Влияние преобразователей частоты на внешнюю сеть при работе в составе частотно-регулируемого электропривода

Применение частично–регулируемого привода. Способы снижения гармонических искажений. Входные, выходные фильтры частотных преобразователей. Конструкция и область применения высокочастотных фильтров синфазных помех. Потери энергии при торможении двигателя.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 19.01.2016
Размер файла 619,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Влияние преобразователей частоты на внешнюю сеть при работе в составе частотно-регулируемого электропривода

Введение

Частотный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50 (60) Гц в трёхфазный или однофазный ток, частотой от 1 Гц до 800 Гц.

Промышленностью выпускаются частотные преобразователи электроиндукционного типа, представляющего собой по конструкции асинхронный двигатель с фазным ротором, работающий в режиме генератора-преобразователя, и преобразователи электронного типа.

Частотные преобразователи электронного типа часто применяют для плавного регулирования скорости асинхронного электродвигателя или синхронного двигателя за счет создания на выходе преобразователя электрического напряжения заданной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f, в наиболее совершенных преобразователях реализовано так называемое векторное управление.

Частотный преобразователь электронного типа -- это устройство, состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный, иинвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или транзисторы (IGBT) обеспечивают необходимый ток для питания электродвигателя.

Для улучшения формы выходного напряжения между преобразователем и двигателем иногда ставят дроссель, а для уменьшения электромагнитных помех - фильтр.

высокочастотный фильтр преобразователь синфазный

Устройство и принцип действия

ПЧ --преобразователь частоты;

ИТ -- преобразователь частоты источник тока;

ИН -- преобразователь частоты источник напряжения;

АИМ -- преобразователь частоты с амплитудно-импульсной модуляцией;

ШИМ -- преобразователь частоты с широтно-импульсной модуляцией

Функциональная схема преобразователя частоты, выполненного по схеме источника напряжения

Функциональная схема преобразователя частоты, выполненного по схеме источника тока

Электронный преобразователь частоты состоит из схем, в состав которых входит тиристор или транзистор, которые работают в режиме электронных ключей. В основе управляющей части находится микропроцессор, который обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

В зависимости от структуры и принципа работы электрического привода выделяют два класса преобразователей частоты:

1. С непосредственной связью.

2. С явно выраженным промежуточным звеном постоянного тока.

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

В преобразователях с непосредственной связью электрический модуль представляет собой управляемый выпрямитель. Система управления поочередно отпирает группы тиристоров и подключает обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. Частота выходного напряжения у таких преобразователей не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц, и как следствие -- малый диапазон управления частотой вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование незапираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя. «Резаная» синусоида на выходе преобразователя с непосредственной связью является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению КПД системы в целом.

Наиболее широкое применение в современных частотно регулируемых модулях находят преобразователи с явно выраженным звеном постоянного тока. В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе, фильтруется фильтром, сглаживается, а затем вновь преобразуется инвертором в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению КПД и к некоторому ухудшению массо-габаритных показателей по отношению к преобразователям с непосредственной связью.Для формирования синусоидального переменного напряжения используют автономный инвертор, который формирует электрическое напряжениезаданной формы на обмотках электродвигателя (как правило, методом широтно-импульсной модуляции). В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Применение частично - регулируемого привода

ЧРП применяются в:

судовом электроприводе большой мощности

прокатных станах (синхронная работа клетей)

высокооборотном приводе вакуумных турбомолекулярных насосов (до 100 000 об/мин.)

конвейерных системах

резательных автоматах

станках с ЧПУ -- синхронизация движения сразу нескольких осей (до 32 -- например в полиграфическом или упаковывающем оборудовании) (сервоприводы)

автоматически открывающихся дверях

мешалках, насосах, вентиляторах, компрессорах

стиральных машинах

бытовых инверторных сплит-системах

на электротранспорте: электровозах, электропоездах, трамваях и троллейбусах

в текстильной промышленности (для поддержания постоянной скорости и натяжения ткани между различными узлами машины)

в системах позиционирования

в системах пневмопочты (для плавного старта и торможения капсулы, например, с пробами крови в медицинских учреждениях)

Наибольший экономический эффект даёт применение ЧРП в системах вентиляции, кондиционирования и водоснабжения, где применение ЧРП стало фактически стандартом.

Преимущества применения ЧРП

Высокая точность регулирования

Экономия электроэнергии в случае переменной нагрузки (то есть работы эл. двигателя с неполной нагрузкой)

Равный максимальному пусковой момент

Возможность удалённой диагностики привода по промышленной сети

Распознавание выпадения фазы для входной и выходной цепей

Учёт моточасов

Повышенный ресурс оборудования

Уменьшение гидравлического сопротивления трубопровода из-за отсутствия регулирующего клапана

Плавный пуск двигателя, что значительно уменьшает его износ

ЧРП как правило содержит в себе ПИД-регулятор и может подключаться напрямую к датчику регулируемой величины (например, давления).

Управляемое торможение и автоматический перезапуск при пропадании сетевого напряжения

Подхват вращающегося электродвигателя

Стабилизация скорости вращения при изменении нагрузки

Значительное снижение акустического шума электродвигателя, (при использовании функции «Мягкая ШИМ»)

Дополнительная экономия электроэнергии от оптимизации возбуждения эл. двигателя

Позволяют заменить собой автоматический выключатель

Недостатки применения ЧРП

Большинство моделей ЧРП являются источником помех

Сравнительно высокая стоимость для ЧРП большой мощности (окупаемость минимум 1-2 года)

Старение конденсаторов главной цепи

Потери энергии при торможении двигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются тяговый привод электротранспорта, подъёмники, лифты, центрифуги, намоточные машины и т. п. Функция электрического торможения вначале появилась на приводе постоянного тока (например, троллейбус). В конце ХХ века появились преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. В этом случае, установка начинает «приносить деньги» фактически сразу после ввода в эксплуатацию.

Частотные преобразователи

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

Частотные преобразователи, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

1. С явно выраженным промежуточным звеном постоянного тока.

2. С непосредственной связью (без промежуточного звена постоянного тока).

практически самый высокий КПД относительно других преобразователей (98,5% и выше),

способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах,

относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

Каждый из существующих классов имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристотров и подключает статорные обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируетсяиз «вырезанных» участков синусоид входного напряжения. На входевыигрывают у тиристорныхдействует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

В частотных преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.В качестве электронных ключей в инверторах применяются запираемые тиристоры GTOи их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах(95 - 98%).Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 -- 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

Биполярные транзисторы с изолированным затвором отличают от тиристоров полная управляемость,простая неэнергоемкая система управления, самая высокая рабочая частота.Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорнойсистемой управления в частотных преобразователях снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя,уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.Частотные преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента инвертора.

Переменное напряжение питающей сети (uвх.)с постоянной амплитудой и частотой (U вх = const, f вх = const) поступает на управляемый или неуправляемый выпрямитель (1).

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

С выхода фильтра постоянное напряжение u d поступает на вход автономного импульсного инвертора (3).

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (илиоднофазное) импульсное напряжение u и изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечиваетсяв середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряженияопределяются параметрами модулирующей синусоидальной функции. При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряженияuи может достигаться регулированием величины постоянного напряжения ud, а изменение частоты - режимом работы инвертора.При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (вых = var, f вых = var).

Что такое гармонические искажения электросети

Гармонические искажения при работе преобразователей частоты

Гармоники - это частотные составляющие сигналов напряжения и силы тока. Их частота отличается в целое кратное от основной частоты, и их наличие искажает синусоидальную волну.

Параметры питающей сети, не соответствующие нормам (повышенное или пониженное напряжение, всплески и провалы напряжения, искажение синусоидальной формы напряжения и т.д.), воздействуя на подключенных электропотребителей, могут нарушать их нормальную работу и даже выводить их из строя.

Среди показателей качества электроэнергии (КЭ) стандартом определены два параметра, характеризующие степень искажения формы синусоиды напряжения в электросети:

U(1) - действующее значение междуфазного (фазного) напряжения 1-ой гармоники (основной частоты);

U(2), U(3) : U(40) - действующие значения междуфазного (фазного) напряжения высших гармоник, кратных по частоте основной гармонике (при определении коэффициента искажения синусоидальности KU стандарт предписывает учитывать гармоники только от 2-ой до 40-й и не учитывать гармоники, уровень которых менее 0,1%);

Другие названия KU - "коэффициент гармоник", "коэффициент нелинейных искажений". В иностранной литературе обозначается как THD (Total Harmonic Distortion - коэффициент суммарных гармонических искажений).

n - номер гармонической составляющей, кратной основной частоте, в спектре сетевого напряжения.

В результате сложения основной гармоники номинальной частоты питающей сети с появившимися по разным причинам высшими гармониками форма синусоиды искажается.

Таким образом, коэффициент искажения синусоидальности KU определяет долю суммарного напряжения высших гармоник в питающем напряжении электросети по отношению к напряжению основной частоты, а коэффициент n-ой гармонической составляющей KUn характеризует вклад конкретной гармоники в общие искажения.

Причины и источники гармонических искажений

Причинами появления высших гармоник являются подключенные к электросети потребители, имеющие нелинейные входные цепи и вследствие этого потребляющие импульсный ток. Нелинейный характер цепи определяется наличием в ней полупроводниковых нелинейных элементов (выпрямительных мостов, диодов, тиристоров и т.д.). А развитие производства современных силовых полупроводниковых приборов ведет к возрастающему количеству приборов, управляемых тиристорами, конверторами (инверторами) и др.

Примеры нелинейных электропотребителей, являющихся причинами гармонических искажений:

статические преобразователи (выпрямители, источники бесперебойного питания, тиристорные регуляторы, импульсные источники питания, преобразователи частоты, регулирующие скорость вращения электродвигателей переменного тока, и т.п.);

газоразрядные осветительные устройства и электронные балласты;

электродуговые печи постоянного и переменного тока;

сварочные аппараты;

устройства с насыщающимися электромагнитными элементами;

специальные медицинские приборы и т.п.

Увеличивающаяся в последние годы тенденция широкого внедрения в самые разные отрасли промышленности нужных и полезных приборов - преобразователей частоты, являющихся для электросети нелинейными потребителями, - заставляет все больше обращаться к проблемам, связанным с гармоническими искажениями сетевого напряжения питания.

Способы снижения гармонических искажений

Снижение полного сопротивления распределительной сети. Это один из эффективных методов снижения нелинейных искажений. Кабели и сборные шины имеют полное сопротивление, имеющее в значительной степени индуктивный характер. Увеличение сечения кабелей (проводов) снижает активное сопротивление распределительной сети, но не снижает ее индуктивность. Максимальное эффективное сечение жил кабелей (проводов) составляет приблизительно 95 мм2. С дальнейшим увеличением сечения кабелей их индуктивность остается относительно постоянной. Более эффективным является использование параллельно соединенных кабелей (проводов).

Применение 12-пульсного выпрямителя. Например, для снижения величины коэффициента искажения синусоидальности токов трехфазных источников бесперебойного питания (ИБП) до уровня менее 10% используют 12-полупериодные выпрямители. Применение 12-пульсного выпрямителя позволит полностью подавить 5-ю и 7-ю гармоники в питающем токе выпрямителя.

Подключение нелинейной нагрузки к системе с большей мощностью короткого замыкания. Практически это означает замену трансформатора питания на более мощный.

Обеспечение симметричного режима работы трехфазной системы. Необходимо добиться, насколько это возможно, сбалансированности нагрузок по фазам. При этом обеспечивается минимальный ток в проводнике нейтрали и минимальное содержание гармоник в выходном напряжении источника бесперебойного питания (в случае его применения, например, для питания компьютера).

Применение фильтрующих устройств подавления гармоник

Включение линейных дросселей. Последовательное включение линейных дросселей переменного тока является простейшим способом снижения уровня генерируемых нелинейными нагрузками высших гармоник во внешнюю сеть. Дроссель имеет малое значение индуктивного сопротивления на основной частоте 50 Гц и значительные величины сопротивлений для высших гармоник, что приводит к их ослаблению.

Линейные дроссели переменного тока позволяют уменьшить коэффициент гармоник в несколько раз, в зависимости от соотношения мощности питающего трансформатора, мощности нагрузки и параметров дросселя. Для оценки уровня гармонических искажений можно воспользоваться средствами расчета, имеющимися в открытом доступе. Так, при мощности питающего трансформатора 800 кВА подключенные к сети преобразователи частоты разной мощности внесут в нее разные гармонические искажения:

- ПЧ мощностью 315 кВт - 7,3%

- ПЧ мощностью 30 кВт - 2,9%

После установки линейных 2% дросселей на входах ПЧ уровень гармонических искажений сети снизится и, соответственно, составит:

- для ПЧ мощностью 315 кВт с входным 2% дросселем - 5,6%

- для ПЧ мощностью 30 кВт с входным 2% дросселем - 0,8%

Включение дросселей постоянного тока в преобразователях частоты. Дроссели постоянного тока в преобразователях частоты подключаются к специально выведенным клеммам в разрыв цепи постоянного тока - подключение может быть произведено пользователем самостоятельно. Некоторые модели преобразователей поставляются уже со встроенными дросселями постоянного тока.

Эффективность дросселей постоянного тока в части снижения гармонических искажений напряжения сети примерно такая же, как и линейных дросселей переменного тока.

Используя предыдущий пример, можно определить, что установленные 2% дроссели постоянного тока снизят уровень гармонических искажений, соответственно, до уровня:

- для ПЧ мощностью 315 кВт с 2% дросселем постоянного тока - 6,3%

- для ПЧ мощностью 30 кВт с 2% дросселем постоянного тока - 1,3%

Применение пассивных (резонансных) фильтров

Применение последовательно включенных линейных дросселей (или дросселей постоянного тока в преобразователях частоты) в ряде случаев не позволяет уменьшить гармонические искажения до желаемых пределов. В этом случае целесообразно применение пассивных LC-фильтров, настроенных на определенную частоту гармоник (резонансных фильтров).

Для улучшения гармонического состава потребляемого тока такие фильтры нашли широкое применение, например, в системах с источниками бесперебойного питания (ИБП). Подключение фильтра на входе 6-пульсного выпрямителя при 100% нагрузке ИБП обеспечивает снижение коэффициента искажения синусоидальности до величины 8-10%. Значения этого коэффициента в системе без фильтра может достигать 30% и более.

Применение активных фильтров гармоник

(АФГ). Другое название этих устройств - активные кондиционеры гармоник. В отличие от пассивных фильтров гармоник, которые требуют полного анализа электросети и производятся для подавления всего нескольких гармоник, активные фильтры гармоник электросети, напротив, подавляют весь спектр гармонических составляющих в сети и не приводят к резонансу с существующим оборудованием: силовыми трансформаторами и косинусными конденсаторами.

Активный фильтр гармоник подключается парал- лельно нелинейной нагрузке. Принцип действия активного фильтра гармоник основан на анализе гармоник нелинейной нагрузки и генерировании в распределительную сеть таких же гармоник, но с противоположной фазой. В результате высшие гармонические составляющие нейтрализуются в точке подключения фильтра, не распространяются от нелинейной нагрузки в сеть и не искажают напряжения сети. Активный фильтр гармоник может быть установлен в любой точке распределительной сети и способен компенсировать высшие гармоники от одной или нескольких нелинейных нагрузок. Активный фильтр гармоник обеспечивает наилучшее подавление высших гармоник. Например, применение такого фильтра позволяет снизить коэффициент искажения синусоидальности напряжения с THD = 17% (без фильтров) до THD = 2,5%.

Входные и выходные фильтры частотных преобразователей

Из-за особенностей конструкции частотного преобразователя его выходное напряжение и ток имеют искаженную, несинусоидальную форму с большим количеством гармонических составляющих (помех). Неуправляемый выпрямитель преобразователя частоты потребляет нелинейный ток, загрязняющий сеть электроснабжения высшими гармониками (5, 7, 11 гармоника и т. д.). ШИМ - инвертор преобразователя частоты генерирует широкий спектр высших гармоник с частотой 150 кГц-30 МГц. Питание обмоток двигателя таким искаженным несинусоидальным током приводит к появлению таких негативных последствий как тепловой и электрический пробой изоляции обмоток двигателя, увеличение скорости старения изоляции, увеличение уровня акустических шумов работающего двигателя, эрозии подшипников. Кроме того, преобразователи частоты могут являться мощным источником помех в электрической сети питания, оказывая негативное влияние на другое электрическое оборудование, подключенное к этой сети. Для ослабления отрицательного воздействия гармонических искажений, генерируемых ПЧ в процессе работы, на электрическую сеть, электродвигатель и собственно сам преобразователь частоты применяют различные фильтры.

Применяемые совместно с преобразователями частоты фильтры можно условно разделить на входные и выходные. Входные фильтры служат для подавления негативного влияния выпрямителя и ШИМ-инвертора, выходные фильтры предназначены для борьбы с помехами, создаваемыми ШИМ - инвертором ПЧ и внешними источниками помех. К входным фильтрам относятся сетевые дроссели и ЭМИ-фильтры (РЧ-фильтры), к выходным фильтрам: фильтры dU/dt, моторные дроссели, синус фильтры, фильтры высокочастотных синфазных помех.

Сетевые дроссели

Сетевой дроссель является двухсторонним буфером между сетью электроснабжения и преобразователем частоты и защищает сеть от высших гармоник 5, 7, 11 порядка с частотой 250Гц, 350 Гц, 550 Гц и т.д. Кроме того, сетевые дроссели позволяют защитить преобразователь частоты от повышенного напряжения сети питания и бросков тока при переходных процессах в питающей сети и нагрузке ПЧ, особенно при резком скачке сетевого напряжения, который бывает, например, при отключении мощных асинхронных двигателей. Сетевые дроссели с заданным падением напряжения на сопротивлении обмоток около 2% от номинальной величины сетевого напряжения предназначены для применения с преобразователями частоты не осуществляющими регенерацию энергии, освобождающейся при торможении двигателя обратно в систему электропитания. Дроссели с заданным падением напряжения на обмотках около 4% предназначены для работы комбинаций преобразователей и автотрансформаторов с функцией регенерации энергии торможения двигателя в систему электропитания.

Сетевые дроссели рекомендуется применять:

при наличии в сети электропитания значительных помех от другого оборудования;

при асимметрии напряжения питания между фазами более 1,8 % от номинальной величины напряжения;

при присоединении преобразователя частоты к питающей сети с очень низким полным сопротивлением (например, при запитке ПЧ от рядом расположенного трансформатора, мощность которого более чем в 6-10 раз больше мощности ПЧ);

при присоединении большого количества преобразователей частоты к одной линии электропитания;

при питании от сети, к которой подключены другие нелинейные элементы, создающие существенные искажения;

при наличии в схеме электроснабжения батарей конденсаторов (компенсаторов реактивной мощности), повышающих коэффициент мощности сети.

Преимущества применения сетевых дросселей:

Защищают преобразователь частоты от импульсных всплесков напряжения в сети;

Защищают преобразователь частоты от перекосов фаз питающего напряжения;

Уменьшают скорость нарастания токов короткого замыкания в выходных цепях преобразователя частоты;

Повышают срок службы конденсатора в звене постоянного тока ПЧ.

ЭМИ-фильтры

По отношению к питающей сети частотно регулируемый привод (ПЧ+двигатель) является переменной нагрузкой. В совокупности с индуктивностью силовых кабелей это приводит к возникновению высокочастотных флуктуаций сетевого тока и напряжения и, следовательно, к электромагнитному излучению (ЭМИ) силовых кабелей, что может отрицательно сказаться на работе других электронных приборов. Фильтры электромагнитных излучений необходимы для обеспечения электромагнитной совместимости при установке преобразователя в местах, критичных к уровню помех питающей электросети.

Трехфазные ЭМИ-фильтры (EMC/EMI) существенно уменьшают уровень кондуктивных помех в широком диапазоне частот от 150 кГц до 30МГц. Паразитные токи циркулируют в пределах «клетки Фарадея» через ЭМИ-фильтр, не выходя за ее пределы. В результате защищаются иные устройства, подключенные к этой же сети электроснабжения от влияния электромагнитных помех, источником которых является ШИМ - инвертор преобразователя частоты. ЭМИ-фильтр должен устанавливаться как можно ближе к силовому входу ПЧ. В некоторым случаях ЭМИ-фильтр может уже быть встроен в корпус частотного преобразователя. Уровень электромагнитных излучений также в большой степени зависит от длины и способа укладки силовых кабелей. Поэтому при монтаже частотного преобразователя следует строго придерживаться рекомендаций изготовителя.

Конструкция и область применения фильтров dU/dt

Фильтр dU/dt представляет собой Г-образный фильтр низких частот, состоящий из дросселей и конденсаторов. Номиналы индуктивностей дросселей и конденсаторов подобраны таким образом, чтобы обеспечивалось подавление частот выше частоты коммутации силовых ключей инвертора ПЧ. Величина индуктивности обмотки дросселя фильтра dU/dt находится в пределах от нескольких десятков до нескольких сотен мкГн, емкость конденсаторов фильтра dU/dt обычно находиться в пределах нескольких десятков нФ. За счет применения фильтра dU/dt удается снизить пиковое напряжение и отношение dU/dt импульсов на клеммах двигателя примерно до 500 В/мкс, тем самым защитив обмотку двигателя от электрического пробоя.

Фильтры dU/dt рекомендованы для применения в следующих случаях:

Частотноуправляемый привод с частым рекуперативным торможением;

Привод с двигателем, не рассчитанным на работу с преобразователем частоты и не соответствующим требованиям стандарта IEC 600034-25;

Привод со старым двигателем (с низким классом изоляции), или с двигателем общего назначения не соответствующим требованиям стандарта IEC 600034-17;

Привод с коротким моторным кабелем (менее 15 метров);

Частотнорегулируемый привод, двигатель которого установлен в агрессивной среде или работает при высоких температурах;

С двигателями общего назначения, использующими напряжение 690 В.

Так как фильтр dU/dt имеет сравнительно низкие значения индуктивности и емкости, то волна напряжения на обмотках двигателя еще имеет форму двуполярных прямоугольных импульсов вместо синусоиды. Но ток, протекающий через обмотки двигателя, уже имеет форму практически правильной синусоиды. Фильтры dU/dt могут использоваться на частоте коммутации ниже номинального значения, но следует избегать использовать их на частоте коммутации выше номинального значения, поскольку это вызовет перегрев фильтра. Фильтры dU/dt иногда называют моторными дросселями. В конструкции большинства моторных дросселей отсутствуют конденсаторы, а обмотки катушек имеют более высокую индуктивность.

Конструкция и область применения синусных фильтров

При применении синусных фильтров отпадает необходимость в использовании специальных двигателей с усиленной изоляцией сертифицированных для работы с преобразователями частоты. Также уменьшается акустический шум от двигателя и подшипниковые токи в двигателе. Уменьшается нагрев обмоток двигателя, вызванный наличием токов высокой частоты. Синусные фильтры позволяют использовать более длинные моторные кабели в тех случаях применения, когда двигатель установлен далеко от преобразователя частоты. Одновременно с этим синусный фильтр устраняет импульсные отражения в моторном кабеле, благодаря чему уменьшаются потери в самом преобразователе частоты.

Синусные фильтры рекомендованы для применения в следующих случаях:

Когда требуется устранить акустический шум от двигателя при коммутации;

При запуске старых двигателей с изношенной изоляцией;

В случае эксплуатации с частым рекуперативным торможением и с двигателями, не соответствующими требованиям стандарта IEC 60034-17;

Когда двигатель установлен в агрессивной внешней среде или работает при высоких температурах;

При подключении двигателей экранированными или неэкранированными кабелями длиной от 150 до 300 метров. Использование кабелей двигателя длиной более 300 метров зависит от конкретного применения.

При необходимости увеличить интервал техобслуживания двигателя;

При пошаговом увеличении напряжения или в других случаях, когда преобразователь частоты питается от трансформатора;

С двигателями общего назначения, использующими напряжение 690 В.

Синусные фильтры могут использоваться с частотой коммутации выше номинального значения, но их нельзя использовать при частоте коммутации ниже номинального значения (для данной модели фильтра) более чем на 20 %. Поэтому в настройках частотного преобразователя следует ограничить минимально возможную частоту коммутации в соответствии с паспортными данными фильтра. Кроме того, в случае применения синусного фильтра не рекомендуется повышать частоту выходного напряжения ПЧ выше 70 Гц. В некотором случае необходимо ввести в ПЧ значения емкости и индуктивности синус-фильтра

В процессе работы синус-фильтр может выделять большое количество тепловой энергии (от десятков Вт до нескольких кВт) поэтому их рекомендуется устанавливать в хорошо вентилируемых местах. Также работа синус-фильтра может сопровождаться наличием акустического шума. При номинальной нагрузке привода на синус?фильтре будет падать напряжение около 30 V. Это нужно учитывать при выборе электродвигателя. Падение напряжения может быть частично скомпенсировано уменьшением точки ослабления поля в настройках частотного преобразователя, и до этой точки на двигатель будет подаваться корректное значение напряжения, но на номинальной скорости напряжение будет пониженным.

Дроссели dU/dt, моторные дроссели и синусные фильтры должны соединяться с выходом преобразователя частоты экранированным кабелем минимально возможной длины. Максимальная рекомендованная длина кабеля между преобразователем частоты и выходным фильтром:

2 метра при мощности привода до 7,5 кВт;

5-10 метров при мощности привода от 7,5 до 90 кВт;

10-15 метров при мощности привода выше 90 кВт.

Конструкция и область применения высокочастотных фильтров синфазных помех

Высокочастотный фильтр синфазных помех представляет собой дифференциальный трансформатор с ферритовым сердечником, "обмотками" которого являются фазные провода моторного кабеля. Высокочастотный фильтр снижает высокочастотные синфазные токи, связанные с электрическими разрядами в подшипнике двигателя, а также уменьшает высокочастотные излучения от кабеля двигателя, например, в случаях использования не экранированных кабелей. Ферритовые кольца высокочастотного фильтра синфазных помех имеют овальную форму для упрощения монтажа. Через отверстие в кольце пропускаются все три фазных провода моторного кабеля, присоединенные к выходным клеммам U, V и W частотного преобразователя. Важно пропустить все три фазы моторного кабеля через кольцо, иначе оно будет насыщаться. Не менее важно не пропускать через кольцо провод защитного заземления PE, какие-либо другие провода заземления или нулевые проводники. В противном случае кольцо утратит свои свойства. В ряде случаев применения может потребоваться собрать пакет из нескольких колец для исключения их насыщения.

Ферритовые кольца могут быть установлены на моторном кабеле со стороны выходных клемм преобразователя частоты (клеммы U, V, W) или в соединительной коробке электродвигателя. Установка ферритовых колец ВЧ фильтра со стороны клемм преобразователя частоты снижает как нагрузку на подшипники двигателя, так и высокочастотные электромагнитные помехи от кабеля двигателя. При установке непосредственно в соединительной коробке двигателя фильтр синфазных помех снижает только нагрузку на подшипники и не воздействует на электромагнитные помехи от кабеля двигателя. Необходимое количество колец зависит от их геометрических размеров, длины кабеля двигателя и рабочего напряжения преобразователя частоты.

При нормальной эксплуатации температура колец не превышает 70 °C. Температура колец выше 70 °C указывает на их насыщение. В этом случае требуется установить дополнительные кольца. Если кольца продолжают входить в режим насыщения, это означает, что моторный кабель слишком длинный, слишком большое число параллельных кабелей, либо используется кабель с высокой погонной емкостью. Также не следует использовать в качестве моторного кабеля кабель с жилами секторообразной формы. Следует применять только кабели с жилами круглой формы. Если температура окружающей среды выше 45 - 55 °C, то снижение номинальных характеристик фильтра становится весьма значительным.

При использовании нескольких параллельных кабелей при выборе количества ферритовых колец необходимо учитывать суммарную длину этих кабелей. Например, два кабеля длиной 50 м каждый эквивалентны одному кабелю длиной 100 м. Если используется много параллельных двигателей, то на каждом из них необходимо установить отдельный комплект колец. Ферритовые кольца могут вибрировать под воздействием переменного магнитного поля. Эта вибрация может привести к износу материала изоляции кольца или кабеля за счет постепенного механического истирания. Поэтому ферритовые кольца и кабель следует жестко зафиксировать пластиковыми кабельными стяжками (хомутами)

Вывод

Чтобы добиться оптимального решения по подавлению гармоник, необходимо учитывать несколько параметров.:

Условия эксплуатации электрической сети, включая нагрузки

Область применения

Соответствие стандартам

Стоимость

Самым важным фактором при определении возможности появления гармонических искажений в электрической сети является импеданс системы. Импеданс системы больше всего зависит от мощности трансформатора относительно полной установленной мощности нагрузок. Чем больше трансформатор относительно несинусоидальной мощности, тем меньше гармонических искажений.

Электрическая сеть является взаимосвязанной системой источников электропитания и потребителей электроэнергии, соединённых между собой посредством трансформаторов. Все нагрузки, передающие несинусоидальный ток, способствуют появлению гармонических искажений в электрической сети - не только при низком, но и при высоком напряжении.

При измерении напряжения в сетевой розетке может определяться некоторая степень гармонических искажений. Это относится к гармоническим предыскажениям. Так как не все потребители используют трёхфазный ток, нагрузка на каждой фазе может разной. Это приводит к возникновению различных напряжений на каждой фазе, что вызывает нарушение баланса фаз. Различные решения по уменьшению гармонических искажений имеют различную степень защищённости от предыскажений и дисбаланса, и это необходимо учитывать при выборе наиболее подходящего решения, устраняющего гармонические помехи.

Гармонические искажения усиливаются по мере увеличения мощности, потребляемой нелинейной нагрузкой, поэтому необходимо учитывать количество установленных приводов, их индивидуальные характеристики и диаграммы нагрузок.

Искажение привода определяется общим гармоническим искажением синусоидальности тока (THDi), которое является отношением суммы гармоник к основной частоте.

Нагрузка на каждый привод важна в связи с тем, что искажение THDi увеличивается при неполной нагрузке, при этом приводы слишком большого размера усиливают гармонические искажения в электрической сети.

Помимо этого, необходимо учитывать физические ограничения и ограничения, накладываемые окружающей средой, т.к. различные решения имеют различные характеристики, которые делают их более или менее подходящими для определённых условий.

Необходимо учитывать, к примеру, пространство, охлаждающий воздух (загрязненный), вибрацию, температуру окружающей среды, высоту над уровнем моря, влажность и т.п.

Для обеспечения определённого качества электрической сети большинство энергетических компаний требуют от своих потребителей соблюдения определённых стандартов и рекомендаций.

В различных странах и отраслях промышленности применяются различные стандарты, однако все они имеют одну основную задачу - ограничить искажения напряжения в электрческих сетях.

Стандарты зависят от условий эксплуатации электрической сети, и поэтому невозможно гарантировать соблюдение стандартов без знания технических характеристик электрической сети.Сами стандарты не содержат требований по использованию определённых решений для подавления гармоник, и поэтому важно понимать стандарты и рекомендации для того, чтобы избегать ненужных расходов на оборудование для подавления гармоник. Наконец, необходимо оценить первоначальные затраты и эксплуатационные расходы для того, чтобы обеспечить принятие наиболее экономически эффективного решения.

Также необходимо учитывать планы по развитию производства или системы в связи с тем, что одно решение может быть оптимальным для статической системы, в то время как другое решение будет более гибким при расширении системы

Список литературы

1. Режим работы асинхронных и синхронных электродвигателей И. А. Сыромятников. -- 3-е изд., перераб. и доп. -- М. ; Л. : Госэнергоиздат, 1963. 528 с.

2. Справочник по преобразовательной технике под ред. И. М. Чиженко; Чиженко И. М., Андриенко П. Д., Баран А. А. и др.. -- Киев : Техника, 1978. 447

3. Электрика своими руками Кашкаров А.П. 2011г

4. Электрические машины и основы электропривода - Лотоцкий К.В. (1964)

5. Неполадки в работе асинхронного двигателя - Деро А.Р. (1976)

6. Гемке Р.Г. (1975) Неисправности электрических машин

7. Правила технической эксплуатации электроустановок потребителей и правила технической безопасности при эксплуатации электроустановок потребителей. М., Атомиздат, 1973. 352 с.

8. Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором. М., «Энергия», 1971

9. Климов В.П., Москалев А.Д. Проблемы высших гармоник в современных системах электропитания // Практическая силовая электроника. Науч.-техн.сб./Под ред. Малышкова Г.М., Лукина А.В.- М.: АОЗТ "ММП-Ирбис", 2002. Вып 5. С.

10/ Stub Filters Revisited” by John Regnault, G3SWX, Radio Communication (RSGB), ноябрь 1994 г.

11. Алексеев Б.А. Продление срока службы силовых трансформаторов. Новые виды трансформаторного оборудования. СИГРЭ-2002// Электрические станции. 2003. №7.

12. Быстрицкий Г.Ф. Энергосиловое оборудование промышленных предприятий: учеб. пособие для студ. высш. учеб. заведений. М. Издательский центр “Академия”, 2003.

Размещено на Allbest.ur

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.