Двигатели постоянного тока

Принцип действия генератора и двигателя постоянного тока. Особенность применения электродвигателей электрического стрежня. Анализ крупных моторов однонаправленного движения, отвечающих специальным требованиям. Использование карданно-редукторной передачи.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 13.02.2016
Размер файла 169,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Брянская государственная инженерно-технологическая академия

Реферат

по электротехнике

Двигатели постоянного тока

Выполнил:

Винокуров Ю.Д.

Научный руководитель:

Ульянов А.А.

Брянск 2013

Содержание

Введение

1. Общие сведения об электродвигателях постоянного тока

1.1 Принцип действия генератора постоянного тока

1.2 Принцип действия двигателя постоянного тока

1.3 Область применения машин постоянного тока

2. Применение электродвигателей постоянного тока

2.1 Двигатель трамвая

2.2 Машины постоянного тока большой мощности

Заключение

Список используемых источников

Введение

Электрические машины неотъемлемо связаны с электрической энергией.

Ее преимущества перед другими видами энергии:

- возможность преобразования в другие виды энергии: механическую, тепловую, химическую, лучистую энергию;

- возможность передавать ее на большие расстояния с малыми потерями;

- возможность доставлять электрическую энергию в любую точку на Земле.

Электрическую энергию вырабатывают на электростанциях, где механическая энергия пара, воды преобразуется в электрическую с помощью электрогенераторов. Обратное преобразование энергии - с помощью электродвигателей.

Трансформаторы - статические машины, но электромагнитные законы те же, что и у вращающихся машин.

Классификация электрических машин:

1) в зависимости от рода тока вращающиеся электрические машины делятся на машины постоянного и переменного тока;

2) в зависимости от мощности машины бывают:

- микромашины - до 0,5 кВт;

- малой мощности - 0,5-20 кВт;

- средней мощности - 20-250 кВт;

- большой мощности - более 250 кВт.

На железнодорожном транспорте электрические машины используются как тяговые электрические двигатели на подвижном составе, в автоматике, телемеханике и в других службах.

1. Общие сведения об электродвигателях постоянного тока

1.1 Принцип действия генератора постоянного тока

Возможность построения механического генератора появилась после открытия Фарадеем закона электромагнитной индукции в 1831 г.

Если проводник перемещать в магнитном поле так, чтобы он пересекал магнитные линии, то на концах проводника появится разность потенциалов - эдс (электродвижущая сила).

Простейшим генератором является рамка на оси, помещенная в магнитном поле (рис. 1.1), которую вращают.

Рис. 1.1. Схема работы машины переменного тока

Концы проводников соединены с кольцами, которые вращаются вместе с рамкой. На кольцах помещены неподвижные щетки. Присоединенный к щеткам вольтметр покажет разность потенциалов, т.е. эдс рамки, которая будет изменяться как по величине, так и по направлению. Направление эдс определяется по правилу правой ладони, состоящему в следующем.

Ладонь правой руки располагают в магнитном поле так, чтобы линии магнитной индукции были направлены в ладонь, а большой палец отводят относительно других пальцев в плоскости ладони на 90 градусов и направляют по движению проводника; тогда остальные пальцы руки покажут направление наведенной в проводнике эдс.

В общем случае , если t, то . С некоторым приближением допускаем, что индукция под полюсами изменяется по синусоидальному закону, тогда

,

где - угол поворота, так как , то при = const вместо можно горизонтальную ось обозначать осью времени t.

Частота наводимой переменной эдс

,

где Т - период полного цикла изменения эдс (рис. 1.2).

Рис. 1.2. Синусоида индукции

Для преобразования переменного тока в постоянный применяют коллектор. Для этого проводники простейшего генератора соединяют с двумя медными полукольцами, названными коллекторными пластинами (рис. 1.3).

Рис. 1.3. Схема работы машины постоянного тока

Пластины жестко связаны с валом рамки, но изолированы друг от друга. Щетки на коллекторных пластинах устанавливаются так, чтобы они переходили с одной коллекторной пластины на другую в тот момент, когда эдс равна нулю. Таким образом, щетка контактирует с полукольцом одного направления эдс. В этом случае ток на щетках и по внешнему участку цепи, через потребитель, протекает в одном направлении, но величина его изменяется с течением времени; эдс и ток имеют пульсирующую форму (рис. 1.4). Если взять n рамок (обмотка якоря) и 2n коллекторных пластин (коллектор), то увеличится и число пульсирующих эдс за период времени Т (рис. 1.5). Если пульсаций менее 2 %, то ток считается постоянным.

Рис. 1.4. Выпрямленная эдс и ток

Рис. 1.5. Выпрямленная эдс и ток в реальном генераторе

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменную эдс витков якоря в постоянную эдс на щетках и цепи. Совокупность витков составляет обмотку якоря. генератор ток электродвигатель редукторный

Если к щеткам подсоединить потребитель электрической энергии, то потечет электрический ток, который в обмотке якоря будет создавать падение напряжения. Вследствие этого напряжение на зажимах генератора будет меньше эдс на величину падения напряжения в сопротивлении обмотки якоря

,

где а - индекс параметров якорной обмотки.

Формула (1.1) является основным уравнением эдс и напряжения генератора. Но на проводник с током в магнитном поле действует выталкивающая сила F, направленная навстречу вращению. Ток в обмотке якоря будет создавать противодействующий вращению момент . Чем больше , тем больше необходимо усилий для преодоления противодействующего момента

,

где - диаметр якоря;

.

1.2 Принцип действия двигателя постоянного тока

В силу обратимости электрических машин принцип действия электрического двигателя можно рассмотреть по рис. 1.3, только к щеткам необходимо подвести напряжение сети.

На проводник с током, помещенный в магнитное поле действует выталкивающаяся сила, определяемая правилом левой руки (см. рис. 1.3)

,

Это действие можно проследить по рис. 1.6.

С правой стороны магнитные линии складываются (поле усиливается), с левой - наоборот, появляется сила F согласно правилу левой руки.

Если поместить рамку с током в магнитное поле, то появляется вращающий электромагнитный момент (рис. 1.7)

.

Рамка повернется только до горизонтального положения. Чтобы направление вращения было в одну сторону, необходимо периодически менять направление тока.

Рис. 1.6. Выталкивающая сила, действующая на проводник с током

Рис. 1.7 Вращающий момент, действующий на рамку с током

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный в обмотке якоря и работает таким образом в качестве механического инвертора.

Так как проводники все время пересекают магнитное поле, то в них наводится эдс, величина которой определяется равенством и которая направлена встречно подводимому напряжению, поэтому эту эдс еще называют противоэлектродвижущей силой (противоэдс) в двигателе.

Основное уравнение эдс и напряжения двигателя

.

1.3 Область применения машин постоянного тока

Машина постоянного тока как и любая электрическая машина обратима: может работать как генератор и как двигатель. Причем двигатели нашли большее применение, чем генераторы.

В табл. 1.1 приведены характеристики некоторых электрических машин постоянного тока.

Таблица 1.1- Характеристики электрических машин постоянного тока

Назначение

Использование

Р, кВт

I, А

U, В

Примечание

Двигатели

Трамвай

4050

75100

550

Имеют преимущества перед двигателями переменного тока:

1) широкое регулирование частоты вращения;

2) развивают большой пусковой момент

Электровоз

600900

400600

1500

Прокатный

стан

11500

11500

1000

Атомоход

«Ленин»

18000

18000

1000

Генераторы

Для

электролиза

60120

10000

612

Чаще используются

генераторы переменного

тока с выпрямителями

Тепловоз (старые модификации)

2700

3600

750

2. Применение электродвигателей постоянного тока

2.1 Двигатель трамвая

Двигатели трамвая -- чаще всего тяговые двигатели постоянного тока. В последнее время появилась электроника, позволяющая преобразовывать постоянный ток, которым питается трамвай, в переменный, что позволяет использовать двигатели переменного тока. От двигателей постоянного тока они выгодно отличаются тем, что практически не требуют технического ухода и ремонта (асинхронные двигатели переменного тока не имеют быстроизнашивающихся подводящих ток щёток и прочих трущихся деталей).

Для передачи вращающего момента от тягового электродвигателя к оси колёсной пары на трамвайных вагнонах используется карданно-редукторная передача (механический редуктор и карданный вал).

Система управления двигателем.

Устройство регулирования тока через ТЭД называется системой управления. Системы управления (СУ) подразделяются на следующие виды:

· В простейшем случае регулировка тока через двигатель осуществляется с помощью мощных сопротивлений, которые подключают последовательно с двигателем дискретно. Такая система управления бывает трёх типов:

· Непосредственная система управления (НСУ) -- исторически первый вид СУ на трамваях. Водитель посредством рычага, соединённого с контактами, непосредственно коммутирует сопротивление в электрических цепях ротора и обмоток ТД.

· Косвенная неавтоматическая реостатно-контакторная система управления -- в этой системе водитель с помощью педали или рычага контроллера осуществлял коммутацию низковольтных электрических сигналов, которыми управлялись высоковольтные контакторы.

· Косвенная автоматическая РКСУ -- в ней замыканием и размыканием контакторов управляет специальный серводвигатель. Динамика разгона и торможения определяется заранее заданной временной последовательностью в конструкции РКСУ. Узел коммутации силовой цепи в сборе с устройством-посредником иначе называется контроллером.

· Тиристорно-импульсная система управления (ТИСУ) -- СУ на базе сильноточных тиристоров, в которой необходимый по величине ток создаётся не коммутацией сопротивлений в цепи двигателя, а посредством формирования временной последовательности токовых импульсов заданной частоты и скважности. Изменяя эти параметры, можно изменять средний протекающий через ТЭД ток, а следовательно и управлять его вращающим моментом. Преимуществом перед РКСУ является больший коэффициент полезного действия, так как в ней сведены к минимуму тепловые потери в пусковых сопротивлениях силовой цепи, но торможение эта СУ обеспечивает, как правило, только электродинамическое.

· Электронная система управления (транзисторная СУ) асинхронным ТЭД. Одно из самых экономичных по расходу электроэнергии и современных решений, но достаточно дорогостоящее и в ряде случаев довольно капризное (напр., неустойчиво к внешним воздействиям). Активное применение в таких системах управляющих программируемых микроконтроллеров создаёт опасность воздействия программных ошибок на функционирование всей системы в целом.

2.2 Машины постоянного тока большой мощности

Области применения

Основными установками, использующими крупные машины постоянного тока, являются прокатные станы, крупные шагающие экскаваторы, шахтные подъемники, гребные установки и различные испытательные стенды, в которых применяется мощный электропривод с регулируемой частотой вращения.

Применение в этих приводах двигателей постоянного тока (ДПТ) обеспечивает большую производительность труда, что экономически оправдывает дополнительные затраты, связанные с использованием электрооборудования на постоянном токе. Развитие отраслей промышленности, в которых находят применение мощные ДПТ, приводит к необходимости непрерывного повышения их мощности и вращающего момента, улучшению динамических показателей. В настоящее время питание крупных ДПТ осуществляется от тиристорных преобразователей. Однако существует и потребность в мощных, свыше 5000 кВт, генераторах постоянного тока.

Для питания мощных прокатных ДПТ применяют тиристорные преобразователи. Тиристорное питание из-за пульсации напряжения и тока якоря ухудшает коммутацию ДПТ, вызывает появление добавочных потерь от переменных составляющих тока и потока и дополнительную вибрацию. Применение тиристорных преобразователей обеспечивает возможность использования быстродействующих систем регулирования для форсировки напряжения якоря. В связи с этим к изоляции обмоток якорной цепи и коллектора ДПТ, питаемых от тиристорных преобразователей, предъявляются дополнительные требования: она должна допускать нормальную эксплуатацию с амплитудным значением напряжения вентильной обмотки трансформатора преобразователя. Для ДПТ с номинальным напряжением 930 В это напряжение составляет 1500 В. Такое напряжение оказывает неблагоприятное влияние на потенциальные условия на коллекторе.

Для ограничения вредного воздействия тиристорного преобразователя ДПТ выполняют с шихтованным магнитопроводом и применяют 12-фазные схемы выпрямления (реже 6-фазные полностью управляемые). Для станов горячей прокатки реверсирование ДПТ осуществляется путем изменения знака напряжения на якоре. Из числа возможных схем реверсирования применяют встречно-параллельную и перекрестную схемы без уравнительных реакторов.

При проектировании ДПТ задаются допустимыми пульсациями тока якоря, как правило, в пределах от 2 до 7 %. В большинстве случаев индуктивность якорной цепи оказывается достаточной для ограничения заданного значения пульсации. В противном случае применяют дополнительные сглаживающие реакторы.

Крупные ДПТ работают в системе автоматизированного привода, и основное требование, предъявляемое к ним со стороны эксплуатации, -- надежность работы. Поэтому ДПТ комплектуются вспомогательными устройствами, обеспечивающими, с одной стороны, работу в автоматизированном приводе, с другой - контроль за параметрами ДПТ во время эксплуатации.

Комплектно с ДПТ поставляются тахогенератор типа ПТ-32 или ПТ-42, реле скорости типа РМН7011, воздухоохладители типа ВО-100-2 или ВО-150А, ящик резисторов.

Для контроля температуры входящего и выходящего из ДПТ воздуха поставляются два термометра сопротивления, для контроля работы подшипников -- термометр манометрический сигнализирующий и указатель уровня масла. Обмотки возбуждения и компенсационная снабжены термоэлектрическими преобразователями, которые позволяют производить контроль температур этих обмоток. Термометры сопротивления, заложенные в обмотку якоря, выводятся на контактные кольца и траверсу, что позволяет следить за температурой обмотки якоря при работе. К каждому крупному ДПТ постоянного тока завод-изготовитель поставляет запасные части (комплекты катушек главных и дополнительных полюсов, секции обмотки якоря, щетки, щеткодержатели, вкладыш подшипника и др.), а также наборы специальных приспособлений, устройств и инструмента, необходимых для монтажа, эксплуатации и ремонта.

Двигатели для прокатных станов

Реверсивные и нереверсивные ДПТ, предназначенные для главных электроприводов прокатных станов, выпускаются ЛПЭО «Электросила» им. С. М. Кирова, заводом «Электротяжмаш» (г. Харьков) и ПО ХЭМЗ.

Условия эксплуатации двигателей:

Высота над уровнем моря не более 1000 м.

Температура охлаждающего воздуха:

исполнение УХЛ4.... 1ч 40 °С, исполнение О4..... 1ч 45 °С.

Относительная влажность воздуха при 25 °С (исполнение УХЛ4) не более 80 %.

То же при 35 °С (исполнение О4) не более 98 %.

Запыленность охлаждающего воздуха не более 0,2 мг/м3

Количество охлаждающего воздуха на 1 кВт фактических потерь не более (3,5 ч 4) м3/мин.

Охлаждающий воздух не содержит химически агрессивных и токопроводящих примесей. Окружающая среда -- невзрывоопасная, не содержащая агрессивных примесей и токопроводящей пыли в концентрациях, снижающих параметры двигателей ДПТ

Структура условного обозначения двигателей

где 1 - серия двигателей П2; 2 - высота оси вращения, мм; 3 - условный диаметр якоря (габарит); 4 - условная длина сердечника якоря; 5 - количество щеток на каждом бракете; 6 - буква С - исполнение на подшипниках скольжения; буква К - исполнение на подшипниках качения; 7 - климатическое исполнение и категория размещения по ГОСТ 15150-69 и ГОСТ 15543-70.

Привод механизмов прокатных станов требует регулирования частоты вращения в широких пределах, частых реверсов и сопровождается большими кратковременными перегрузками по току при условии, что среднеквадратичный (за время технологического цикла) ток не превышает номинального. Допустимая рабочая перегрузка, как правило, (1,8ч2,25) Iн (не более 15 с) в зависимости от частоты вращения и назначения ДПТ. Отключающая перегрузка, как правило, 2,5 Iн . Режимы работы SI, S7 или S8 по ГОСТ 183-74.

Двигатели допускают нагрузку по току 1,15/ном длительно во всем диапазоне регулирования частоты вращения при превышении температуры обмоток не выше допустимой для изоляции нагревостойкости класса F по ГОСТ 8865-70. Питание ДПТ осуществляется от статических и вращающихся преобразователей.

Двигатели допускают регулирование частоты вращения от нуля до номинальной изменением напряжения на якоре и от номинальной до максимальной ослаблением магнитного поля. Устойчивость работы ДПТ при частоте вращения, близкой к нулю, обеспечивается системой управления. Конструктивное исполнение ДПТ по способу монтажа - IM7312 по ГОСТ 2479-79.

Станины двигателей шихтованные, магнитопровод разъемный по горизонтали, состоит из листов электротехнической стали, запрессованных в стальной сварной корпус. Рабочий конец вала цилиндрический.

В ДПТ применены подшипники скольжения с комбинированной (кольцевой и принудительной проточной) системой смазки. При отказе принудительной системы смазки допускается работа ДПТ на кольцевой смазке не более 2 мин. Кожух ДПТ сварной, имеют люки и двери для обслуживания. Места прилегания кожуха и двери уплотнены резиной. Кожухи крепят прижимами. Посадку крестовины якоря и полумуфты на вал выполняют с гарантированным натягом без шпонок. Для повышения эксплуатационной надежности ДПТ для крепления активной стали якоря применяют системы клиньев радиального и тангенциального распоров.

Двигатели монтируют на стальных фундаментных плитах. Вентиляция ДПТ принудительная по замкнутому или разомкнутому циклу с применением воздухоохладителей. В замкнутом цикле вентиляции должно быть обеспечено избыточное давление 50 Па. Подвод охлаждающего воздуха осуществляется со стороны, противоположной коллектору, отвод -- со стороны коллектора. Способ охлаждения - ICA97 или ICA37 по ГОСТ 20459-75

Для ДПТ главных приводов реверсивных станов горячей прокатки (блюмингов, слябингов, толстолистовых станов) характерен режим с очень малой продолжительностью включения. Для достижения оптимальной производительности стремятся вести прокатку во время первых проходов с максимально возможными обжатиями. Когда сечение прокатываемого металла становится меньше, обжатие следует уменьшить, в связи с этим для сокращения длительности проходов повышают скорость прокатки, поэтому ДПТ должен обладать большой перегрузочной способностью во всем диапазоне частот вращения, способностью быстрого регулирования частоты вращения в большом диапазоне с малыми потерями в обоих направлениях.

Двигатели одноклетьевых станов холодной прокатки для привода моталок должны обеспечивать постоянное натяжение полосы и необходимое ускорение при растяге от заправочной до рабочей скорости прокатки. Основные требования, предъявляемые к ДПТ, - пониженный момент инерции якоря и большой диапазон регулирования частоты вращения ослаблением поля. Выбор ДПТ прокатной клети производят по требуемым моменту и скорости прокатки.

Для малых обжатий при более высоких скоростях, как правило, допустимо изменение потока возбуждения в пределах от 1:2 до 1:2,5.

Аналогичные требования предъявляются к ДПТ привода непрерывных станов холодной прокатки. Часто выгодно распределить мощность каждого привода по нескольким двигателям, так как при этом можно существенно уменьшить ускоряемые массы.

Крупные двигатели постоянного тока, отвечающие специальным требованиям

На основе крупных ДПТ, предназначенных для привода механизмов прокатных станов, выпускаются ДПТ, удовлетворяющие повышенным требованиям, для привода специальных стендов, гребных установок и т. д.

Двигатель типа П2-630-204,5-4КУЗ предназначен для привода линеек манипулятора блюминга. Двигатель допускает рабочую перегрузку, равную 3 Iн, длительностью не более 15 с при номинальной частоте вращения; нечасто повторяющуюся при частоте вращения, близкой к нулю, перегрузку, равную 3,2 Iн, длительностью не более 10 с и отключающую перегрузку, равную 3,5 Iн.

Двигатель выполняется в закрытом исполнении на двух стояковых подшипниках качения, с цилиндрическим рабочим концом вала и вторым нерабочим кольцом вала для подсоединения аппаратуры автоматизации, на собственной фундаментной плите.

Двигатель типа 2МП25000-750 предназначен для привода мощных компрессоров, выполнен с трехходовой обмоткой якоря, что позволяет реализовать кратковременно мощность 12 500 кВт в диаметре якоря 2500 мм.

Двигатель типа 2МП17600-130 предназначен для привода судовых гребных винтов. Двигатель выполнен в брызгозащищенном исполнении. Вентиляция принудительная, от двух вентиляторов, установленных на его станине. Выполнение магнитопровода шихтованным обеспечивает высокую коммутационную надежность при работе с большими скоростями, частыми реверсами, большими кратковременными перегрузками по току. Два якоря ДПТ имеют общий полый вал, вращающийся на двух стояковых подшипниках скольжения с дисковой смазкой. Вал ДПТ имеет фланец для присоединения к гребному валу судна.

Двигатели постоянного тока для электроприводов шахтно-подъемных механизмов

Для электроприводов шахтно-подъемных механизмов разработана серия ДПТ 21-го и 25-го габаритов.

Двигатели допускают работу при относительной влажности воздуха до 98% при + 25 °С (исполнение О4). Окружающий воздух не должен быть взрывоопасным, не должен содержать агрессивных примесей, паров масла, токопроводящей пыли. Рабочая перегрузка - 2 Iн в течение не более 15 с, отключающая -2,25 Iн.Рабочий конец вала цилиндрический, ступенчатый. В ДПТ применены подшипники качения. Смазка подшипников консистентная. Амплитуда вибрации не должна превышать 90 мкм. Действующее значение переменной составляющей тока якоря не должно превышать 2% при номинальной частоте вращения. Двигатели 21-го габарита могут изготовляться в консольном исполнении. Конструктивное исполнение для консольных машин - IM5705 по ГОСТ 2479-79, при такой конструкции якорь ДПТ насаживают на вал барабана шахтного подъемника, что позволяет снизить массу машины в 1,2ч1,4 раза.

Заключение

Машины постоянного тока применяют в качестве электродвигателей и генераторов. Электродвигатели постоянного тока имеют хорошие регулировочные свойства, значительную перегрузочную способность и позволяют получать как жесткие, так и мягкие механические характеристики. Поэтому их широко используют для привода различных механизмов в черной металлургии (прокатные станы, кантователи, роликовые транспортеры), на транспорте (электровозы, тепловозы, электропоезда, электромобили), в грузоподъемных и землеройных устройствах (краны, шахтные подъемники, экскаваторы), на морских и речных судах, в металлообрабатывающей, бумажной, текстильной, полиграфической промышленности и др. Двигатели небольшой мощности применяют во многих системах автоматики.

Конструкция двигателей постоянного тока сложнее и их стоимость выше, чем асинхронных двигателей. Однако в связи с широким применением автоматизированного электропривода и тиристорных преобразователей, позволяющих питать электродвигатели постоянного тока регулируемым напряжением от сети переменного тока, эти электродвигатели широко используют в различных отраслях народного хозяйства.

Генераторы постоянного тока ранее широко использовались для питания электродвигателей постоянного тока в стационарных и передвижных установках, а также как источники Электрической энергии для заряда аккумуляторных батарей, питания электролизных и гальванических ванн, для электроснабжения различных электрических потребителей на автомобилях, самолетах, пассажирских вагонах, электровозах, тепловозах и др.

Недостатком машин постоянного тока является наличие щеточноколлекторного аппарата, который требует тщательного ухода в эксплуатации и снижает надежность работы машины. Поэтому в последнее время генераторы постоянного тока в стационарных установках вытесняются полупроводниковыми преобразователями, а на транспорте -- синхронными генераторами, работающими совместно с полупроводниковыми выпрямителями.

Список используемых источников

1. Дементьев И.А. Электродвигатели: справочное пособие / И.А. Дементьев. - Ухта: УГТУ, 2010. - 78 с.

2. Москаленко В.В. Электродвигатели специального назначения. / В.В. Москаленко - М.: Энергоиздат., 1998. - 159 с.

3. Проскуряков, В.С. Электрические машины постоянного тока: учебное пособие по предмету "Электротехника" / В.С. Проскуряков - Екатеринбург.: Издательство ГОУ-ВПО УГТУ-УПИ, 2008. - 41 с.

Размещено на Allbest.ru

...

Подобные документы

  • История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.

    курсовая работа [1,3 M], добавлен 14.01.2018

  • Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.

    презентация [4,1 M], добавлен 03.12.2015

  • Двигатели постоянного тока, их применение в электроприводах, требующих широкого плавного и экономичного регулирования частоты вращения, высоких перегрузочных пусковых и тормозных моментов. Расчет рабочих характеристик двигателя постоянного тока.

    курсовая работа [456,2 K], добавлен 12.09.2014

  • Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.

    реферат [3,2 M], добавлен 12.11.2009

  • Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

    реферат [3,6 M], добавлен 17.12.2009

  • Генераторы и электродвигатели постоянного тока, якоря которых снабжены коллекторами и содержат совокупность обмоток, связанных с коллекторами. Действие заявляемого бесколлекторного генератора постоянного тока. Движения вихревого электрического поля.

    доклад [14,9 K], добавлен 25.10.2013

  • Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.

    лабораторная работа [904,2 K], добавлен 09.02.2014

  • Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.

    презентация [4,9 M], добавлен 09.11.2013

  • Роль и значение машин постоянного тока. Принцип работы машин постоянного тока. Конструкция машин постоянного тока. Характеристики генератора смешанного возбуждения.

    реферат [641,0 K], добавлен 03.03.2002

  • Основные определения и технические данные электрических машин. Электрические двигатели постоянного тока: устройство, краткие теоретические основы. Электрические генераторы постоянного тока. Обеспечение безыскровой коммутации. Электрическое равновесие.

    реферат [37,4 K], добавлен 24.12.2011

  • Исторический обзор путей развития электрического двигателя постоянного тока. Открытие явления электромагнитной индукции М. Фарадеем в 1831 году. Выявление основных направлений и идей, которые привели к созданию современной конструкции двигателя.

    отчет по практике [5,0 M], добавлен 21.11.2016

  • Основные этапы проектирования электрического двигателя: расчет параметров якоря и магнитной системы машины постоянного тока, щеточно-коллекторного узла и обмотки добавочного полюса. Определение потери мощности, вентиляционных и тепловых характеристик.

    курсовая работа [411,3 K], добавлен 11.06.2011

  • Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

    реферат [166,2 K], добавлен 11.12.2010

  • Особенности расчета двигателя постоянного тока с позиции объекта управления. Расчет тиристорного преобразователя, датчиков электропривода и датчика тока. Схема двигателя постоянного тока с независимым возбуждением. Моделирование внешнего контура.

    курсовая работа [1,2 M], добавлен 19.06.2011

  • Однофазные цепи синусоидального тока. Двигатели постоянного тока параллельного возбуждения. Расчет линейной цепи постоянного тока методом двух законов Кирхгофа. Расчет характеристик асинхронного трехфазного двигателя с короткозамкнутым ротором.

    методичка [1,4 M], добавлен 03.10.2012

  • Питание двигателя при регулировании скорости изменением величины напряжения от отдельного регулируемого источника постоянного тока. Применение тиристорных преобразователей в электроприводах постоянного тока. Структурная схема тиристорного преобразователя.

    курсовая работа [509,4 K], добавлен 01.02.2015

  • Понятие постоянного тока, его основные законы. Однофазные и трехфазные трансформаторы, их конструкция, принцип действия. Способы соединения электродвигателей с рабочей машиной, приемы их рациональной эксплуатации. Единицы измерения оптического спектра.

    дипломная работа [57,5 K], добавлен 19.07.2011

  • Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа [351,4 K], добавлен 10.05.2013

  • Расчет механических характеристик двигателей постоянного тока независимого и последовательного возбуждения. Ток якоря в номинальном режиме. Построения естественной и искусственной механической характеристики двигателя. Сопротивление обмоток в цепи якоря.

    контрольная работа [167,2 K], добавлен 29.02.2012

  • Расчет и построение естественных и искусственных механических характеристик двигателя постоянного тока смешанного возбуждения. Расчет регулирующего элемента генератора параллельного возбуждения. График вебер-амперной характеристики электродвигателя.

    контрольная работа [198,0 K], добавлен 09.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.