Пара сил

Рассмотрение теоремы о сумме моментов пары сил. Характеристика особенностей теорема об эквивалентности пар сил. Анализ теоремы о переносе пары сил в параллельную плоскость. Определение теоремы о сложении пар сил. Оценка условий равновесия пар сил.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.02.2016
Размер файла 53,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Краткое содержание: Пара сил. Теорема о сумме моментов пары сил. Теорема об эквивалентности пар сил. Теорема о переносе пары сил в параллельную плоскость. Теорема о сложении пар сил. Условия равновесия пар сил. эквивалентность сила равновесие плоскость

ПАРА СИЛ

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Плоскостью действия пары сил называется плоскость в которой расположены эти силы.

Плечом пары сил d называется кратчайшее расстояние между линиями действия сил пары.

Моментом пары сил называется вектор , модуль которого равен произведению модуля одной из сил пары на ее плечо и который направлен перпендикулярно плоскости действия сил пары в ту сторону, откуда пара видна стремящейся повернуть тело против хода часовой стрелки.

Рис. 4.1

Теорема о сумме моментов пары сил. Сумма моментов сил, входящих в состав пары, относительно любой точки не зависит от выбора этой точки и равна моменту этой пары сил.

Доказательство: Выберем произвольно точку О. Проведем из нее в точки А и В радиус-векторы (Смотри Рис. 4.2).

,

Что и требовалось доказать.

Рис. 4.2

Две пары сил называются эквивалентными, если их действие на твердое тело одинаково при прочих равных условиях.

Теорема об эквивалентности пар сил. Пару сил, действующую на твердое тело, можно заменить другой парой сил, расположенной в той же плоскости действия и имеющий одинаковый с первой парой момент.

Доказательство: Пусть на твердое тело действует пара сил .

Перенесем силу в точку , а силу в точку . Проведем через точки две любые параллельные прямые, пересекающие линии действия сил пары. Соединим точки отрезком прямой и разложим силы в точке и в точке по правилу параллелограмма.

Так как , то

и

Поэтому эквивалентна системе , а эта система эквивалентна системе , так как эквивалентна нулю.

Таким образом мы заданную пару сил заменили другой парой сил . Докажем, что моменты у этих пар сил одинаковы.

Момент исходной пары сил численно равен площади параллелограмма , а момент пары сил численно равен площади параллелограмма . Но площади этих параллелограммов равны, так как площадь треугольника равна площади треугольника .

Что и требовалось доказать.

Выводы:

Пару сил как жесткую фигуру можно как угодно поворачивать и переносить в ее плоскости действия.

У пары сил можно изменять плечо и силы, сохраняя при этом момент пары и плоскость действия.

Теорема о переносе пары сил в параллельную плоскость. Действие пары сил на твердое тело не изменится от переноса этой пары в параллельную плоскость.

Доказательство: Пусть на твердое тело действует пара сил в плоскости . Из точек приложения сил А и В опустим перпендикуляры на плоскость и в точках их пересечения с плоскостью приложим две системы сил и , каждая из которых эквивалентна нулю.

Сложим две равные и параллельные силы и . Их равнодействующая параллель-на этим силам, равна их сумме и приложена посредине отрезка в точке О.

Сложим две равные и параллельные силы и . Их равнодействующая параллель-на этим силам, равна их сумме и приложена посредине отрезка в точке О.

Так как , то система сил эквивалентна нулю и ее можно отбросить.

Таким образом пара сил эквивалентна паре сил , но лежит в другой, параллельной плоскости. Что и требовалось доказать.

Следствие: Момент пары сил, действующий на твердое тело, есть свободный вектор.

Две пары сил, действующих на одно и то же твердое тело, эквивалентны, если они имеют одинаковые по модулю и направлению моменты.

Теорема о сложении пар сил. Две пары сил, действующих на одно и то же твердое тело, и лежащие в пересекающихся плоскостях, можно заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Доказательство: Пусть имеются две пары сил, расположенные в пересекающихся плоскостях. Пара сил в плоскости характеризуется моментом , а пара сил в плоскости характеризуется моментом .

Расположим пары сил так, чтобы плечо пар было общим и располагалось на линии пересечения плоскостей. Складываем силы, приложенные в точке А и в точке В, . Получаем пару сил .

Что и требовалось доказать.

Условия равновесия пар сил.

Если на твердое тело действует несколько пар сил, как угодно расположенных в пространстве, то последовательно применяя правило параллелограмма к каждым двум моментам пар сил, можно любое количество пар сил заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы момент эквивалентной пары сил равнялся нулю.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма проекций моментов пар сил на каждую из трех координатных осей была равна нулю.

Размещено на Allbest.ru

...

Подобные документы

  • Содержание и значение теоремы моментов, об изменении количества движения точки. Работа силы и принципы ее измерения. Теорема об изменении кинетической энергии материальной точки. Несвободное движение точки (принцип Даламбера), описание частных случаев.

    презентация [515,7 K], добавлен 26.09.2013

  • Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

    реферат [61,6 K], добавлен 08.04.2011

  • Силовые линии электростатического поля. Поток вектора напряженности. Дифференциальная форма теоремы Остроградского-Гаусса. Вычисление электростатических полей с помощью теоремы Остроградского-Гаусса. Поле бесконечной равномерно заряженной плоскости.

    презентация [2,3 M], добавлен 13.02.2016

  • Составление уравнений равновесия пластины и треугольника. Применение теоремы Вариньона для вычисления моментов сил. Закон движения точки и определение ее траектории. Формула угловой скорости колеса и ускорения тела. Основные положения принципа Даламбера.

    контрольная работа [1,5 M], добавлен 04.03.2012

  • Формулировка и доказательство теоремы Котельникова. Свойства функций отсчетов. Аспекты использования теоремы Котельникова, недостатки ее применения по отношению к реальным сигналам. Определение практической ширины спектра сигнала и энергии погрешности.

    лекция [79,6 K], добавлен 19.08.2013

  • Основные понятия топологии электрических цепей. Теоремы замещения и Теллегена. Баланс мощности и принцип дуальности. Узел как место соединения зажимов двух и более элементов. Выполнение закона Кирхгофа. Ветвь как часть цепи, которая включена между узлами.

    реферат [551,0 K], добавлен 10.03.2009

  • Применение дифференциальных уравнений к изучению движения механической системы. Описание теоремы об изменении кинетической энергии, принципа Лагранжа–Даламбера (общего уравнения динамики), уравнения Лагранжа второго рода, теоремы о движении центра масс.

    курсовая работа [701,6 K], добавлен 15.10.2014

  • Основы динамики вращений: движение центра масс твердого тела, свойства моментов импульса и силы, условия равновесия. Изучение момента инерции тел, суть теоремы Штейнера. Расчет кинетической энергии вращающегося тела. Устройство и принцип работы гироскопа.

    презентация [3,4 M], добавлен 23.10.2013

  • Определение коэффициентов трения качения и скольжения с помощью наклонного маятника. Изучение вращательного движения твердого тела. Сравнение измеренных и вычисленных моментов инерции. Определение момента инерции и проверка теоремы Гюйгенса–Штейнера.

    лабораторная работа [456,5 K], добавлен 17.12.2010

  • Построение схемы механизма в масштабе. Методы построения плана скоростей и ускорений точек. Величина ускорения Кориолиса. Практическое использование теоремы о сложении ускорений при плоскопараллельном движении. Угловые скорости и ускорения звеньев.

    курсовая работа [333,7 K], добавлен 15.06.2015

  • Определение скорости пули методом физического маятника. Объём и плотности тела, вычисление погрешностей. Определение момента инерции и проверка теоремы Штейнера методом крутильных колебаний. Модуль сдвига при помощи крутильных колебаний.

    лабораторная работа [125,8 K], добавлен 27.02.2011

  • Векторы угловой скорости и углового ускорения вращающегося тела. Производные от единичных векторов подвижных осей (формулы Пуассона). Теорема о сложении скоростей (правило параллелограмма скоростей). Теорема о сложении ускорений (теорема Кориолиса).

    курсовая работа [623,5 K], добавлен 27.10.2014

  • Общее понятие гироскопа, его важнейшие свойства. Основное допущение элементарной теории. Реакция гироскопа на внешние силы. Момент гироскопической реакции, сущность теоремы Резаля. Оценка воздействия мгновенной силы на направление оси гироскопа.

    презентация [415,9 K], добавлен 30.07.2013

  • Рассмотрение понятия и видов диэлектриков, особенностей их поляризации. Описание потока вектора электрического смещения. Изучение теоремы Остроградского-Гаусса. Расчет электрических полей в различных аппаратах, кабелях. Изменение вектора и его проекций.

    презентация [2,3 M], добавлен 13.02.2016

  • Реакция опор и давление в промежуточном шарнире составной конструкции. Система уравновешивающихся сил и равновесия по частям воздействия. Применение теоремы об изменении кинетической энергии к изучению движения механической системы под действием тяжести.

    контрольная работа [1,1 M], добавлен 23.11.2009

  • Анализ теоремы об изменении кинетического момента материальной точки и несвободной механической системы. Теоретическая механика как наука об общих законах механического движения тел. Основные кинематические характеристики: скорость, ускорение, траектория.

    курсовая работа [788,4 K], добавлен 23.11.2012

  • Методика определения момента инерции тела относительно оси, проходящей через центр масс. Экспериментальная проверка аддитивности момента инерции и теоремы Штейнера. Зависимость момента инерции от массы тела и ее распределения относительно оси вращения.

    контрольная работа [160,2 K], добавлен 17.11.2010

  • Плоская система сходящихся сил. Момент пары сил относительно точки и оси. Запись уравнения движения в форме уравнения равновесия (метод кинетостатики). Принцип Даламбера. Проекция силы на координатную ось. Расчетная формула при растяжении и сжатии.

    контрольная работа [40,6 K], добавлен 09.10.2010

  • Определение момента инерции тела относительно оси, проходящей через центр его масс, экспериментальная проверка аддитивности момента инерции и теоремы Штейнера методом трифилярного подвеса. Момент инерции тела как мера инерции при вращательном движении.

    лабораторная работа [157,2 K], добавлен 23.01.2011

  • Уравнения кинетостатики, теоремы об изменении количества, момента движения. Вычисление главного вектора и момента сил энерции. Случай плоского движения твердого тела, имеющего плоскость материальной симметрии. Статические, добавочные динамические реакции.

    презентация [418,1 K], добавлен 02.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.