Сложение мощностей генераторов высокой частоты
Синфазные мостовые схемы сложения мощностей на двухпроводных линиях. Сопротивление моста для генератора в нормальной и аварийной ситуациях. Коаксиальный и полосковый синфазные мосты, принцип их действия. Варианты упрощенного синфазного полоскового моста.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 27.12.2015 |
Размер файла | 341,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Сложение мощностей генераторов высокой частоты
генератор сопротивление мост
При совместной работе АЭ на общую нагрузку, вследствие взаимной зависимости режимов, существенно снижается надежность генератора.
Поэтому по возможности избегают параллельного соединения АЭ в схеме генератора.
Причем в случае биполярных транзисторов не допускается параллельная работа, если разброс параметров превышает 5%. Это положение иллюстрируется рисунком 4.27
Биполярный транзистор управляется током и поэтому различие входных сопротивлений транзисторов (даже в одной партии параметры транзисторов могут отличаться в несколько раз) приводит к существенному различию токов i1, i2. В результате, при параллельной работе, транзистор с меньшим входным сопротивлением получит больший ток управления, и будет отдавать ток в нагрузку, тогда как другой из-за малого тока базы работать практически не будет. Таким образом, желаемого удвоения мощности генератора не произойдёт.
Проблема выравнивания входных сопротивлений может быть частично решена включением последовательно с цепями базы резисторов R>>rвх. При этом величина входных токов в основном будет определяться дополнительными резисторами.
Однако в этом случае существенно возрастает входная мощность генератора, падает коэффициент усиления, а на высоких частотах за счет входной ёмкости транзистора усиление станет практически невозможным. В практике генераторостроения известны случаи параллельного включения до 10 транзисторов, но при этом категорически оговаривалась необходимость подбора транзисторов с разбросом параметров не более 5%. Такой генератор имеет крайне низкую надежность и сложен в эксплуатации.
Широкое применение находит двухтактный вариант генератора на биполярных транзисторах, т.к. в этом случае удваивается входное сопротивление генератора и облегчаются условия межкаскадного согласования. Проблема выравнивания входных сопротивлений решается (как и в ламповых схемах) подбором индивидуального смещения на базы транзисторов.
В случае полевых транзисторов с изолированным затвором используется как параллельное, так и двухтактное включение. Это объясняется тем, что полевой транзистор управляется напряжением на затворе и при параллельном соединении на всех транзисторах одно и тоже входное напряжение. Поэтому все транзисторы работают достаточно эффективно.
Что касается надёжности таких генераторов, то она в любом из рассмотренных случаев остается низкой.
Синфазные мостовые схемы сложения мощностей
В последние десятилетия, для увеличения мощности передатчиков широко применяются мостовые схемы сложения мощности, обеспечивающие независимую работу АЭ (или генераторов). Простейший электрический мост представляет собой двухвходовое устройство, собранное из 4-х пассивных элементов Z1...Z4. (см. рисунок 4.28).
Если в этой схеме выполняется условие Z1/Z3 = Z2/Z4, то при подключении источника напряжения ко входу 1-2, разность потенциалов между точками 3-4 будет равна 0. Поменяем в последнем выражении местами Z2 и Z3. В результате получим условие, при котором напряжение приложенное ко входу 3-4 не попадёт на вход 1-2. Таким образом, условие "баланса" моста можно представить в следующем виде Z1*Z4 = Z3*Z2. Если теперь подключить ко входам моста два генератора, то при выполнении условия баланса моста, генераторы будут работать независимо друг от друга.
Для того чтобы электрический мост можно было использовать для сложения мощностей, два соседних элемента моста должны быть активными, а остальные - реактивными. Такой мост представлен на рисунке 4.29.
Амплитуды и фазы напряжений U1 и U2 подбираются так, чтобы токи I1 и I2 были синфазными и равными по величине. Тогда для направлений, выбранных на рисунке, токи суммируются в резисторе R4 и вычитаются в резисторе R3. В результате мощность обоих генераторов выделяется в резисторе R4, который в этом случае выполняет функции нагрузки. Резистор R3 представляет собой балластную нагрузку.
Хотя в идеальном случае мощности в балластной нагрузке нет, тем не менее, исключать ее из схемы нельзя, т.к. только при её наличии обеспечивается независимость работы генераторов. Поскольку сохранить идеальную балансировку моста в процессе эксплуатации невозможно, часть мощности генераторов всегда выделяется и в балластной нагрузке. В реактивных элементах моста активной мощности естественно нет. В качестве реактивных элементов предпочтительнее использовать емкости, т.к. у конденсаторов потери меньше, чем в катушках индуктивности. Если фазу напряжения одного из генераторов изменить на 180 градусов, резисторы R3 и R4 поменяются ролями.
Практическое применение находят электрические мосты трех типов:
1. Синфазные мосты, для нормальной работы которых выходные напряжения генераторов должны быть синфазными.
2. Квадратурные мосты для сложения мощностей, в которых необходимо обеспечить сдвиг напряжений генераторов по фазе на 90 градусов.
Эти мостовые устройства относительно узкополосны, т.к используют резонансные цепи.
3. Мосты сложения мощностей на широкополосных трансформаторах.
На рисунке 4.30 представлены варианты Т-образных синфазных мостов на сосредоточенных элементах.
Рисунок 4.30 - Варианты синфазных мостов на сосредоточенных LC -элементах.
Для того чтобы убедиться в мостовых свойствах схем на рисунке 4.30, определим входное сопротивление моста для генератора в нормальной и аварийной ситуации, когда один из генераторов отключен.
Рассмотрим такие ситуации на примере первой Т-образной мостовой схемы. При работе двух генераторов точки подключения генераторов эквипотенциальны, поэтому ток в цепи балластного резистора отсутствует. По цепи L,Rн протекает ток двух генераторов и кажущееся сопротивление элементов этой цепи удваивается. В результате для расчета входного сопротивления моста получится эквивалентная схема представленная на рисунке 4.31а.
Рисунок 4.31 -Эквивалентные схемы Т-моста.
Независимо от наличия, или отсутствия второго генератора, входное сопротивление моста на резонансной частоте остается неизменным, что является признаком мостового устройства. Аналогичные соотношения могут быть получены и для остальных схем Т-образных мостов на рисунке 4.30. Заинтересованный читатель может проверить это самостоятельно.
Заметим, что в аварийной ситуации мощность оставшегося генератора поровну распределяется на балластной и полезной нагрузке. Это означает, что общая мощность на выходе схемы сложения при отключении одного генератора упадёт в 4 раза. Потери мощности в балластной нагрузке крайне не желательны, поэтому в устройствах с выходной мощностью более 0,5…1 кВт используют схемы обхода моста сложения мощностей. При этом в аварийной ситуации мост сложения мощностей отключается, а оставшийся генератор подключается непосредственно к нагрузке и отдает в неё всю мощность.
Очень важно обеспечить равенство сопротивления нагрузки и входного сопротивления моста, т.к. в этом случае отпадает необходимость подстройки генератора после обхода моста. Из расчета входных сопротивлений Т-образного моста (4.12), (4.13) следует, что условия обхода для него выполняются.
Мосты на сосредоточенных элементах применяются в диапазоне частот примерно до 2 - 3 МГц. На более высоких частотах, как правило, используются мосты на отрезках длинных линий (коаксиальных, двухпроводных, полосковых).
На рисунке 4.32 представлены два типа синфазных мостовых устройств на двухпроводных линиях, применяемые в диапазоне до 30 МГц.
Рисунок 4.32 -Синфазные мосты на двухпроводных линиях.
Токи генераторов в сторону полезной нагрузки проходят одинаковые пути равные лямбда/4 и в нагрузке складываются. В сторону балластной нагрузки,
вследствие разности путей, токи генераторов приходят в противофазе и взаимно компенсируются. Кажущееся сопротивление в точках подключения полезной нагрузки составит 2Rн, а точки подключения балласта окажутся короткозамкнутыми. Как отмечалось выше, отрезок линии длиной (2n+1) лямбда/4 короткозамкнутый на конце имеет входное сопротивление равное бесконечности. Таким образом, токи генераторов буду протекать только в сторону полезной нагрузки.
При выходе из строя и отключении одного генератора, ток оставшегося генератора поровну распределится между полезной и балластной нагрузками. Поскольку Rн=Rб, то общее входное сопротивление моста, равное параллельному соединению и , также определится выражением (4.14). Следовательно, рассмотренное устройство действительно обладает свойствами электрического моста.
На практике, особенно на нижних частотах ВЧ диапазона длина отрезков линии может быть очень велика (десятки метров), поэтому вместо отрезка 3 лямбда/4 используют скрещивание проводников четвертьволновой линии, получая таким образом необходимый фазовый сдвиг 180 град. Этот вариант также представлен на рисунке 4.32.
На частотах выше 50 МГц используются отрезки коаксиальных и полосковых линий. Варианты таких мостов представлены на рисунке 4.33.
Рисунок 4.33 -Коаксиальный и полосковый синфазные мосты.
Принцип их действия ничем не отличается от двухпроводных мостов. Но поскольку такие линии не поддаются скрещиванию, вариант с укороченной стороной здесь не возможен.
В диапазоне сантиметровых и более коротких волн возможно использование упрощенного синфазного моста, варианты которого представлены на рисунке 4.34.
Рисунок 4.34 -Варианты упрощенного синфазного полоскового моста.
Как и в предыдущем случае, входное и волновое сопротивления моста определяются выражениями (4.14) и (4.15). Форма мостов этого типа определяется необходимостью слабой электромагнитной связи между линиями. Вариант моста на рисунке 4.34а можно применять лишь в том случае, когда расстояние между точками подключения генераторов не превышает длины безвыводного балластного резистора.
В противном случае индуктивность выводов этого резистора может существенно повлиять на работу моста. Чтобы сблизить концы линий при слабой связи между ними, используются варианты представленные на рисунках 4.34б и 4.34в.
Размещено на Allbest.ru
...Подобные документы
Баланс активных и реактивных мощностей в энергосистеме. Нормальное отклонение частоты переменного тока. Связь между изменениями частоты и напряжения с изменениями генерируемой активной и реактивной мощностями. Изменение реактивной мощности на входе.
презентация [601,5 K], добавлен 26.10.2013Назначение крана и описание работы механизма перемещения моста крана. Расчет механических нагрузок электродвигателя, показателей его надежности. Определение момента инерции рабочей машины; активной и реактивной мощности, потребляемой из сети двигателем.
курсовая работа [630,5 K], добавлен 11.03.2012Определение параметров схемы замещения, потоков мощностей и напряжений в узлах. Расчет действительного предела мощности генератора. Вычисление динамической устойчивости электрической системы при трехфазном и двухфазном на землю коротких замыканий.
курсовая работа [649,5 K], добавлен 11.02.2015Формирование модели выбора структуры генерирующих мощностей. Расчет коэффициентов уравнений ограничений и целевой функции. Характеристика программы "Оптимум", структура генерирующих мощностей и ее анализ. Выбор номинального напряжения и сечения проводов.
курсовая работа [293,5 K], добавлен 03.12.2012Расчет схемы с использованием топологических матриц. Определение сопротивления схемы относительно зажимов заданного резистора. Расчет токов во всех ветвях схемы. Составление баланса мощности. Сумма мощностей потребителей. Расхождение мощности по модулю.
контрольная работа [180,5 K], добавлен 04.03.2013Выбор количества, типов и параметров основных и стояночного генератора. Режимы работы основных генераторов, проверка загруженности по режимам, устройство и принцип действия. Расчет и выбор генераторных автоматов и контакторов. Виды защит генераторов.
курсовая работа [223,7 K], добавлен 26.02.2012Принцип работы Кирлиан-прибора. Устройство и принцип действия искрового генератора, катушки прерывателя, резонатора. Современные схемы Кирлиан–прибора и компоненты для их сборки. Влияние напряжения и частоты. Проблемы применения Кирлиан-прибора.
курсовая работа [630,7 K], добавлен 29.11.2010Определение комплексных сопротивлений ветвей цепи, вид уравнений по первому и второму законах Кирхгофа. Сущность методов контурных токов и эквивалентного генератора. Расчет баланса мощностей и построение векторной топографической диаграммы напряжений.
контрольная работа [1014,4 K], добавлен 10.01.2014Технологическое решение по установке генерирующих мощностей. Основные технические характеристики устанавливаемого основного оборудования: газовая турбина, котел-утилизатор. Расчет принципиальной тепловой схемы и установки генерирующих мощностей.
дипломная работа [1,9 M], добавлен 12.03.2013Принцип действия и основные параметры коаксиального направленного ответвителя на связанных линиях. Экспериментальные графики параметров направленного ответвителя в диапазоне частот. Мощности, распространяющиеся в основном и вспомогательном каналах.
лабораторная работа [55,5 K], добавлен 15.10.2013Системы возбуждения синхронных генераторов. Изменение величины выпрямленного напряжения. Системы автоматического регулирования возбуждения синхронных генераторов. Изменение тока возбуждения синхронного генератора. Активное сопротивление обмотки.
контрольная работа [651,7 K], добавлен 19.08.2014Назначение и устройство проектируемого механизма. Кинематическая схема моста. Требования к электроприводу. Выбор типа крана по номинальной грузоподъемности. Расчет циклограммы. Предварительный расчёт мощности пусковых сопротивлений и выбор двигателя.
курсовая работа [638,8 K], добавлен 07.03.2014Составление баланса активной и реактивной мощностей генератора и нагрузки. Проверка его выполнимости для симметричного и несимметричного режимов. Расчет фазного и линейного напряжения и мощности генератора. Построение топографической диаграммы токов.
контрольная работа [374,5 K], добавлен 16.05.2015Составление системы уравнений для расчета токов во всех ветвях электрической цепи на основании законов Кирхгофа. Составление баланса мощностей источников и потребителей электроэнергии. Вычисление значения активных, реактивных и полных мощностей цепи.
контрольная работа [423,8 K], добавлен 12.04.2019Осуществление электроснабжения на станции. Определение приближенного распределения мощностей в сети 110 кВ. Закон Кирхгофа. Расчет перетек мощности. Использование максимальной нагрузки для понижающего трансформатора. Сопротивление автотрансформатора.
контрольная работа [471,3 K], добавлен 25.02.2014Выбор схемы генератора импульсов напряжения и общей компоновки конструкции. Расчет разрядного контура генератора, разрядных, фронтовых и демпферных сопротивлений, коммутаторов импульсной испытательной установки. Разработка схемы управления установкой.
курсовая работа [904,3 K], добавлен 29.11.2012Особенности определения токов и составления баланса мощностей. Разработка электрической схемы цепи. Определение эквивалентного сопротивления цепи. Расчет токов ветвей источника. Алгоритм составления суммарного баланса мощностей, потребляемых приемниками.
контрольная работа [1,4 M], добавлен 31.12.2021Порядок расчета токов методом преобразования, изображение графа схемы и способы ее упрощения. Сущность метода узловых напряжений. Составление баланса мощностей, особенности определения напряжения и тока в резисторе методом эквивалентного генератора.
контрольная работа [563,3 K], добавлен 17.05.2011Составление схемы замещения линий электропередачи и всего участка электрической сети. Расчет перетоков мощности в линиях. Составление баланса мощностей в схеме. Регулирование напряжения на стороне 10,5 кВ подстанции. Распределение напряжений в схеме.
курсовая работа [1,9 M], добавлен 04.02.2013Сложение поступательных движений. Определение скорости результирующего движения. Сложение вращений вокруг пересекающихся и параллельных осей. Сложение различных поступательных и вращательных движений. Общий случай сложения движений твердого тела.
лекция [2,6 M], добавлен 24.10.2013