 10 штук (5х20) с каждой стороны газохода. Из выходных камер I ступени вода по 8 трубам Ш 60х5 мм (по 4 трубы с каждой стороны) перебрасывается во II ступень экономайзера; причем вода из пакетов, расположенных у задней стенки конвективной шахты, направляется в пакеты II ступени, расположенные у передней стенки конвективной шахты.

Воздухоподогреватель

На котле смонтирован двухступенчатый воздухоподогреватель из малогабаритных трубок диаметром 40х1,5 мм, сталь20. Первая ступень воздухоподогревателя (по ходу воздуха) расположена в конце конвективной шахты перед газоходом, идущим к золоуловителям, и состоит из 16 кубов (4 по ширине, 2 по глубине и 2 по высоте). Поверхность нагрева - 9740 м2. Вторая ступень воздухоподогревателя расположена между I и II ступенями экономайзера и состоит из 8 кубов (4 по ширине и 2 по глубине). Поверхность нагрева - 4870м2.

Циркуляция воды

Топочная камера котла прямоугольного сечения, ширина камеры 9852 мм, глубина 7100 мм, высота от середины холодной воронки до середины фестона 18000 мм.

Топка оборудована 8 пылеугольными прямоточными горелками, расположенными по углам. В горизонтальной плоскости горелки направлены тангенциально к условной окружности диаметром 1200 мм, расположенной в центре топки. Расстояние от середины холодной воронки до оси горелок 5100 мм.

Топка экранирована трубами 60х5 мм. Боковые экраны состоят из 6 независимых контуров, из которых два крайних (к фронту котла) включены в соленые отсеки барабана, остальные включены в чистый отсек.

Задний экран состоит из 4 независимых контуров циркуляции и включен в чистый отсек барабана. Фронтовой экран состоит из 6 независимых контуров (две крайние камеры фронтового экрана внутри разделены перегородкой, образуя 4 самостоятельных контура). Котел имеет 16 независимых контуров циркуляции, каждый из них в нижней камере оборудован периодической продувкой. Нижние камеры контуров изготовлены из труб Ш 273х26 мм, верхние Ш 273х28 мм.

Питание контура осуществляется из барабана котла по 4 опускным трубам Ш 133х10 мм в нижние камеры. Отвод пароводяной смеси осуществляется из верхней камеры по 3 трубам Ш 133х10 мм.

На входе в поворотную камеру трубы заднего экрана (152 штуки) через 76 тройников переходят в двухрядный фестон (по 38 труб в каждом ряду). Из фестона пароводяная смесь поступает в верхние камеры.

Трубы и камеры контуров, изготовлены из стали 20. Все контуры циркуляции подвешены к специальным подвескам за верхние камеры.

По опускным и подъемным трубам циркулирует определенное количество рабочего тела. В контур естественной циркуляции входит вода, а выходит пароводяная смесь.

Отношение количества воды, вошедшей в контур, к расходу полученного пара называется кратностью циркуляции. В однобарабанных котлах с давлением 110 кгс/см2, кратность равняется 8-10.

Питательный узел

Схема питания одномагистральная, блочная; два котла - турбина. Узел питания расположен на отметке 9,0 м. Питательная вода к котлам подается по горячему стояку (если включены ПВД) Ш 273х20 мм сталь20. Если отключены ПВД, вода поступает по холодному стояку (после тройников Ш 219х17 мм, сталь20).

В котельном отделении проложено по две линии на каждый котел, которые через тройники врезаются в горячую и холодную нитки.

На стояке холодного питания расположены задвижки: ВП-7 и ВП-9, на стояке горячего питания - ВП-6 и ВП-8. Обе питательные линии, пройдя задвижки: ВП-10 и ВП-12 (лобовая), ВП-11 и ВП-13 (лобовая), врезаются в питательное кольцо, откуда питательная вода подводится к правой и левой входным камерам экономайзера.

На питательных нитках котлов (левой и правой) по ходу воды установлена следующая арматура:

а) запорная задвижка ВП-10 (правая) и ВП-11 (левая);

б) РПК шиберного типа на КА-1 и на первой нитке КА-2 (на второй нитке КА-2 установлен широкодиапазонный разгруженный питательный клапан (ШДК));

в) водомерная диафрагма;

г) обратный клапан;

д) отсекающие лобовые задвижки ВП-12 (правая) и ВП-13 (левая).

Забор воды на впрыск выполнен перед РПК с 1 и 2 линий питания котла и снабжен арматурой: ВПР-1 от 1-й линии, ВПР - 2 от 2-й линии питания, ВПР - 3 общий запорный вентиль, регулирующие клапаны, ВПР-4 на линиях к соплам левого охладителя, ВПР-5 на линиях к соплам правого охладителя.

Во избежание эрозионного износа трубопровода после РПК, резервный РПК должен быть полностью закрыт.

Описание котла БКЗ 210-140

Котельный агрегат БКЗ 210-140 Барнаульского котельного завода предназначен для работы при следующих параметрах:

- производительность - 210 т/ч

- рабочее давление за главной паровой задвижкой - 140 ата

- температура перегретого пара - 550 0С

- температура питательной воды - 230 0С

- водяной объём котла - 62 м3

- паровой объём котла - 32 м3

Компоновка котла выполнена по П - образной схеме. Топка расположена в первом, восходящем газоходе. Во втором, нисходящем газоходе, расположен водяной экономайзер и воздухоподогреватель. В верхнем горизонтальном газоходе расположен пароперегреватель.

Топочная камера

Топочная камера по всей высоте прямоугольного сечения, имеет размеры (по осям труб) 9536 * 6656 мм и объём 992 м3.

Стены топочной камеры полностью экранированы трубами диаметром 60 * 5.5, сталь 20, с шагом 64 мм. Экраны топки разделены на 14 самостоятельных циркуляционных контуров. Экранные трубки каждого контура входят в камеры диаметром 273 * 36, сталь 20. Паровая смесь из верхних камер боковых и фронтового экранов отводится в барабан трубами ф133 * 10, сталь 20, а из камер заднего экрана трубами ф133 * 10, сталь 12Х1МФ. Подвод котловой воды из барабана к нижним камерам экранов осуществляется трубами ф133 * 10, сталь 20.

В верхней части трубы заднего экрана отогнуты внутрь топочной камеры, образуя «порог». «Порог» предназначен для улучшения аэродинамики газового потока на выходе из топочной камеры и частичного затемнения ширм пароперегревателя. В нижней части топочной камеры трубы фронтового и заднего экранов образуют «холодную воронку». Топочная камера оборудована горелочными устройствами типа «тонкие струи» для сжигания торфа, в количестве 4 штук, расположенными на фронтовой стене топки, и шестью мазутными горелками, расположенными на боковых стенках топки. Растопка котла предусматривается 6-ю мазутными форсунками механического распыливания, вмонтированными горелки.

Шлакоудаляющие устройства состоят из шлакоприёмной течки, шнекового транспортёра и шлаковой дробилки.

Барабан котла и сепараторные устройства

Котёл имеет 1 сварной барабан с внутренним диаметром 1600 мм и с толщиной стенки 112 мм, из стали 16ГНМ. Для получения качественного пара в котле применены схема двухступенчатого испарения и соответствующие сепарационные устройства.

Первая ступень испарения (чистый отсек) расположена непосредственно в барабане котла. Солёными отсеками служат выносные сепарационные циклоны (по 2 циклона на каждой стороне котла). Такая схема обеспечивает нужное качество пара при питании котла водой с солесодержанием до 100 мг/литр при продувке не выше 3%. В выносную сепарационную ступень (вторую ступень испарения) включены блоки боковых стен топки, соединяющиеся с циклонами трубами ф133 * 10, сталь 20, циклоны, в свою очередь, соединены с барабаном котла также трубами ф133 * 10, сталь 20. Каждый блок циклонов состоит из 2-х труб ф426 * 36, сталь 20 с расположенными в них дырчатыми подпорными листами и антикавитационными крестовинами.

В первой ступени сепарационными устройствами являются внутрибарабанные циклоны с барботажной промывкой пара и жалюзийные сепараторы. Питательная вода поступает в барабан по 12 трубам ф60 * 5.5. сталь 20 в раздающие короба. 50% питательной воды через отверстия в коробах направляется на промывочные щиты. Протекает по ним и сливается в водяной объём барабана. Остальная часть питательной воды из раздающих коробов сливается непосредственно в водяной объём помимо промывочных щитов. Пароводяная смесь из экранной системы котла поступает распределительные короба, расположенные в барабане, откуда она направляется во внутрибарабанные циклоны. Вода, отсепарированная в циклонах, сливается в водяной объём барабана: пар, поднимаясь вверх, проходит через первичный жалюзийный сепаратор, расположенный непосредственно над циклоном, а затем проходит в барабане через слой воды, текущей по промывочным листам, и попадает во вторичный сепаратор: далее, через дроссельный дырчатый лист пар проходит в пароперегреватель котла. Средний уровень воды в барабане котла должен поддерживаться на 200 мм ниже геометрической оси барабана. Отклонение уровня от среднего не более 50 мм. Для обеспечения равномерного нагрева барабана при растопках котла предусмотрен паровой обогрев котла от постороннего источника насыщенным паром давлением 40-140 ата.

Пароперегреватель

Пароперегреватель выполнен с учётом склонности сжигаемого топлива к шлакованию. Пароперегреватель радиационно-конвективного типа. Радиационная поверхность выполнена в виде ширмовых поверхностей, расположенных в топке, и трубопотолочного перекрытия. Конвективные поверхности пароперегревателя в верхнем поворотном газоходе котла. Регулирование температуры перегретого пара осуществляют путем впрыска «собственного» конденсата в пароохладителях 1 и 2 ступени.

Пар из барабана котла по 6-ти трубам ф133 * 10, сталь 20 поступает в камеры ф219 * 26, сталь 20, потолочного пароперегревателя. Который выполнен из труб ф32 * 4, сталь 20, и закрывает весь потолок котла, как над топкой, так и над поворотной камерой. Трубы потолочного пароперегревателя переходят в змеевики «холодного пакета». После «холодного пакета» пар по 6 трубам ф133 * 13, сталь 20, попадает в 8 крайних ширм. Пройдя крайние ширмы, пар 8-ю трубами ф133 * 10, сталь 12Х1МФ, подаётся в пароохладители 1 ступени (камеры ф273 * 25, сталь 12Х1МФ). После регуляторов пар по 8 трубам ф133 * 10, сталь 12Х1МФ, поступает в 8 средних ширм. Ширмовый пароперегреватель выполнен из труб ф32 * 4, сталь 12Х1МФ. Из средних ширм по 8 трубам ф133 * 10, сталь 12Х1МФ пар подаётся во входные камеры ф273 * 25, сталь 12Х1МФ «горячего» пакета пароперегревателя, откуда поступает в 10 крайних микроблоков «горячего» пакета, выполненных из труб ф32 * 4. сталь 12Х1МФ. Пройдя крайние микроблоки, пар попадает в промежуточные камеры ф273 * 36. сталь 12Х1МФ и из них перебрасывается в 8 задних микроблоков «горячего» пакета пароперегревателя, выполненных из труб ф32 * 5, сталь 12Х1МФ. Из средних микроблоков пар по 8 трубам ф133 * 17, сталь 12Х1МФ, поступает в камеры пароохладителей 2 ступени. После регуляторов пар по 10 трубам ф133 * 17, сталь 12Х1МФ направляется в 10 крайних микроблоков выходного пакета (4 ступень) пароперегревателя, выполненных из труб ф32 * 5, сталь 12Х1МФ. Пройдя крайние микроблоки пар поступает в промежуточные камеры ф273 * 45, сталь 12Х1МФ 4-й ступени пароперегревателя и из них направляется в 8 средних микроблоков 4-й ступени, выполненных из труб ф32 * 5,5.сталь 12Х2МФОР. Из средних микроблоков пар по 8 трубам ф133 * 17, сталь 12Х1МФ, поступает в паро-сборную камеру ф273 * 45, сталь 12Х1МФ. Переброс пара из крайних ширм и микроблоков в средние выполняется для уменьшения «разверки» температуры пара.

Установка для получения собственного конденсата

Для получения конденсата на впрыск в пароохладители, котельный агрегат оборудован змеевиковыми конденсаторами. Охлаждение пара в конденсаторах осуществляется питательной водой, прошедшей первую (по ходу воды) ступень водяного экономайзера.

Пар поступает из барабана котла по трубам ф60 * 5,5, сталь 20 в конденсатор ф426 * 36.сталь 20. Получен ный конденсат сливается в сборный коллектор ф133 * 10 по трубам ф60 * 5,5, сталь 20 и оттуда поступает к регулирующим клапанам.

Подача конденсата в пароохладители осуществляется за счёт перепада давления, созданного паровыми эжекторами, расположенными в камерах пароохладителя (1 ступень), а также за счёт падения давления пара между барабаном и камерой пароохладителя 2 ступени.

Для слива избытка конденсата в барабан сборный коллектор соединяется с барабаном трубами ф133 * 10, сталь 20.

Конвективнаяшахта

Конвективная шахта выполнена по «бесприсосной» схеме. Кубы воздухоподогревателя и нижнего экономайзера установлены друг на друге и сварены между собой, что значительно уменьшает присосы воздуха. При нагревании конвективная шахта расширяется вверх, компенсация расширения осуществляется трубным компенсатором, установленным между «горячими» частями воздухоподогревателя и водяного экономайзера. Воздухоподогреватель и водяной экономайзер размещены «в рассечку». Воздухоподогреватель скомпонован по двухпоточной схеме; верхний водяной экономайзер занимает всю глубину газохода, нижний размещён в двух симметричных газоходах.

Водяной экономайзер выполнен из труб ф32 * 3,5, сталь 20 в виде пакетов гладкотрубных змеевиков, расположенных в шахматном порядке. Воздухоподогреватель выполнен из труб ф40 * 1,5, сталь 20. Дымовые газы протекают внутри труб, снаружи трубы омываются воздухом.

«Горячая» часть водяного экономайзера имеет независимое опирание на каркас. Остальные поверхности конвективной шахты, кроме нижнего куба, опираются на металлоконструкции каркаса конвективной шахты. Нижний куб воздухоподогревателя выполнен подвесным и является съёмным.

2. Турбины

Тип

Мощность, Мвт

Параметры острого пара

Р, ата

t,°С

1

2,7

3,4,5,8

6

9,15

10

11-14

Турбина Т-25-90М

Турбина ПТ-25-90/10

Турбина К-50-90

Турбина К-50-90М

Турбина Р-12-90/18

Турбина К-100-90

Турбина КТ-100-90

25

25

50

50

12

100

100

90

90

90

90

90

90

90

500

500

500

500

535

500

535

Краткое описание турбины К-50-90

Характеристика

размерность

величина

Завод-изготовитель

-

ЛМЗ

Номинальная мощность

МВт

50

Давление свежего пара

бар

91,8

Температура свежего пара

оС

535

Давление отборов пара:

ПВД8 1 отбор

ПВД7 2 отбор

ПВД6 3 отбор и Деаэратор

ПНД5 4 отбор

ПНД4 5 отбор

ПНД3 6 отбор

ПНД2 7 отбор

ПНД1 8 отбор

Конденсатор

Бар

ступ

6

9

11

15

17

19

20

21

32,13

18,43

12,06/6,12

4,51

2,219

0,808

0,412

0,1596

0,0357

Расход свежего пара

Кг/c

58,3

Формула проточной части:

ЧВД

ЧСД

ЧНД

-

1Р+21Д

-

-

Число цилиндров

-

1

Число выхлопов пара

-

1

Число конденсаторов

-

1

Краткое описание турбины К-100-90

Двухцилиндровая конденсационная турбина с двух поточным выхлопом в конденсатор и развитой системой регенеративного подогрева питательной воды. Турбина - современная модификация известной серии турбин ЛМЗ мощностью 100 МВт.

параметры турбины К-100-90

мощность номинальная / максимальная, МВт 110/115

начальные параметры пара

давление, МПа 8,8

температура, °С 535

номинальный расход свежего пара, т/ч 420

длина рабочей части лопатки последней ступени, мм 665

номинальная температура охлаждающей воды, °С 10

расход охлаждающей воды через конденсатор, м3/ч 16 000

гидравлическое сопротивление водяного тракта конденсатора, МПа 0,035

Турбина может быть модифицирована в соответствии с потребностями конкретного заказчика.

В частности, с организацией нерегулируемого теплофикационного отбора пара.

Краткое описание турбины ПТ-25-90/11

Начальные параметры пара этой турбины 90 атм. и 545 (С, давление первого отбора 11 атм., давление второго отбора 1,1 атм. Номинальная мощность турбины 25000 квт, но при номинальных параметрах свежего пара и при номинальных расходах и давлениях отборов может быть получена длительнаямаксимальная мощность 30000 квт.

Проточная часть турбины состоит из регулирующей ступени с двухвенечным диском Кертиса и 18 ступеней давления, разбитых на 3 группы.

Ротор имеет гладкий вал постоянного диаметра с насаженными дисками плоского типа, не имеющими развитых втулок. Критическое число оборотов ротора турбины - 1690 в минуту, следовательно, ротор гибкий.

Передняя часть корпуса турбины с клапанной и сопловой коробками отлита из высоколегированной стали.

Диафрагмы, кроме трёх последних по ходу пара, стальные, сварные.

Корпус турбины опирается двумя лапами на передний подшипник и фиксируется гибкими элементами, расположенными сверху и снизу подшипника.

В свою очередь передний подшипник опирается на фундаментную плиту через две гибкие опоры.

На переднем конце ротора расположено колесо центробежного масляного насоса, откованное заодно с валом. Доковые поверхности этого колеса одновременно служат в качестве гребня упорного подшипника, что позволяет обеспечить надёжное маслоснабжение упорно-опорного узла при очень компактной его конструкции.

Концевые уплотнения выполнены в виде лабиринтов из усиков, зачеканенных в тело ротора против выточек в обоймах уплотнения.

Выхлопная часть турбины отлита заодно с корпусом заднего подшипника турбины переднего подшипника генератора. Валы подшипника и генератора соединены жёсткой муфтой.

Парораспределение ЧСД и ЧНД осуществляется поворотными диафрагмами.

Турбина имеет гидродинамическую систему регулирования, выполненную в виде конструктивного блока, установленного на корпусе переднего подшипника.

В качестве регулятора скорости использован главный масляный насос, характеристика Q - H которого обеспечивает жёсткую зависимость развиваемого давления только от числа оборотов ротора.

Система регулирования имеет три импульсных линии, управляющих тремя сервомоторами. Полный вес турбинной установки в поставке Калужского турбинного завода 146 т.

Особенности турбины Т-25 схема турбины К-100-90

Одноцилиндровые турбины с регулируемым отбором пара на теплофикацию или производство. Регулирование давления отборов осуществляется поворотной диафрагмой, установленной в камере отбора. Модификация Т-25 характеризуется наличием двух нерегулируемых отборов на производство.

Применен конденсатор с воздушным охлаждением, отсутствует система регенеративного подогрева питательной воды.

3. Дополнительное оборудование

Наименование

Тип

Кол-во

характеристики

Произ-ть

мі/час

мм в.

столба

1

2

3

4

Деаэратор 6 ата с баком объемом 75 мі

Деаэратор 6 ата с баком

объемом 75 мі

(проект рекострукции)

питальный электронасос

питальный электронасос

(проект рекострукции)

ДСП-300

ДСП-225

5Ц-10

ПЭ-270-150

20

2

19

1

300 т/час

225т/час

270

270

1500

Перечень и характеристики оборудования подпитки котлов

Наименование

Тип

Кол-во

Хар-ки

Произ-ть

мі/час

Напор

мм в.ст.

1

2

3

4

5

6

7

8

9

10

11

Насос сырой воды подпитки котлов

Подогреватели сырой воды подпитки котлов

Деаэраторы 1,2 ата подпитки котлов

Перекачивающие насосы из деаэратора 1,2 ата подпитки котлов в деаэратор 6 ата

Подогреватели сырой воды теплосети до ХВО

Подогреватели воды подпитки теплосети после ХВО (водоводяные)

Подогреватели воды подпитки теплосети после ХВО (пароводяные)

Подогреватели Х.О. воды подпитки котлов после ХВО

Деаэраторы 1,2 ата подпитки теплосети с баками по 75 мі (реконструирование)

Насосы подпитки теплосети

Аккумуляторные баки

8НДВ

6НДС

6НДВ

ПН-200

ДСА-150

ГИМ-150

КСМ-150Ч90

КСМ-100Ч90

БО-130

БО-200

5-220

СТ34-588-68

ПСВ-500-3-23

ПН-150

ПСВ-500-3-23

БП-43

ДСА-300

8НДВ

8НДВ

3

1

2

4

4

2

3

3

2

1

2

2

2

1

1

2

2

3

3

8

600

300

300

330

150

150

150

100

250

330

1100

350

1150

250

220

2Ч480

600-700

540

V=700 мі

75

65

39

90

90

90

90

120

50

Расчетная производительность установки подпитки теплосети 1800т/час, котлов - 550т/час.

В качестве золоуловительных устройств установлены:

- на котлах станции №1-9 - электрофильтры типа ДГП-35-3 (кпд=90-96%),

- на котлах станции №10-11 - многоводные каплеуловители с трубами вентури (кпд=97-98%),

- на котлах станции №12,13,15-19 - центробежные скрубберы ВТИ с трубами вентури (кпд=95-98%),

- на котлах станции №14 - центробежные скрубберы МП ВТИ (88-91%).

В проекте реконструкции предусмотрена замена золоуловителей на котлах станции №1-9,14 многоводные каплеуловители с трубами вентури кпд=97-98% и далее аналогично на котлах станции №12,13,15-19.

На котлах станции №20,21 предусматривается установка также многоводных каплеуловителей трубами вентури.

Котлы станции №1-3,4-6,7-9 подключены к дымовым трубам №№1,2,3 высотой 100 м и диаметром устья 5,1 м.

Котлы станции №10-14,15-19 подключены к дымовым трубам №№4,5 высотой 100 м и диаметром устья 6 м.

Шлакоудаление на котлах станции №1-19 раздельное, гидравлическое, с возвратом осветленной воды. Транспортировка шлаковой пульпы на шлакоотвал осуществляется аппаратами Москалькова, установленными в котельном цехе, а золовой пульпы на золоотвал багерными насосами, установленными в 2-х отдельно стоящих багерных насосных. На котлах ТЭЦ №20-21 предусматривается совместное гидравлическое шлакоудаление с возвратом осветленной воды. Для удаления шлаковой пульпы предусматривается отдельно стоящая багерная насосная.

Перечень и характеристика оборудования шлакоудаления

Наименование

Тип

Кол-во

Характеристики

Произ-ть

мі/час

Напор мм

водного столба

1

2

3

4

5

6

Багерный насос

Багерный насос

(к/а №20,21)

гидроаппарат Москалькова

насос эжектирующей воды

насос смывной воды

насос смывной воды

12Гр-8а

Гр АТ 380/40

М-2

А я ПЗ-150

6НДС

6

3

8

4

6

4

670

350

150

240-320

150

57

40

480

64-80

60

Заключение

Теплоснабжение России обеспечивают 485 ТЭЦ, около 6,5 тыс. котельных мощностью более 20 Гкал/час, более 100 тысяч мелких котельных и около 600 тысяч автономных индивидуальных теплогенераторов.

В организациях, занимающихся строительством, эксплуатацией, ремонтом, наладкой, контролем систем теплоснабжения и теплопотребления работает около 2 млн человек. Суммарная реализация тепла в стране составляет 2060 млн. Гкал/год, в том числе жилищный сектор и бюджетная сфера потребляют 1086 млн. Гкал, промышленность и прочие потребители 974 млн. Гкал. На теплоснабжение расходуется более 400 млн. т.у.т./год.

Особенностью тепловой схемы любого производства является его оборудование и выгоду на производстве тоже создает правильное оборудование.

Список литературы

1. Рыжкин В.Я. «Тепловые электрические станции».

2. Костюк А.Г. «Турбины ТЭС и АЭС».

Размещено на Allbest.ru

...

Подобные документы

  • Вывод тепловых сетей и водогрейных котельных на период летнего простоя. Пуск водогрейных котлов и тепловых сетей на зимний режим работы. Режимы оборудования ТЭЦ. Работа тепловых установок с промышленным и теплофикационным отбором пара и конденсацией.

    презентация [1,6 M], добавлен 23.07.2015

  • Расчет тепловых нагрузок на отопление сетевой и подпиточной воды, добавочной воды в ТЭЦ. Загрузка турбин, котлов и составляется баланс пара различных параметров для подтверждения правильности подбора основного оборудования. Выбор паровых турбин.

    курсовая работа [204,3 K], добавлен 21.08.2012

  • Назначение, конструкция и эксплуатационная характеристика котла ТП-10. Пароводянная схема и конструктивные характеристики прямоточных котлов. Система пылеприготовления. Краткое описание шаровой барабанной мельницы для приготовления пыли из угля.

    реферат [390,9 K], добавлен 28.03.2010

  • Ознакомление с предприятием по выработке тепловой и электрической энергии. Безопасность труда на энергопредприятиях; средства защиты человека от вредных производственных факторов. Изучение тепловой схемы установки, устройства паровых турбин и котлов.

    курсовая работа [7,6 M], добавлен 04.02.2014

  • Планировка микрорайона и трассировка тепловых сетей, тепловые нагрузки. Расчет тепловой схемы котельной, оборудование. Пьезометрический и температурный график. Гидравлический, механический расчет трубопроводов, схемы присоединения тепловых потребителей.

    курсовая работа [532,9 K], добавлен 08.09.2010

  • Обоснование строительства электрической станции и выбор основного оборудования. Величины тепловых нагрузок. Выбор оборудования, расчет годового расхода топлива на ТЭЦ. Схема котлов. Расчет теплогенерирующей установки. Водоподготовительная установка.

    дипломная работа [756,2 K], добавлен 01.10.2016

  • Расчет тепловой нагрузки и построение графика. Предварительный выбор основного оборудования: паровых турбин и котлов. Суммарный расход сетевой воды на теплофикацию. Расчет тепловой схемы. Баланс пара. Анализ загрузки турбин и котлов, тепловой нагрузки.

    курсовая работа [316,0 K], добавлен 03.03.2011

  • Определение расчетных тепловых нагрузок, схемы присоединения водоподогревателя к тепловой сети и метода регулирования. График регулирования по совмещенной нагрузке отопления и горячего водоснабжения. Гидравлический расчет тепловых сетей района города.

    курсовая работа [329,8 K], добавлен 02.05.2016

  • Устройство котельного и турбинного оборудования, паровых и водогрейных котлов. Классификация циркуляционных насосов. Назначение элементов тепловых схем источников и систем теплоснабжения, особенности его эксплуатации. Основные типы теплообменников.

    отчет по практике [1,2 M], добавлен 19.10.2014

  • Описание системы теплоснабжения. Климатологические данные города Калуга. Определение расчетных тепловых нагрузок района города на отопление, вентиляцию и горячее водоснабжение. Гидравлический расчет водяных тепловых сетей. Эффективность тепловой изоляции.

    курсовая работа [146,6 K], добавлен 09.05.2015

  • Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.

    курсовая работа [7,5 M], добавлен 24.06.2009

  • Применение турбин как привода электрического генератора на тепловых, атомных и гидро электростанциях, на морском, наземном и воздушном транспорте. Конструкция современных паровых турбин активного типа. Разница между активной и реактивной турбиной.

    презентация [131,1 K], добавлен 16.02.2015

  • Подземная и надземная прокладка тепловых сетей, их пересечение с газопроводами, водопроводом и электричеством. Расстояние от строительных конструкций тепловых сетей (оболочка изоляции трубопроводов) при бесканальной прокладке до зданий и инженерных сетей.

    контрольная работа [26,4 K], добавлен 16.09.2010

  • Определение расчётных тепловых нагрузок района города. Построение графиков расхода теплоты. Регулирование отпуска теплоты. Расчётные расходы теплоносителя в тепловых сетях. Гидравлический и механический расчёт водяных тепловых сетей, подбор насосов.

    курсовая работа [187,6 K], добавлен 22.05.2012

  • Краткая характеристика предприятия ОАО "Куйбышевский нефтеперерабатывающий завод". Назначение и устройство оборудования котельного цеха. Тепловая схема ТЭЦ. Подготовка питательной воды. Характеристика и краткое описание котлоагрегата БКЗ100-39ГМА.

    отчет по практике [29,8 K], добавлен 05.12.2013

  • Выбор оборудования котельной. Расчет тепловой мощности абонентов на отопление и вентиляцию. Расчет годового теплопотребления и топлива. Гидравлический расчет тепловых сетей: расчет паропровода, водяных сетей, построение пьезометрического графика.

    курсовая работа [188,7 K], добавлен 15.09.2012

  • Описание примитивной паровой турбины, сделанное Героном Александрийским. Патент на первую газовую турбину. Комплексная теория турбомашин. Основные виды современных турбин. Привод электрического генератора на тепловых, атомных и гидроэлектростанциях.

    презентация [1,7 M], добавлен 23.09.2015

  • История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.

    реферат [196,1 K], добавлен 30.04.2010

  • Принцип действия тепловых конденсационных электрических станций. Описание назначения и технических характеристик тепловых турбин. Выбор типа и мощности турбогенераторов, структурной и электрической схем электростанции. Проектирование релейной защиты.

    дипломная работа [432,8 K], добавлен 11.07.2015

  • Определение годового и часового расхода тепла на отопление и на горячее водоснабжение. Определение потерь в наружных тепловых сетях, когенерации. График центрального качественного регулирования тепла. Выбор и расчет теплообменников, котлов и насосов.

    дипломная работа [147,1 K], добавлен 21.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.