ООО "Коммунальные технологии" ОСП "Новочебоксарские электрические сети"
Основные элементы и параметры силовых кабелей напряжением до 35 кВ. Прокладка кабельных линий в траншеях и их испытание. Монтаж концевых термоусаживаемых муфт. Элементы защиты, реле и их разновидности. Максимальная токовая защита от замыканий на землю.
Рубрика | Физика и энергетика |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 07.02.2016 |
Размер файла | 69,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
К числу вспомогательных реле относятся: реле времени, служащие для замедления действия защиты; реле указательные - для сигнализации и фиксации действия защиты; реле промежуточные, передающие действие основных реле на отключение выключателей и служащие для осуществления взаимной связи между элементами защиты.
Каждое реле можно подразделить на две части: воспринимающую и исполнительную. Воспринимающий элемент в электромеханических конструкциях имеет обмотку, которая питается током или напряжением защищаемого элемента в зависимости от типа реле (токовые или напряжения).
Реле мощности и реле сопротивления имеют две обмотки (тока и напряжения). Через обмотки реле воспринимает изменение той электрической величины, на которую оно реагирует.
Исполнительный элемент электромеханического реле представляет собой подвижную систему, которая перемещаясь под воздействием сил, создаваемых воспринимающим элементом, действует на контакты реле, заставляя их замыкаться или размыкаться.
Имеются также реле, в которых подвижная система действует непосредственно механическим путем на отключение выключателя, такие реле не имеют контактов.
Обмотки реле могут включаться на ток и напряжение сети непосредственно или через измерительные трансформаторы тока и напряжения. Реле первого типа называются первичными, второго типа - вторичными. Наибольшее распространение имеют реле вторичные, преимущества которых по сравнению с первичными состоят в том, что они изолированы от высокого напряжения, располагаются на некотором расстоянии от защищаемого элемента, в удобном для обслуживания месте и могут выполняться стандартными на одни и те же номинальные токи 5 или 1 А и номинальные напряжения 100 В независимо от напряжения и тока первичной цепи защищаемого элемента.
Достоинством первичных реле является то, что для их включения не требуется измерительных трансформаторов, источников оперативного тока и контрольного кабеля. Первичные реле находят применение на электродвигателях, мелких трансформаторах и линиях малой мощности в сетях 6 - 10 кВ, т. е. там, где защита осуществляется по простейшим схемам посредством реле тока и напряжения и не требует большой точности. Во всех остальных случаях применяются вторичные реле.
Существует два способа воздействия защиты на отключение выключателя: прямой и косвенный. Реле срабатывает, когда электромагнитная сила, создаваемая обмоткой реле, станет больше силы противодействующей пружины. При срабатывании реле его подвижная система воздействует непосредственно (прямо) на расцепляющий рычаг выключателя, после чего выключатель отключается под действием пружины. Реле прямого действия устанавливаются непосредственно в приводе выключателя, поэтому их часто называют встроенными.
В защите с вторичным реле косвенного действия при срабатывании реле его контакты замыкают цепь обмотки электромагнита, называемого катушкой отключения выключателя. Под действием напряжения, подводимого к зажимам этой цепи от специального источника, в катушке отключения появляется ток, сердечник катушки отключения преодолевает сопротивление пружины и, втягиваясь, освобождает защелку, после чего выключатель отключается под действием пружины.
После отключения выключателя ток в обмотке исчезает, и контакты реле размыкаются. Чтобы облегчить их работу по размыканию цепи, в которой проходит ток катушки отключения, предусмотрен вспомогательный блокировочный контакт, который размывает цепь катушки отключения еще до того, как начнут размыкаться контакты реле.
Для защиты с реле косвенного действия необходим вспомогательный источник напряжения - источник оперативного тока. Защита с реле прямого действия не требует источника оперативного тока, но реле этой защиты должны развивать большие усилия для того, чтобы непосредственно расцепить механизм выключателя. Поэтому реле прямого действия не могут быть очень точными и имеют большое потребление мощности.
Усилия, развиваемые реле косвенного действия, могут быть незначительными, поэтому они отличаются большей точностью и малым потреблением. Кроме того, в защитах, которые состоят из нескольких реле, взаимодействие между ними проще осуществляется при помощи оперативного тока, а не механическим путем. Поэтому наиболее широко применяется защита со вторичными реле косвенного действия.
3.3 Источники оперативного тока
Оперативным током называется ток, питающий цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики, телемеханики и различные виды сигнализации.
Питание оперативных цепей и особенно тех ее элементов, от которых зависит отключение поврежденных линий и оборудования, должно отличаться особой надежностью. Поэтому главное требование, которому должен отвечать источник оперативного тока, состоит в том, чтобы во время к. з. и при ненормальных режимах в сети напряжение источника оперативного тока и его мощность имели достаточную величину как для действия вспомогательных реле защиты и автоматики, так и для надежного отключения и включения соответствующих выключателей.
Для питания оперативных цепей применяются источники постоянного и переменного тока.
Постоянный оперативный ток
В качестве источника постоянного тока используются аккумуляторные батареи с напряжением 110 - 220 В, а на небольших подстанциях 24 - 48 В, от которых осуществляется централизованное питание оперативных цепей всех присоединений. Для повышения надежности сеть постоянного тока секционируется на несколько участков, имеющих самостоятельное питание от сборных шин батареи.
Самым ответственным участком являются цепи защиты, автоматики и катушек отключения, питаемые от шинок управления ШУ. Вторым очень важным участком являются цепи катушек включения, питаемые от отдельных шинок ШВ вследствие больших токов (400--500 А), потребляемых катушками включения масляных выключателей. Третьим, менее ответственным участком является сигнализация, питающаяся от шинок ШC. Остальные потребители постоянного тока (аварийное освещение, двигатели собственных нужд) питаются по отдельной сети. Защита оперативных цепей от к. з. осуществляется предохранителями или специальными автоматами, реагирующими на увеличение тока.
Аккумуляторные батареи обеспечивают питание оперативных цепей в любой момент времени с необходимым уровнем напряжения и мощности независимо от состояния основной сети и поэтому являются самым надежным источником питания. В то же время аккумуляторные батареи значительно дороже других источников оперативного тока, для них требуются зарядные агрегаты, специальное помещение и квалифицированный уход. Кроме того, из-за централизации питания создается сложная, протяженная и дорогостоящая сеть постоянного тока.
Переменный оперативный ток
Для питания оперативных цепей переменным током используется ток или напряжение сети. В соответствии с этим в качестве источников переменного оперативного тока служат трансформаторы тока, трансформаторы напряжения и трансформаторы собственных нужд.
Трансформаторы тока являются весьма надежным источником питания оперативных цепей для защит от к. з. При к. з. ток и напряжение на зажимах трансформаторов тока увеличиваются, поэтому в момент срабатывания защиты мощность трансформаторов тока возрастает, что и обеспечивает надежное питание оперативных цепей.
Однако трансформаторы тока не обеспечивают необходимой мощности при повреждениях и ненормальных режимах, не сопровождающихся увеличением тока на защищаемом присоединении. Поэтому их нельзя использовать для питания защит от замыкания на землю в сети с изолированной нейтралью, защит от витковых замыканий в трансформаторах и генераторах или защит от таких ненормальных режимов, как повышение или понижение напряжения и понижение частоты.
Трансформаторы напряжения и трансформаторы собственных нужд непригодны для питания оперативных цепей защит от к. з., так как при к. з. напряжение в сети резко снижается и может в неблагоприятных случаях становиться равным нулю. В то же время при повреждениях и ненормальных режимах, не сопровождающихся глубокими понижениями напряжения в сети, трансформаторы напряжения и трансформаторы собственных нужд могут использоваться для питания таких защит, как, например, защиты от перегрузки, от замыканий на землю, повышения напряжения и т. д.
Питание цепей управления выключателей. Дистанционное управление выключателями и их автоматическое включение от АПВ или АВР должно производиться при любых нагрузках на присоединении и при отсутствии напряжении на шинах подстанции, чего не обеспечивают трансформаторы тока. Поэтому питание цепей дистанционного управления, АПВ и АВР производится от трансформаторов напряжения, трансформаторов собственных нужд и заряженных конденсаторов. Чтобы обеспечить производство операции по включению при отсутствии напряжения на шинах, трансформаторы, питающие цепи управления, подключаются к линиям, питающим подстанцию или на выключателях устанавливаются механические приводы, действующие а счет энергии поднятого груза или сжатой пружины.
Таким образом, каждый источник переменного оперативного тока имеет свою область применения. При этом возможность использования того или иного источника определяется мощностью, которую он может дать в момент производства операций. Мощность источника питания должна с некоторым запасом превосходить мощность, потребляемую оперативными цепями, основной составляющей которой является мощность, затрачиваемая приводом на отключение и включение выключателей.
Наибольшие затруднения из-за недостаточной мощности возникают при применении трансформаторов тока и трансформаторов напряжения. Учитывая, что включение и отключение выключателей является кратковременной операцией, можно допускать значительные перегрузки измерительных трансформаторов без ущерба для них.
3.4 Общие принципы выполнения реле
В схемах релейной защиты и электрической автоматики применяются электромеханические реле, реле на полупроводниковых приборах (диодах и транзисторах) и реле с использованием насыщающихся магнитных систем. Значительное распространение имеют электромеханические реле.
Однако наличие таких недостатков электромеханических реле, как большие размеры, значительное потребление мощности от трансформаторов тока и напряжения, трудности в обеспечении надежной работы контактов побудили к поискам более совершенных принципов выполнения реле. Новые принципы исполнения реле с помощью полупроводниковых приборов позволяют существенно улучшить параметры и характеристики реле и перейти полностью или частично на бесконтактные схемы защит.
Помимо реле, реагирующих па электрические величины, для защиты электрических машин и аппаратов применяются реле, реагирующие на неэлектрические величины, косвенным образом характеризующие появления повреждений пли ненормальных режимов в них. Например, имеются реле, реагирующие на появления газов или повышение давления в кожухах маслонаполненных трансформаторов и реакторов, реле, реагирующие на повышение температуры трансформаторов и электрических машин и т. д.
Реле, реагирующие на электрические величины, можно подразделить на три группы:
1) реле, реагирующие на одну электрическую величину: ток или напряжение;
2) реле, реагирующие на две электрические величины: ток и напряжение сети или два напряжения, каждое из которых является линейной функцией тока и напряжения сети;
3) реле, реагирующие на три или больше электрические величины, например: три тока и три напряжения сети, или несколько напряжений, представляющих линейные функции токов и напряжения сети.
К первой группе относятся реле тока и реле напряжения. Ко второй принадлежат однофазные реле: мощности, сопротивления и некоторые другие. К третьей относятся трехфазные реле мощности, многофазные реле сопротивления и другие устройства.
Трансформаторы тока являются очень важным элементом релейной защиты. Они питают цепи защиты током сети и выполняют роль датчика, через который поступает информация к измерительным органам устройств релейной защиты. От точности этой информации зависит надежная и правильная работа релейной защиты. Поэтому основным требованием к трансформаторам тока является точность трансформации с погрешностями, не превышающими допустимых значений. Чрезмерно большие погрешности могут вызвать неправильные действия устройств релейной защиты. Поэтому уменьшение погрешности трансформаторов тока является очень важной задачей, она сводится к уменьшению тока намагничивания трансформаторов тока.
Для обеспечения правильной работы большинства устройств релейной защиты погрешность трансформаторов тока не должна превышать по току , а по углу . Эти требования обеспечиваются, если полная погрешность трансформаторов тока или если ток намагничивания не превосходит 10 % от тока , проходящего по трансформатору тока.
Питание устройств релейной защиты током сети производится по типовым схемам соединений трансформаторов тока и обмоток реле. Поведение и работа реле в каждой из этих схем зависят от характера распределения токов в ее вторичных цепях в нормальных и аварийных условиях.
Для каждой схемы соединений можно определить отношение тока в реле к току в фазе . Это отношение называется коэффициентом схемы
.
Коэффициент схемы учитывается при расчете уставок и оценке чувствительности защиты.
Основные типовые схемы:
1) схема соединения трансформаторов тока и обмоток реле в полную звезду;
2) схема соединения трансформаторов тока и обмоток реле в неполную звезду;
3) схема соединения трансформаторов тока в треугольник, а обмоток реле в звезду;
4) схема соединении с двумя трансформаторами тока и одним реле, включенным на разность токов двух фаз;
5) схема соединения трансформаторов тока в фильтр токов нулевой последовательности.
В ОСП «НЧЭС» применяется схема соединения трансформаторов тока и обмоток реле в неполную звезду.
Трансформаторы тока устанавливаются в двух фазах. В реле I и III проходят токи соответствующих фаз
и ,
а в обратном проводе ток равен их геометрической сумме:
.
С учетом векторной диаграммы равен току фазы, отсутствующей во вторичной цепи. При трехфазном к. з. и нормальном режиме токи проходят по обоим реле I и III и в обратном проводе. В случае двухфазного к. з. токи появляются в одном или двух реле (I или III) в зависимости от того, какие фазы повреждены.
Ток в обратном проводе при двухфазных к. з. между фазами А и С, в которых установлены трансформаторы тока, с учетом, что , равен нулю, а при замыканиях между фазами АВ и ВС он соответственно равен и .
В случае однофазного к. з. фаз (А или С), в которых установлены трансформаторы тока, во вторичной обмотке трансформатора тока и обратном проводе проходит ток к. з. При замыкании на землю фазы В, в которой трансформатор тока не установлен, токи в схеме защиты не появляются; следовательно, схема неполной звезды, реагирует не на все случаи однофазного к. з. и поэтому применяется только для защит, действующих при междуфазных повреждениях. Коэффициент схемы .
4. Устройство релейной защиты и типы ее, используемые для защиты кабельных линий
В ОСП «НЧЭС» для защиты кабельных линий 10 кВ применяются следующие виды защит:
1. Максимальная токовая защита.
2. Токовые отсечки.
3. Защита от замыканий на землю
4.1 Максимальная токовая защита
Одним из признаков возникновения к. з. является увеличение тока в линии. Этот признак используется для выполнения защит, называемых токовыми. Токовые защиты приходят в действие при увеличении тока в фазах линии сверх определенного значения. В качестве реле, реагирующих на возрастание тока, служат максимальные токовые реле.
Токовые защиты подразделяются на максимальные токовые защиты и токовые отсечки. Главное различие между этими защитами заключается в способе обеспечения селективности.
Селективность действия максимальных защит достигается с помощью выдержки времени. Селективность действия токовых отсечек обеспечивается соответствующим выбором тока срабатывания.
Максимальные токовые защиты являются основным видом защит для сетей с односторонним питанием. В сетях более сложной конфигурации максимальная защита применяется как вспомогательная в отдельных случаях.
В сетях с односторонним питанием максимальная защита должна устанавливаться в начале каждой линии со стороны источника питания. При таком расположении защит каждая линия имеет самостоятельную защиту, отключающую линию в случае повреждения на ней самой или на шинах питающейся от нее подстанции.
При к. з. в какой-либо точке сети, например в точке К1, ток к. з. проходит по всем участкам сети, расположенным между источником питания и местом повреждения, в результате чего приходят в действие все защиты (1, 2, 3, 4). Однако по условию селективности сработать на отключение должна только защита 4, установленная на поврежденной линии.
Для обеспечения указанной селективности максимальные защиты выполняются с выдержками времени, нарастающими от потребителей к источнику питания. При соблюдении этого принципа в случае к. з. в точке К1 раньше других сработает защита 4 и произведет отключение поврежденной линии. Защиты 1, 2 и 3 вернутся в начальное положение, не успев подействовать на отключение. Соответственно при к. з. в точке К2 быстрее всех сработает защита 3, а защиты 1 и 2, имеющие большее время, не подействуют. Такой принцип подбора выдержек времени называется ступенчатым.
В сетях с двусторонним питанием достигнуть селективного действия максимальной защиты только путем подбора выдержек времени, как правило, не удается; в этих сетях вместо максимальной токовой защиты применяют более сложные направленные защиты.
Максимальные защиты выполняются трехфазными и двухфазными прямого и косвенного действия.
По способу питания оперативных цепей максимальные защиты косвенного действия делятся на защиты с постоянным и переменным оперативным током. По характеру зависимости времени действия реле от тока максимальные защиты подразделяются на защиты с независимой и зависимой характеристиками.
Максимальные защиты прямого действия и на переменном оперативном токе имеют существенные отличия в выполнении оперативных цепей, применяемой аппаратуре и в расчете параметров.
Если время действия защиты определяется выдержкой времени, установленной на реле времени и не зависит от величины тока к. з., то такая защита называется защитой с независимой выдержкой времени. Наряду с независимой защитой применяется максимальная защита с зависимой и ограниченно зависимой характеристиками. Оба вида зависимых защит выполняются при помощи токовых реле, работающих не мгновенно, а с выдержкой времени, зависящей от величины тока. Примером такого реле является реле типа РТ-80. Согласование выдержек времени независимых защит значительно проще, поэтому зависимые защиты следует применять только в случаях явного преимущества.
В сети с изолированной нейтралью трехфазные схемы не рекомендуются к применению по следующим причинам:
1. Трехфазные схемы дороже выдержкой времени, двухфазных, так как для их выполнения требуется больше оборудования и соединительных проводов.
2. Трехфазные защиты в большем числе случаев, чем двухфазные, работают неселективно при двойных замыканиях на землю.
В ОСП «НЧЭС» применяется схема двухфазной двухрелейная защиты на постоянном оперативном токе.
Схема двухфазной защиты на постоянном оперативном токе
В тех случаях, когда максимальная защита должна действовать только при междуфазных к. з., применяются двухфазные схемы с двумя или одним реле.
Двухрелейная схема с независимой характеристикой приведена на рис. 4. Токовые цепи защиты выполняются по схеме неполной звезды. Основными элементами схемы максимальной защиты являются: токовые реле, срабатывающие при появлении тока к. з. и выполняющие функции пускового органа защиты, и реле времени, создающее выдержку времени и выполняющее функции органа времени. Кроме основных, в схеме имеются и вспомогательные реле; к ним относятся промежуточное реле и указательное реле.
При возникновении к. з. срабатывают токовые реле тех фаз, по которым проходит ток к. з. Контакты всех токовых реле соединены параллельно, поэтому при срабатывании любого токового реле замыкается цепь обмотки реле времени. Через заданный интервал времени контакты реле времени замыкаются и приводят в действие промежуточное реле. Последнее срабатывает мгновенно и подает ток в катушку отключения выключателя через блокировочный контакт.
Промежуточное реле устанавливается в тех случаях, когда реле времени не может замыкать цепь катушки отключения из-за недостаточной мощности своих контактов. Указательное реле включается последовательно с катушкой отключения. При появлении тока в этой цепи указательное реле срабатывает, его флажок выпадает, фиксируя таким образом действие максимальной защиты и появление тока в катушке отключения.
Блокировочный контакт привода выключателя служит для разрыва тока катушки отключения, так как контакты промежуточных реле не рассчитываются на размыкание этой цепи. Блокировочный контакт должен размыкаться раньше, чем произойдет возврат промежуточного реле.
Достоинством двухрелейной схемы является то, что она:
1) реагирует (так же как и трехфазная) на все междуфазные к. з. на линиях;
2) при замыканиях на землю в двух разных точках сети с изолированной нейтралью работает селективно в большем числе случаев, чем трехфазная схема;
3) экономичнее трехфазной схемы, так как для ее выполнения требуется меньше оборудования и проводов.
К недостаткам двухфазной схемы относится ее меньшая чувствительность (по сравнению с трехфазной схемой) при двухфазных к. з. за трансформатором с соединением обмоток Y/Д.
При необходимости чувствительность двухфазной схемы можно повысить, установив третье токовое реле в общем проводе токовых цепей. В этом проводе протекает геометрическая сумма токов двух фаз, питающих схему, равна току третьей (отсутствующей в схеме) фазы В, т. е.
Таким образом, с дополнительным реле двухфазная схема становится равноценной по чувствительности с трехфазной.
Вследствие положительных свойств двухфазные схемы широко применяются в сетях с изолированной нейтралью, где возможны только междуфазные к. з. Двухфазные схемы применяются в качестве защиты от междуфазных к. з. и в сетях с глухозаземленной нейтралью, при этом для отключения однофазных к. з. устанавливается дополнительная защита, реагирующая на ток нулевой последовательности.
Достоинствами максимальной токовой защиты являются ее простота, надежность и небольшая стоимость по сравнению с другими видами защиты. По своему принципу максимальная токовая защита обеспечивает селективность в радиальных сетях с односторонним питанием. Однако в некоторых случаях ее удается применять и в более сложных сетях, имеющих двустороннее питание. К недостаткам максимальной защиты относятся:
1) большие выдержки времени, особенно вблизи источников питания, в то время как именно вблизи шин электростанции по условию устойчивости необходимо быстрое отключение к. з.;
2) недостаточная чувствительность при к. з. в разветвленных сетях с большим числом параллельных цепей и значительными токами нагрузки.
Максимальная токовая защита получила наиболее широкое распространение в радиальных сетях всех напряжений; в сетях 10 кВ и ниже она является основной защитой.
4.2 Токовые отсечки
Отсечка является разновидностью токовой защиты, позволяющей обеспечить быстрое отключение к. з. Токовые отсечки подразделяются на отсечки мгновенного действия и отсечки с выдержкой времени (около 0,3 - 0,6 с).
Селективность действия токовых отсечек достигается ограничением их зоны работы так, чтобы отсечка не действовала при к. з. на смежных участках сети, защита которых имеет выдержку времени, равную или больше, чем отсечка. Для этого ток срабатывания отсечки должен быть больше максимального тока к. з., проходящего через защиту при повреждении в конце участка, за пределами которого отсечка не должна работать. Такой способ ограничения зоны действия основан на том, что ток к. з. зависит от величины сопротивления до места повреждения.
При удалении точки к. з. от источника питания или от места расположения защиты сопротивление растет, а ток к. з. соответственно уменьшается.
Если по условиям селективности отсечка не должна действовать при к. з. за точкой М, то для обеспечения этого условия необходимо выбрать
Тогда при к. з. за точкой М отсечка не будет действовать, а при повреждении в пределах участка AM - будет работать на той части линии AN, где .
Таким образом, зона действия защиты, с током срабатывания, охватывает только часть линии AN и не выходит за пределы участка AM.
Токовые отсечки применяются как в радиальной сети с односторонним питанием, так и в сети, имеющей двустороннее питание. Для обеспечения расчетной зоны действия отсечки трансформаторы тока, питающие ее цепи, должны работать при токе срабатывания отсечки (т. е. при ) с погрешностью е или .
В сети с изолированной нейтралью или заземленной через большое сопротивление применяются двухфазные схемы, подобные схемам максимальной токовой защиты.
Так же как и максимальные защиты, отсечки выполняются на постоянном и переменном оперативном токе, а также с помощью реле прямого. Схемы отсечек с выдержкой времени полностью совпадают со схемами максимальных защит с независимой выдержкой времени. Схемы отсечек без выдержки времени отличаются от схем максимальной защиты отсутствием реле времени.
Отсечки мгновенного действия на линиях с односторонним питанием
По условию селективности с защитами остальной сети отсечка без выдержки времени (с tз = 0) не должна работать за пределами защищаемой линии. Ток срабатывания мгновенной отсечки должен удовлетворять условию (5-2) при к. з. в конце защищаемой линии АВ, т. е. в точке М. В соответствии с этим принимается, что
где Iк.макс - максимальный ток к. з. в фазе линии при к. з. на шинах подстанции; kн - коэффициент надежности, учитывающий погрешность в расчете тока к. з. Iк.макс и погрешность в токе срабатывания реле. Ток к. з. Iк.макс рассчитывается для таких режимов работы системы и видах повреждений, при которых он оказывается наибольшим. Поскольку собственное время действия отсечки равно 0,02 - 0,01 с, то ток Iк.макс рассчитывается для начального момента времени (t = 0) и принимается равным действующему значению периодической составляющей. При расчете тока к. з. генераторы замещаются сверхпереходным сопротивлением.
В схемах отсечки, где токовые реле действуют непосредственно на отключение без промежуточного реле, время действия отсечки может достигать одного периода (т. е. 0,02 с). В этом случае следует учитывать апериодическую составляющую тока к. з., умножая ток Iк.макс на коэффициент kа = 1,6 - 1,8. У отсечек для защиты линий с токовыми реле типа РТ коэффициент надежности kн = 1,2 - 1,3.
Правила устройства электроустановок рекомендуют применять отсечку, если ее зона действия охватывает не меньше 20% защищаемой линии. Вследствие простоты отсечки она применяется в качестве дополнительной защиты при зоне действия, меньшей 20%, если основная защита линии имеет мертвую зону.
Время действия мгновенной отсечки складывается из времени срабатывания токовых и промежуточного реле. При быстродействующих промежуточных реле (0,02 с) отсечка срабатывает в течение времени t3 = 0,04 - 0,06 с. Промежуточное реле облегчает работу контактов токовых реле и позволяет не учитывать апериодическую составляющую тока к. з., поскольку последняя затухает очень быстро (за 0,02 - 0,03 с).
На линиях, защищенных от перенапряжений трубчатыми разрядниками, отсечка может срабатывать при их действии. Время работы разрядников составляет около 0,01 - 0,02 с. При каскадном действии разрядников оно увеличивается до 0,04 - 0,06 с. Применением промежуточного реле с временем действия t = 0,06 - 0,08 с удается отстроить отсечку от работы разрядников.
Отсечки с выдержкой времени
Мгновенная отсечка защищает только часть линии, чтобы выполнить защиту всей линии с минимальным временем действия, применяется отсечка с выдержкой времени. Зона и время действия такой отсечки 1 согласуются с зоной и временем действия мгновенной отсечки 2 так, чтобы была обеспечена селективность.
Для выполнения этих условий время действия защиты tз1 отсечки 1 выбирается на ступень Дt больше tз2 отсечки 2:
Практически в зависимости от точности реле времени отсечки 1 tз = 0,3 - 0,6 с.
Зоны действия отсечек 1 и 2 согласуются между собой при условии, что зона действия отсечки 1 должна быть короче зоны работы отсечки 2.
В сети с односторонним питанием ток, проходящий через защиты 1 и 2 при к. з. на линии JI2 (точка К), одинаков. Поэтому согласование зон действия защит 1 и 2 можно обеспечить, выбрав
При таком соотношении токов срабатывания защит отсечка 1 не будет действовать, если ток к. з. недостаточен для действия отсечки 2.
Схемы отсечки с выдержкой времени выполняются так же, как и схемы максимальных защит с независимой характеристикой. Токовая отсечка с выдержкой времени охватывает полностью защищаемую линию и частично следующий участок. Токовые отсечки мгновенного действия являются самой простой защитой. Быстрота их действия в сочетании с простотой схемы и обслуживания составляет весьма важное преимущество этих защит. Недостатками мгновенной отсечки являются: неполный охват зоной действия защищаемой линии и непостоянство зоны действия под влиянием сопротивлений в месте повреждения и изменений режима системы, однако последнее не оказывает существенного влияния в мощных энергосистемах.
Отсечка с выдержкой времени позволяет обеспечить достаточно быстрое (tз ? 0,5 с) отключение повреждений на защищаемой линии. Сочетание отсечек и максимальной защиты позволяет получить трехступенчатую защиту, которая во многих случаях успешно заменяет более сложные защиты.
4.3 Защита от замыканий на землю
Сети с малым током замыкания на землю работают с изолированной нейтралью или с заземленной через дугогасящую катушку. В таких сетях (в отличие от сетей с глухозаземленной нейтралью) замыкание на землю одной фазы не вызывает короткого замыкания и не сопровождается поэтому снижением междуфазных напряжений и появлением повышенных токов в сети.
Требования к защите от замыканий на землю в сети с малым током замыкания на землю существенно отличаются от требований, предъявляемых к защитам от к. з. Поскольку замыкания на землю не вызывают появления сверхтоков и не искажают величины междуфазных напряжений, они не отражаются на питании потребителей, не влияют на устойчивость энергосистемы и не сопровождаются перегрузкой оборудования опасными токами. Поэтому в отличие от к. з. замыкания на землю не требуют немедленной ликвидации.
Однако отключение замыканий на землю является все же необходимым, так как в результате теплового воздействия тока замыкания на землю в месте повреждения возможно повреждение изоляции между фазами и переход однофазного замыкания в междуфазное к. з. Помимо того, из-за перенапряжений, вызываемых замыканием на землю, возможен пробой или перекрытие изоляции на неповрежденных фазах, что приводит к образованию двойных замыканий на землю в разных точках сети. В компенсированных сетях и сетях с малыми емкостными токами (20 - 30 А в сети 10 и 6 кВ) замыкания на землю могут оставаться довольно длительное время (до 2 ч), не вызывая развития повреждения и не нарушая работы потребителей.
Исходя из этого принято выполнять защиту от замыканий на землю в сетях с малым током повреждения с действием на сигнал. Получив сигнал о появлении замыкания на землю, дежурный персонал принимает меры к переводу нагрузки поврежденной линии на другой источник цитация, разгружает поврежденную линию и затем отключает ее.
Защиты от замыкания на землю должны быть селективными и иметь высокую чувствительность. Последнее вызывается тем, что токи повреждения, на которые реагирует защита, очень малы (5 - 10 А). Кроме того, желательно, чтобы защита от замыканий на землю реагировала не только на устойчивые, но также и на неустойчивые повреждения.
Простейшей защитой от замыканий на землю является общая неселективная сигнализация о появлении замыкания на землю без указания поврежденного участка. Такое устройство состоит из схемы с одним реле повышения напряжения, включенным на напряжение нулевой последовательности.
При появлении «земли» схема дает сигнал, а затем дежурный поочередным отключением присоединений определяет поврежденный элемент. Указанный способ определения повреждения связан с кратковременным нарушением питания потребителей, требует много времени и особенно неудобен на подстанциях без постоянного дежурного персонала.
Все известные и применяемые на практике защиты можно подразделить на четыре группы:
1) защиты, реагирующие на естественный емкостный ток сети. Такой способ защиты возможен только при отсутствии компенсации или при наличии недокомпенсации емкостного тока сети;
2) защиты, реагирующие на токи нулевой последовательности, создаваемые искусственным путем;
3) защиты, реагирующие на установившиеся остаточные токи, возникающие в поврежденной линии при резонансной компенсации емкостных токов;
4) защиты, реагирующие на токи переходного режима, возникающие в первый момент замыкания на землю.
Токовая защита, реагирующая на полный ток нулевой последовательности
Защита предназначена для радиальных сетей. В некомпенсированной сети она реагирует на естественный емкостный ток, а в компенсированной действует от остаточного тока перекомпенсации (если таковая предусмотрена). Основной трудностью в выполнении рассматриваемой защиты является обеспечение необходимой чувствительности при малых значениях тока повреждения - 10 А и меньше.
Реагирующий орган защиты состоит из токового реле, питающегося через фильтр нулевой последовательности. В качестве фильтра применяется специальный трансформатор тока нулевой последовательности (ТНП) особой конструкции. В однотрансформаторном фильтре, выполняемом с помощью трансформатора тока нулевой последовательности, ток 3I0 получается магнитным суммированием первичных токов трех фаз:
.
Защита с трансформатором тока нулевой последовательности получается значительно чувствительнее, чем с использованием трехтрансформаторного фильтра.
Главное преимущество ТНП состоит в значительно меньшем небалансе и возможности подбора числа витков вторичной обмотки из условия наибольшей чувствительности защиты без каких-либо ограничений по нагрузке. В результате этого ТНП позволяет обеспечить действие защиты при первичных токах порядка 3 - 5 А, а при сочетании ТНП с высокочувствительными реле чувствительность защиты повышается до 1 - 2 А. Вследствие этого схема защиты с ТНП является основой для сети с малым током замыкания на землю.
Опыт эксплуатации показал, что токовое реле может неправильно работать на неповрежденных линиях в первый момент повреждения под влиянием бросков токов, появляющихся в неустановившемся режиме. Исключить ложную работу защиты по указанной причине можно загрублением защиты по току срабатывания, введением выдержки времени или применением фильтра, не пропускающего в реле тока высших частот, составляющих значительную долю в токе неустановившегося режима. Для отстройки от броска емкостного тока предусмотривается реле времени. Схемы с включением реле через фильтр высокой частоты также применяются. Защита с фильтром выполняется без выдержки времени и поэтому может реагировать на кратковременные замыкания на землю. Действие защиты фиксируется с помощью указательного реле.
Принцип работы и устройство ТНП
Для защиты линий ТНП выполняются только кабельного типа. При необходимости осуществления защиты воздушных линий делается кабельная вставка, на которой устанавливается ТНП.
Для кабельных линий заводы электропромышленности изготавливают ТНП типа ТЗ с неразъемным магнитопроводом, надеваемым на кабель до монтажа воронки, и типов ТЗР и ТФ с разъемным магнитопроводом, которые можно устанавливать на кабелях, находящихся в эксплуатации, без снятия кабельной воронки.
При прохождении токов Iбр по оболочке неповрежденного кабеля, охваченного ТНП, в реле защиты появляется ток, от которого защита может подействовать неправильно. Через оболочку кабелей (стальную броню и свинец) могут проходить токи Iбр, замыкающиеся через землю. Эти токи появляются при замыканиях на землю вблизи кабеля, работе сварочных аппаратов и в других подобных случаях. Прохождение тока Iбр по броне неповрежденного кабеля через ТНП вызывает вторичный ток в его обмотке и, как следствие этого, неправильное действие защиты. Для исключения этого необходимо компенсировать влияние токов, которые могут проходить по свинцовой оболочке и броне кабеля. С этой целью броня и оболочка кабеля на участке от его воронки до ТНП изолируются от земли. Заземляющий провод присоединяется к воронке кабеля и пропускается через окно ТНП. При таком исполнении ток, проходящий по броне кабеля, возвращается по заземляющему проводу, поэтому магнитные потоки в магнитопроводе ТНП от токов в броне и проводе взаимно уничтожаются. Магнитопровод ТНП должен быть также надежно изолирован от брони кабеля.
Для определения поврежденного участка в радиальных сетях токовые защиты устанавливаются на всех линиях каждого радиального направления. Защита устанавливается в начале каждой линии. При возникновении замыкания на землю по действию защиты на питающей подстанции определяется то радиальное направление, на котором произошло повреждение. Затем осмотром сигналов защит на линиях этого направления устанавливается поврежденный участок. Поврежденным является тот участок, на котором подействовавшая защита является последней. Если защиты действуют на отключение, то для обеспечения селективности время действия на них подбирается по ступенчатому принципу, как на максимальных защитах.
Чувствительность токовой защиты ограничивается необходимостью ее отстройки от бросков емкостного тока при замыканиях на землю на других линиях.
В результате этого для надежного и селективного действия токовой защиты требуется увеличение тока замыкания на землю сверх допустимого предела, в то время как для повышения надежности работы компенсированных сетей необходимо снижать этот ток. Недостаточная чувствительность токовых защит, реагирующих на емкостный ток сети, особенно проявляется па подстанциях с малым числом линий, а также в компенсированных сетях с малым остаточным током.
В этих случаях емкостный ток неповрежденной линии (от которого отстраивается ее защита) становится соизмеримым с током замыкания на землю в поврежденной линии. В связи с этим токовая защита в компенсированных сетях применяется редко.
Литература
1. Правила устройства электроустановок: 7-е изд. - М.: Главгоснадзор России, 2003.
2. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ РМ-016-2001 РД 153-34.0-03.150-00). - М.: «Изд-во НЦ ЭНАС», 2001.
3. Козлов В.А., Куликович Л.М. Прокладка, обслуживание и ремонт кабельных линий. - Л.: Энергоатомиздат, 1984.
4. Чернобровов Н.В. Релейная защита. М.: «Энергия», 1974.
5. Справочник по наладке электроустановок. Под ред. Дорофеюка А.С., Хачумяна А.П., М.: «Энергия», 1976.
6. Эксплуатационная производственная практика. Программа и методические указания. Сост.: Злобин Ю.И., Осипенко Г.А; Чуваш. Ун-т. Чебоксары, 2006
Размещено на Allbest.ru
...Подобные документы
Расчет параметров схемы замещения системы электроснабжения. Сопротивление и релейная защита кабельных линий. Расчёт токов короткого замыкания. Максимальная токовая и дифференциальная защита трансформатора. Защита замыканий на землю. Ток срабатывания реле.
курсовая работа [894,8 K], добавлен 23.08.2012Изучение сущности и особенностей релейной защиты. Классификация реле и конструкция вторичных реле. Особенности токовой защиты, применяемой для защиты от междуфазных коротких замыканий и от однофазных замыканий на землю. Проверка, ремонт и наладка реле.
курсовая работа [2,6 M], добавлен 05.11.2010Максимальная токовая защита с независимой, зависимой и с ограниченно зависимой характеристикой выдержки времени. Токовая направленная защита, ее описание, условия применения. Релейная защита на переменном оперативном токе. Дифференциальные реле.
курсовая работа [2,4 M], добавлен 02.02.2014Расчет токов короткого замыкания и относительных базисных сопротивлений. Схема замещения сети. Максимальная токовая защита сети. Определение номинального тока трансформатора. Расчет защиты кабельной линии и защиты трансформатора. Элементы газовой защиты.
курсовая работа [236,4 K], добавлен 26.06.2013Общие требования и правила при сооружении кабельных линий электропередачи. Монтаж стопорных и стопорно-переходных муфт. Оконцевание кабелей в наружных электроустановках. Особенности монтажа заделок и муфт при использовании алюминиевой оболочки кабеля.
презентация [4,9 M], добавлен 16.04.2012Условия, преимущества и недостатки прокладки кабельных линий в траншеях, каналах, туннелях, блоках, на эстакадах и галереях. Конструкция маслонаполненных кабелей и газоизолированных линий, их особенности и область применения. Выбор сечений жил кабелей.
презентация [2,4 M], добавлен 30.10.2013Классификация силовых кабелей. Конструкция жил силовых кабелей. Маркировка силовых кабелей. Прокладка кабельных линий на эстакадах. Рекомендуемые способы применения маслонаполненных кабелей. Электрический расчет маслонаполненного кабеля низкого давления.
курсовая работа [1,8 M], добавлен 13.06.2012Общие сведения о токовой защите в сетях 6-10 кВ. Требования, предъявляемые к релейной защите, основные органы токовых защит. Расчет уставки релейной защиты и проверка пригодности трансформаторов тока. Расчет токовой отсечки, максимальная токовая защита.
курсовая работа [2,8 M], добавлен 20.03.2013Автоматическая защита воздушных кабельных линий и систем электроснабжения от многофазных и однофазных замыканий, устройства сигнализации. Расчет токов КЗ, схема электроснабжения. Дифференциальная и газовая защита трансформатора, АД от замыканий на землю.
курсовая работа [6,6 M], добавлен 23.08.2012Оценка типов защит, устанавливаемых на трансформаторе заданной мощности и питающей линии 110 кВ. Расчет токов короткого замыкания и дифференциальной защиты на реле РНТ-565. Максимальная токовая защита от перегрузок. Наименьшее сопротивление нагрузки.
курсовая работа [1,2 M], добавлен 01.10.2014Способы прокладки кабельных линий, техническая документация, инструкция. Предназначение сборных кабельных конструкций, способы крепления к основаниям. Эксплуатация кабельных линий внутрицеховых сетей, проверка состояния электроизоляционных материалов.
курсовая работа [2,0 M], добавлен 06.06.2013Понятие и назначение релейной защиты, принцип ее работы и основные элементы. Технические характеристики и особенности указательного реле РУ–21, промежуточного реле РП–341, реле прямого действия ЭТ–520, реле тока РТ–80, реле напряжения и времени.
практическая работа [839,9 K], добавлен 12.01.2010Газовая и дифференциальная защита трансформатора, максимальные токовые защиты трансформатора от внешних коротких замыканий. Проверка трансформаторов тока на 10%-ную погрешность, защита блокировки отделителя. Максимальная токовая направленная защита.
курсовая работа [309,8 K], добавлен 05.10.2009Монтаж силовых трансформаторов, системы охлаждения и отдельных узлов. Испытание изоляции обмоток повышенным напряжением промышленной частоты. Включение трансформатора под напряжением. Отстройка дифференциальной защиты от бросков тока намагничивания.
реферат [343,8 K], добавлен 14.02.2013Проектирование релейной защиты и автоматики энергосистем. Расчёт токов короткого замыкания. Максимальная токовая защита и токовая отсечка. Дифференциальная токовая защита без торможения. Расчёт трансформаторов тока, определение их полной погрешности.
курсовая работа [254,5 K], добавлен 30.06.2015Природа электрического тока. Устройства для передачи электрической энергии и контроля ее параметров. Прокладка кабелей в коллекторах и туннелях. Монтаж полок и стоек. Защита кабелей от механических повреждений. Вспомогательные элементы электрической цепи.
курс лекций [22,6 M], добавлен 09.03.2017Расчет тока короткого замыкания. Защита трансформатора электродуговой печи, кабельных линий от замыканий на землю, высоковольтных асинхронных и синхронных двигателей от перегрузки, низковольтных двигателей. Устройство автоматического повторного включения.
курсовая работа [514,6 K], добавлен 25.02.2015Основные виды повреждений в трансформаторах и автотрансформаторах. Защита трансформаторов плавкими предохранителями. Токовая отсечка и максимальная токовая защита. Основные методы выбора уставок токовых защит. Принципы исполнения реагирующих элементов.
лекция [321,9 K], добавлен 27.07.2013Монтаж внутренних электрических сетей, прокладка кабельных линий в земле, внутри зданий, в каналах, туннелях и коллекторах. Электрооборудование трансформаторных подстанций, электрические машины аппаратов управления. Эксплуатация электрических сетей.
курсовая работа [61,8 K], добавлен 31.01.2011Технологические режимы работы нефтеперекачивающих станций. Расчет электрических нагрузок и токов короткого замыкания. Выбор силового трансформатора и высоковольтного оборудования. Защита от многофазных замыканий. Выбор источника оперативного тока.
курсовая работа [283,6 K], добавлен 31.03.2016