Симметрия законов в физике
Фундаментальные физические законы. Общие законы в структуре фундаментальных физических теорий, охватывающие все формы движения материи и процессы. Важнейшие законы сохранения, справедливые для любых изолированных систем. Простейший пример симметрии.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 20.12.2015 |
Размер файла | 38,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию
«Пермский государственный научно-исследовательский политехнический университет»
Кафедра общей физики
Реферат
Симметрия законов в физике
Проверил:
Преподаватель:
Кирчанов Вячеслав Сергеевич
Факультет: ГумФ
Специальность: «Государственное и
муниципальное управление»
Группа: МУ-14/1 бз
Ванькова А.А.
Пермь - 2015
Фундаментальные физические законы - это наиболее полное на сегодняшний день, но приближенное отражение объективных процессов в природе. Различные формы движения материи описываются различными фундаментальными теориями. Каждая из этих теорий описывает вполне определенные явления: механическое или тепловое движение, электромагнитные явления.
Существуют более общие законы в структуре фундаментальных физических теорий, охватывающие все формы движения материи и все процессы. Это законы симметрии, или инвариантности, и связанные с ними законы сохранения физических величин.
Законы сохранения физических величин - это утверждения, согласно которым численные значения этих величин не меняются со временем в любых процессах или классах процессов. Идея сохранения появилась сначала как чисто философская догадка о наличии неизменного, стабильного в вечно меняющемся мире. Еще античные философы-материалисты пришли к понятию материи как неуничтожимой и несотворимой основы всего сущего. С другой стороны, приводило к представлению о вечном движении материи как важном ее свойстве. С появлением материалистической формулировки механики на этой основе появились законы сохранения.
Важнейшими законами сохранения, справедливыми для любых изолированных систем, являются: - Закон сохранения энергии; - Закон сохранения импульса.
Для человеческого разума симметрия обладает, по-видимому, совершенно особой притягательной силой. Нам нравится смотреть на проявление симметрии в природе, на идеально симметричные сферы планет или Солнца, на симметричные кристаллы, на снежинки, наконец на цветы, которые почти симметричны. Однако сейчас мне хотелось бы поговорить не о симметрии предметов, а о симметрии самих законов физики. Что такое симметрия предмета - понять легко, но может ли быть симметричным физический закон? Нет, конечно, но физики получают особое удовольствие от того, что берут самые обыденные слова и используют их для обозначения совсем других понятий. В нашем случае некоторые свойства физических законов казались им очень похожими на те свойства предметов, которые определяют их симметрию, и физики стали говорить о симметрии физических законов. Вот о ней-то и пойдет здесь речь.
Что такое симметрия? Посмотрите на меня, и вы убедитесь, что моя левая половина симметрична правой, по крайней мере внешне. Точно так же или несколько иначе симметрична ваза. Что все это значит? Симметричность моего тела означает, что если перенести все, что у меня есть, справа налево и наоборот, т. е. если поменять эти две стороны местами, то я буду выглядеть точно так же, как и раньше. Особого вида симметрией обладает квадрат - его можно повернуть на 90°, и он снова будет выглядеть так же, как и прежде.
Простейшим примером симметрии такого рода - и вы сразу поймете, что это совсем не симметрия правого и левого, - может служить симметрия относительно пространственного переноса. Вот что мы имеем в виду. Если построить любую установку и при ее помощи поставить какой-нибудь опыт, а затем взять и построить точно такую же установку для точно такого же эксперимента с точно таким же объектом, но в другом месте, не здесь, а там, т. е. просто перенести наш опыт в другую точку пространства, то окажется, что во время обоих опытов происходит в точности одно и то же. Конечно, это утверждение не нужно понимать слишком упрощенно. Если бы я на самом деле построил здесь, где я сейчас сижу, какую-нибудь установку, а затем попытался перенести ее на 6 м влево, то она вошла бы в стену, со всеми вытекающими отсюда последствиями. Поэтому, говоря о симметрии относительно пространственных переносов, необходимо учитывать все, что играет в эксперименте существенную роль, и переносить все это вместе с установкой. Возьмем, например, какую-нибудь систему с маятником и попробуем перенести ее на 20 тысяч миль вправо. Ясно, что система не будет работать правильно, так как колебания маятника зависят от притяжения Земли. Но если представить себе, что вместе с установкой я переношу и нашу планету, то система будет работать по-прежнему. В том-то и дело - нужно переносить сразу все, что имеет хоть малейшее значение. Это правило звучит довольно нелепо. В самом деле, можно просто перенести экспериментальную установку, а если она не заработает, сказать, что мы перенесли еще не все, - и вы оказываетесь правы и в том и в другом случае. Но на самом деле это не так, ибо вовсе не очевидно, что мы обязательно будем правы. Интереснейшее свойство природы как раз и заключается в том, что всегда удается перенести достаточно материала, чтобы установка вела себя, как и раньше. А это уже не пустые слова. Мне хотелось бы на примере показать, что это утверждение правильно. Возьмем в качестве иллюстрации закон всемирного тяготения, утверждающий, что сила взаимного притяжения двух тел обратно пропорциональна квадрату расстояния между ними. Напомню, что тела реагируют на силу изменением скорости в направлении силы. Возьмем теперь два тела, скажем, планету, вращающуюся вокруг Солнца, и перенесем эту пару в другую часть Вселенной. Расстояние между ними, естественно, не изменится и, следовательно, не изменяется и действующие между ними силы. Более того, в новой ситуации сохранится и скорость движения и все пропорции происходящих изменений, и в одной системе все будет происходить точно так же, как и в другой. Уже то, что в законе всемирного тяготения используется "расстояние между двумя телами", а не какое-то расстояние до центра Вселенной, показывает, что этот закон допускает переносы в пространстве. Вот в этом и заключается одна из симметрий физических законов - симметрия относительно пространственных переносов. Другое свойство симметрии связано с тем, что для физических законов не существенны и сдвиги во времени. Запустим планету вокруг Солнца в определенном направлении. И предположим, что мы могли бы запустить ее же снова на 2 часа или на 2 года позже, запустить снова с самого начала точно таким же образом при точно таком же исходном расположении планет и Солнца, как и при первом запуске. Тогда все будет происходить точно так же, как и в первом случае, поскольку вновь закон всемирного тяготения говорит о скорости и нигде не пользуется понятием абсолютного времени, в определенный момент которого необходимо начать измерения. По совести говоря, именно в этом конкретном примере мы не очень уверены в справедливости наших утверждений. Когда мы говорили о законах гравитации, мы упомянули о возможности изменения гравитационных сил во времени. А это означало бы, что наше предположение о допустимости сдвигов во времени неверно. Ведь если гравитационная постоянная через миллиард лет окажется меньше, чем сейчас, то неверно утверждать, что через миллиард лет движение наших экспериментальных планет и Солнца будет точно таким же, как и сегодня Известно, что в одном отношении это на самом деле не так. Это верно лишь в том, что касается законов физики. Но факты (а они могут сильно расходиться с известными нам законами) свидетельствуют, по-видимому, о том, что Вселенная имеет определенное начало во времени и что сейчас эта Вселенная постоянно расширяется. Могут сказать, что здесь мы тоже должны воспроизводить "географические" условия, как и при пространственных переносах, когда мы вынуждены были переносить не только установку, но и все остальное. В том же самом смысле можно утверждать, что для переноса во времени справедливо аналогичное правило и что нам нужно смещать во времени процессы расширения Вселенной вместе со всем остальным. Тогда мы должны были бы проводить наш второй эксперимент, сдвигая во времени момент рождения нашей Вселенной. Но не нам создавать вселенные. На этот процесс мы не можем оказать никакого влияния, и мы не можем даже получить экспериментальным путем хоть какое-нибудь представление о нем. Поэтому настолько, насколько это касается точных наук, мы ничего не можем сказать по этому поводу. Просто-напросто дело в том, что условия существования Вселенной, по-видимому, меняются во времени и галактики непрерывно удаляются друг от друга, так что если бы в каком-нибудь научно-фантастическом романе вы проснулись где-то в неизвестном будущем, то, измерив средние расстояния между галактиками, вы смогли бы узнать, о каком времени идет речь. Это значит, что с течением времени Вселенная не будет выглядеть так же, как она выглядит сейчас.
Однако сегодня принято проводить грань между физическими законами, которые говорят о том, каким будет движение, если оно началось при определенных условиях, и утверждениями о том, как была создана наша Вселенная, поскольку о последнем мы знаем совсем мало. Обычно считают, что астрономическая история, или космогоническая теория, - это не совсем то же, что законы физики. Правда, если вы спросите меня, в чем тут разница, то я окажусь в затруднительном положении. Самая характерная черта физического закона - это его общность, но если на белом свете существует что-нибудь действительно общее, то это факт разбегания всех небесных тел. Поэтому я не знаю точно, в чем тут разница. Если же условиться не обращать внимания на процессы, связанные с возникновением Вселенной, а брать лишь настоящие физические законы, известные нам, то сдвиг во времени не будет играть никакой роли.
Приведем еще несколько примеров законов симметрии. Один из них связан с фиксированными пространственными поворотами. Если проводить какой-либо опыт с установкой, построенной в каком-нибудь определенном месте, а затем взять другую точно такую же установку (возможно, перенесенную в другую точку пространства, где посвободнее) и повернуть ее так, чтобы все ее оси имели другую ориентацию, то установка будет работать точно таким же образом, как и раньше. Конечно, при этом нам снова нужно повернуть и все остальное, существенное для эксперимента. Если речь идет о дедовских часах и вы положите их на бок, маятник просто уткнется в стенку футляра и часы остановятся. Но если вместе с часами повернуть и Землю (которая и так все время поворачивается), часы будут идти по-прежнему. Математическое описание этой возможности поворота представляется довольно интересным. Для того чтобы описать, как протекает какой-либо процесс, мы пользуемся числами, показывающими, о каком месте идет речь. Эти числа называют координатами точки, и иногда нам приходится брать три числа, показывающих, как высоко над некоторой плоскостью расположена наша точка, как далеко она впереди или сзади (если число отрицательное) от нас и насколько она смещена от нас вправо или влево. Те, кто был в Нью-Йорке, знают, что устроенная таким образом нумерация улиц очень удобна, или, точнее, была удобна до тех пор, пока не изменили название Шестой авеню.
а - положение точки Р относительно меня характеризуется двумя числами х и у, число х показывает, насколько далеко вперед ушла от меня точка Р, а число у - насколько она смещена влево,
б - положение той же самой точки Р характеризуется двумя другими числами, если я стою на прежнем месте, но повернулся в сторону.
Поворот в пространстве с математической точки зрения выглядит следующим образом. Если я указываю положение некоторой точки (рис. 26), сообщая ее координаты х и у, а кто-то другой, повернувшись лицом в сторону, задает положение точки координатами х' и у', определенными относительно его собственного положения, то, как легко видеть, моя координата х представляет собой "смесь" обеих координат, вычисленных другим наблюдателем. Формула преобразования такова, что каждая координата х и у превращается в смесь двух координат х' и у'. Так вот, законы природы должны быть такими, что если смешать координаты подобным образом и подставить полученные выражения в уравнения, эти уравнения должны сохранять свой вид. Именно в этом состоит математическое проявление указанной симметрии. Добавление времени в качестве новой координаты к трем пространственным координатам - это не просто искусственный прием, как объясняется в большинстве научно-популярных книг, где говорится: "Мы добавляем временную координату к пространственным, потому что нельзя ограничиться указанием местоположения точки, нужно сказать еще и когда". Все это верно, но это не привело бы еще к образованию настоящего четырехмерного мира. Это означало бы лишь положить рядом две разные вещи. Настоящее пространство в известном смысле характеризуется тем, что оно существует само по себе, независимо от какой-то частной выбранной точки зрения, и когда мы смотрим под разными углами, часть того, что "спереди" или "сзади", может смешаться с тем, что "справа" или "слева". Точно так же и то, что "было" или "будет" во времени, может частично смешиваться с тем, что "там" или "здесь" в пространстве. Пространство и время оказываются неразрывно связанными между собой. После этого открытия Минковский заметил, что "отныне пространство само по себе и время само по себе должны обратиться в фикции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность". Этим конкретным примером я занимаюсь так подробно потому, что, по сути дела, именно отсюда и начинается настоящее изучение симметрий физических законов. Именно Пуанкаре предложил исследовать, что можно делать с уравнениями, не меняя при этом их вида. Именно ему принадлежит идея обратить внимание на свойства симметрии физических законов. В симметрии относительно пространственных переносов, сдвигов во времени и т. п. не было особой глубины. Симметрия же относительно равномерного прямолинейного движения очень интересна, и из нее вытекают самые разнообразные следствия. Более того, эти следствия можно распространять на законы, которых мы не знаем. Например, предполагая, что этот принцип справедлив и для распада ?-мезонов, мы можем утверждать, что при их помощи нельзя узнать, как быстро движется космический корабль. А это значит, что мы знаем хоть что-то о законах ?-мезонного распада, хотя у нас нет никаких сведений о том, чем же, собственно, вызывается этот распад. У физических законов есть немало и других свойств симметрии, и некоторые из них совсем другого рода. Я упомяну только несколько. Одно из подобных свойств состоит в том, что один атом можно заменить другим того же типа и это никак не скажется на любом явлении. Позволительно спросить: "А что значит одного типа?" И мне остается только ответить, что однотипные атомы позволяют заменять один другим без каких-либо последствий! Не правда ли, создается впечатление, что физики все время занимаются какой-то бессмыслицей. Атомы бывают разных типов, и если вы замените один атом атомом другого типа, то что-то изменится, а если того же типа, то ничего не изменится - и мы никогда не выйдем из заколдованного круга. Но настоящий смысл нашего утверждения состоит в том, что атомы одного типа существуют, что можно найти такие группы или классы атомов, в которых замена одного атома другим не будет иметь никакого значения. А так как количество атомов в таком крошечном кусочке вещества, как моль данного вещества, оценивается числом с 23 нулями, нам очень важно, что некоторые из них одинаковы, что не все они совершенно различны. На самом деле очень важно, что мы можем разделить их на конечное число (несколько сотен) различных типов, а раз это так, то наше утверждение о том, что один атом можно заменить без каких-либо последствий другим, однотипным, несет совсем немало информации. Наиболее важно это для квантовой механики. К сожалению, я не могу объяснить этого здесь, отчасти (и только отчасти) потому, что лекция предназначена аудитории без математической подготовки. Но и для подготовленного читателя это хитрый вопрос. В квантовой механике утверждение, что один атом можно заменить другим, однотипным, приводит к удивительным следствиям. Оно объясняет странное явление, наблюдаемое в жидком гелии, который течет по трубам, не испытывая какого-либо сопротивления, просто течет себе и течет и так никогда и не останавливается. Оно даже лежит в основе всей периодической системы элементов и объясняет, откуда берутся те силы, что не дают мне провалиться сквозь пол. Здесь я не могу говорить обо всем этом подробно, но мне хочется подчеркнуть важность исследования этих принципов.
Теперь вам может показаться, что все законы физики симметричны относительно любых изменений. Чтобы вы так не думали, я приведу несколько примеров. Первый из них - изменение масштаба. Мне кажется, Галилей считал, что открытие этого факта несимметричности законов природы относительно изменения масштаба не менее важно, чем открытые им законы движения, и именно поэтому он включил и то и другое в свою книгу "Диалог о двух новых науках". Вот еще один пример асимметрии закона физики. Если вы вращаетесь с постоянной угловой скоростью в космическом корабле, то неправильно было бы утверждать, что вы этого не заметите. Напротив. У вас начнется головокружение. Появятся и другие признаки: все предметы будут отброшены к стенам центробежной силой (называйте ее, как хотите - я надеюсь, что в этой аудитории нет преподавателей физики для первокурсников, которые захотели бы поправить меня). Определить, что Земля вращается, можно при помощи маятника или гироскопа, и вы, возможно, слышали, что в различных обсерваториях и музеях имеются маятники Фуко (1819-1868Точно так же в настоящее время у нас нет теории, которая описывала бы влияние галактик на земные явления так, чтобы из нее (естественным образом, а не в результате обмана или натяжек) следовало, что инерция вращения, эффекты вращения, скажем, вогнутая форма поверхности воды во вращающемся ведерке - все это объяснялось действием сил, создаваемых предметами, находящимися в непосредственной близости. Пока не известно, справедливо это или нет. Что так должно быть, говорится в принципе Маха, но справедливость этого принципа еще не была доказана. Экспериментально проще ответить на такие вопросы. Если мы вращаемся с постоянной скоростью относительно туманностей, наблюдаем ли мы при этом какие-либо специфические явления? Да. А если мы движемся в космическом корабле по прямой с постоянной скоростью относительно туманностей, увидим ли мы в этом случае какие-либо специфические явления? Нет. Это совершенно разные вещи. Нельзя утверждать, что всякое движение относительно. Не в этом содержание принципа относительности. Он утверждает лишь, что нельзя обнаружить изнутри равномерного и прямолинейного (относительно туманностей) движения. Еще один закон симметрии, о котором я хочу поговорить теперь, интересен и сам по себе, и своей историей. Он связан с вопросом о зеркальном пространственном отражении. Пусть я построил какую-то установку, скажем часы, а затем вблизи построил другие часы, являющиеся зеркальным отображением первых. Они подходят друг к другу, как две перчатки, правая и левая; каждая пружина, которая заводится в одних часах в одну сторону, в других часах заводится в другую и т. д. Я завожу и те и другие часы, ставлю на них одинаковое время, и пусть они себе идут. Вопрос - будут ли они показывать всегда одно и то же время или нет? Будет ли весь механизм одних часов, как в зеркале, повторять поведение другого? Не знаю, какой ответ на эти вопросы покажется вам правильным. Вероятнее всего, положительный, так думает большинство. Конечно, мы не имеем сейчас в виду географию. Пользуясь географией, мы можем разобраться, где право и где лево, Мы можем сказать, например, что если мы находимся во Флориде и повернемся лицом к Нью-Йорку, то океан окажется у нас справа. Это позволяет различать право и лево, и если в наших часах используется морская вода, то зеркальное отображение часов не будет ходить, так как соответствующая часть механизма не попадет в воду. Тогда вам пришлось бы предположить, что для вторых часов изменилась и география Земли: вы помните, зеркально отобразиться должно все существенное. Нас не интересует сейчас и история. Если вы раздобудете на заводе винт, то, вероятнее всего, у него будет правая резьба, и вы можете утверждать, что вторые часы не будут вести себя точно так же, поскольку для них будет труднее достать нужные винтики. Но это относится лишь к характеру вещей, которые обычно выпускает наша промышленность. Так или иначе, вероятнее всего, что наше первое предположение будет таким: зеркальное отображение ничего не меняет. В самом деле, законы тяготения, оказывается, таковы, что в часах, действие которых основано на этих законах, ничего не изменится. Подобным же свойством обладают и законы электричества и магнетизма, так что, если в наших часах есть к тому же и электрическая или магнитная начинка, какие-то там провода, токи и т. п., вторые часы будут по-прежнему работать в полном согласии с первыми. Ничего не изменится также, если в наших часах используются обычные ядерные реакции. Но есть явления, для которых эта разница существует, и я сейчас перейду к этому вопросу.
Возможно, вы слышали, что измерять концентрацию сахара в воде можно, пропуская через воду поляризованный свет. Так вот, возьмем кусок поляроида, пропускающего лишь свет с определенной поляризацией, и пропустим луч света через него и через сахарный раствор. Мы увидим, что если после прохождения через сахарный раствор луч пройдет еще через один кусок поляроида, то чем толще пройденный слой раствора, тем больше вправо нужно будет повернуть второй кусок поляроида, чтобы на выходе увидеть луч света. Теперь, если вы попробуете пропускать свет через тот же раствор, но в обратном направлении, то окажется, что вам снова придется поворачивать выходной кусок поляроида вправо. Вот мы и получили разницу между правым и левым. Сахарный раствор и пучок света можно использовать в часах. Пусть у нас есть сосуд с сахарной водой и мы пропускаем через него луч света, а второй кусок поляроида повернули так, что он пропускает весь свет. Предположим затем, что мы воспроизведем зеркальное отображение всей этой конструкции во вторых часах, надеясь, что плоскость поляризации света повернется влево. Ничего не выйдет. Свет, как и в первых часах, будет поворачиваться вправо, и второй кусок поляроида его не пропустит. Значит, при помощи сахарного раствора мы сможем обнаружить разницу между нашими двумя часами.
Это замечательный факт, и с первого взгляда кажется, что физические законы не обладают симметрией относительно зеркальных отображений. Но сахар, которым мы пользовались во время наших опытов, вероятнее всего. изготовлен из сахарной свеклы. Молекулы же сахара сравнительно просты, и их можно воспроизвести в лаборатории из углекислого газа и воды после большого числа промежуточных преобразований. Так вот, если вы поставите аналогичный опыт с искусственным сахаром, который химически ничем не отличается от обычного, то окажется, что поляризация света при этом вообще не меняется. Сахаром питаются бактерии, и если внести бактерии в водный раствор искусственного сахара, то окажется, что они съедают лишь половину сахара, и после того, как они съедят ее, плоскость поляризации света, пропускаемого через оставшуюся сахарную воду, станет поворачиваться влево.
Симметрия законов в физике - это свойство физических величин, детально описывающих поведение систем, оставаться неизменными (инвариантными) при определенных преобразованиях, которым могут быть подвергнуты входящие в них величины. Понятие симметрии играет в жизни человека важную роль. Природа красива и требует для своего описания красивых уравнений. Возможность записать законы природы.
Список использованной литературы
физический материя симметрия
1. Казакова А.А. «Концепции современного естествознания <…> для студентов ЗФ». - Новосибирск: НГТУ, 2009.
2. Карненков С.Х. «Основные концепции естествознания». - М.: Культура и спорт, ЮНИТИ, 1998.
3. Мигдал А.Б., Асламазов Л.Г. «Энциклопедический словарь юного физика». М.: Педагогика, 1984.
4. Урманцев Ю.А. «Симметрия природы и природа симметрии». - Москва: Мысль, 1974.
5. Симметрия в физике. [Внутренняя и внешняя симметрия] Режим доступа: http://www.physicedu.ru/phy-57.html.
Размещено на Allbest.ru
...Подобные документы
Фундаментальные законы сохранения физических величин. Свойства симметрии физических систем. Связь законов сохранения с симметрией пространства и времени. Принципы симметрии в физике. Симметрия как основа описания объектов и процессов в микромире.
реферат [327,5 K], добавлен 17.10.2008Изучение сути законов сохранения (вещества, импульса) - фундаментальных физических законов, согласно которым при определенных условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.
контрольная работа [374,1 K], добавлен 26.08.2011Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.
статья [77,4 K], добавлен 07.05.2002Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.
шпаргалка [7,1 M], добавлен 30.10.2010Законы сохранения импульса и момента импульса. Геометрическая сумма внутренних сил механической системы. Законы Ньютона. Момент импульса материальной точки. Изотропность пространства. Момент импульса материальной точки относительно неподвижной оси.
презентация [337,7 K], добавлен 28.07.2015Ускорение как непосредственный результат действия силы на тело. Теорема о кинетической энергии. Законы сохранения импульса и механической энергии. Особенности замкнутой и консервативной механических систем. Потенциальная энергия взаимодействующих тел.
реферат [132,0 K], добавлен 22.04.2013Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.
учебное пособие [10,2 M], добавлен 10.05.2010Законы сохранения в механике. Проверка закона сохранения механической энергии с помощью машины Атвуда. Применение закона сохранения энергии для определения коэффициента трения. Законы сохранения импульса и энергии.
творческая работа [74,1 K], добавлен 25.07.2007Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.
курс лекций [1,0 M], добавлен 13.10.2011Основные законы оптических явлений. Законы прямолинейного распространения, отражения и преломления света, независимости световых пучков. Физические принципы применения лазеров. Физические явления и принципы квантового генератора когерентного света.
презентация [125,6 K], добавлен 18.04.2014Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.
реферат [18,6 K], добавлен 27.05.2003Изопроцессы как термодинамические процессы, в которых количество вещества и параметры состояния неизменны. Характеристика, графическое представление, формулы и физические законы, описывающие изобарный, изохорный, изотермический и адиабатический процессы.
презентация [209,3 K], добавлен 18.05.2011Физические законы для систем электрического и теплового зарядов. Параметр электрического сопротивления. Механический эквивалент тепла. Термо-электрический потенциал. Закон сохранения и преобразования энергий. Интегральный и дифференциальный процессы.
контрольная работа [398,8 K], добавлен 10.05.2015Кинетическая энергия, работа и мощность. Консервативные силы и системы. Понятие потенциальной энергии. Закон сохранения механической энергии. Условие равновесия механических систем. Применение законов сохранения. Движение тел с переменной массой.
презентация [15,3 M], добавлен 13.02.2016Понятие механического движения. Прямолинейное равномерное и неравномерное движение. Законы криволинейного движения. Основы классической динамики, законы Ньютона. Силы в природе и движения тел. Пространство и время, специальная теория относительности.
контрольная работа [29,3 K], добавлен 04.08.2011Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.
реферат [34,2 K], добавлен 26.04.2007Изучение законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Анализ причин изменения движения тел. Исследование инерциальных систем отсчета. Взаимодействие тел с разной массой.
презентация [531,3 K], добавлен 08.11.2013Кинематика материальной точки. Законы Ньютона и законы сохранения. Постоянное электрическое поле. Теорема Гаусса. Потенциал - энергетическая характеристика поля. Электроемкость уединенного проводника. Электрическое поле в диэлектрике. Закон Ома.
курс лекций [1021,2 K], добавлен 09.02.2010Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.
презентация [1,3 M], добавлен 02.10.2014Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.
контрольная работа [29,8 K], добавлен 16.08.2009