Дуговой разряд

Свойства и принципы образования дугового разряда, понятие катодного пятна. Распределение потенциала и вольтамперная характеристика при дуговом разряде, анализ температуры и излучения. Особенности применения дугового разряда в электрообработке металла.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 18.03.2016
Размер файла 77,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Национальный исследовательский Томский политехнический университет

Кафедра техники и электрофизики высоких напряжений

Курсовой проект

Предмет «Прикладная физика и химия плазмы»

Дуговой разряд

Выполнил студент группы 4ТМ41

Аширбаев М.Е.

Проверил профессор, д.ф.-м.н. ТЭВН

Пушкарев А.И.

Томск, 2015

Содержание

дуговой разряд катодный вольтамперный

1. Общие сведения

2. Свойства дугового разряда

2.1 Образование дуги

2.2 Катодное пятно. Внешний вид и отдельные части дугового разряда

2.3 Распределение потенциала и вольтамперная характеристика при дуговом разряде

2.4 Температура и излучение отдельных частей дугового разряда

2.5 Генерация незатухающих колебаний при помощи электрической дуги

3. Применение дугового разряда

3.1 Современные методы электрообработки

3.2 Электродуговая сварка

3.3 Плазменная технология

3.4 Плазменная сварка

Заключение

Список использованных источников

1. Общие сведения

Дуговой разряд в виде так называемой электрической дуги был впервые обнаружен в 1802 году русским учёным профессором физики Военно-медико-хирургической академии в Петербурге, а впоследствии академиком Петербургской Академии наук Василием Владимировичем Петровым. Петров следующими словами описывает в одной из изданных им книг свои первые наблюдения над электрической дугой:

«Если на стеклянную плитку или на скамеечку со стеклянными ножками будут положены два или три древесных угля... и если металлическими изолированными направлятелями...сообщенными с обоими полюсами огромной батареи, приближать оные один к другому на расстояние от одной до трёх линий, то является между ними весьма яркий белого цвета свет или пламя, от которого оные угли скорее или медлительнее загораются и от которого тёмный покой довольно ясно освещен быть может... ».

Путь к электрической дуге начался в глубокой древности. Еще греку Фалесу Милетскому, жившему в шестом веке до нашей эры, было известно свойство янтаря притягивать при натирании легкие предметы--перышки, солому, волосы и даже создавать искорки. Вплоть до семнадцатого века это был единственный способ электризации тел, не имевший никакого практического применения. Ученые искали объяснение этому явлению.

Английский физик Уильям Гильберт (1544--1603) установил, что и другие тела (например, горный хрусталь, стекло), подобно янтарю, обладают свойством притягивать легкие предметы после натирания. Он назвал эти свойства электрическими, впервые введя этот термин в употребление (по-гречески янтарь--электрон).

Бургомистр из Магдебурга Отто фон Герике (1602--1686) сконструировал одну из первых электрических машин. Это была электростатическая машина, представлявшая собой серный шар, укрепленный на оси. Одним из полюсов служил... сам изобретатель. При вращении рукоятки из ладоней довольного бургомистра с легким потрескиванием вылетали синеватые искры. Позднее машину Герике усовершенствовали другие изобретатели. Серный шар был заменен стеклянным, а вместо ладоней исследователя в качестве одного из полюсов применены кожаные подушечки.

Большое значение имело изобретение в восемнадцатом веке лейденской банки--конденсатора, позволившего накапливать электричество. Это был стеклянный сосуд с водой, обернутый фольгой. В воду погружали металлический стержень, пропущенный через пробку.

Американский ученый Бенджамин Франклин (1706--1790) доказал, что вода в собирании электрических зарядов никакой роли не играет, этим свойством обладает стекло--диэлектрик.

Электростатические машины получили довольно широкое распространение, но лишь как забавные вещицы. Были, правда, попытки лечения больных с помощью электричества, однако каков был физиотерапевтический эффект такого лечения, сказать трудно.

Французский физик Шарль Кулон (1736--1806)-- основатель электростатики-в 1785 г. установил, что сила взаимодействия электрических зарядов пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними.

В сороковых годах восемнадцатого века Бенджамин Франклин выдвинул теорию о том, что существует электричество только одного рода--особая электрическая материя, состоящая из мельчайших частиц, способных проникать внутрь вещества. Если в теле имеется избыток электрической материи, оно заряжено положительно, при ее недостатке--тело заряжено отрицательно. Франклин ввел в практику знаки «плюс» и «минус»,а также термины: конденсатор, проводник, заряд.

С оригинальными теориями о природе электричества выступили М. В. Ломоносов (1711--1765), Леонард Эйлер (1707--1783), Франц Эпинус (1724--1802) и другие ученые. К концу восемнадцатого века свойства и поведение неподвижных зарядов были достаточно изучены и в какой-то мере объяснены. Однако ничего не было известно об электрическом токе--движущихся зарядах, так как не существовало устройства, которое могло бы заставить двигаться большое количество зарядов. Токи, получаемые от электростатической машины, были слишком малы, их нельзя было измерить.

2. Свойства дугового разряда

2.1 Образование дуги

Если в тлеющем разряде увеличивать силу тока, уменьшая внешнее сопротивление, то при большой силе тока напряжение на зажимах трубки начинает падать, разряд быстро развивается и превращается в дуговой. В большинстве случаев переход совершается скачком и практически нередко ведёт к короткому замыканию. При подборе сопротивления внешнего контура удаётся стабилизовать переходную форму разряда и наблюдать при определённых давлениях непрерывный переход тлеющего разряда в дугу. Параллельно с падением напряжения между электродами трубки идёт возрастание температуры катода и постепенное уменьшение катодного падения.

Применение обычного способа зажигания дуги путём раздвигания электродов вызвано тем, что дуга горит при сравнительно низких напряжениях в десятки вольт, тогда как для зажигания тлеющего разряда нужно при атмосферном давлении напряжение порядка десятков киловольт. Процесс зажигания при раздвигании электродов объясняется местным нагреванием электродов вследствие образования между ними плохого контакта в момент разрыва цепи. Вопрос о развитии дуги при разрыве цепи технически важен не только с точки зрения получения «полезных» дуг, но также и с точки зрения борьбы с «вредными» дугами, например с образованием дуги при размыкании рубильника. Пусть L-само- индукция контура, W--его сопротивление, Ъ--э.д.с. источника тока U(I)--функция вольтамперной характеристики дуги. Тогда мы должны иметь:

Ъ= L dI/dt+WI+U(I) (1)

LdI/dt=(Ъ-WI)-U(I)=? (2)

Разность (Ъ -- WI) есть не что иное, как ордината прямой сопротивления АВ (рис.1), а U(I)-- ордината характеристики дуги при данном I. Чтобы dI/dt было отрицательно, т.е. Чтобы ток I непременно уменьшался со временем и между электродами рубильника не образовалось стойкой дуги, надо, чтобы

Рис. 1. Относительное положение прямой сопротивления и кривой вольтамперной характеристики установившейся дуги для случаев: а)когда дуга не может возникнуть при разрыве цепи; б)когда дуга возникает при разрыве в интервале силы тока, соответствующем точкам Р и Q.

имело место ?<0, т. е. надо, чтобы во всех точках характеристики соблюдалось неравенство U(I)>Ъ-WI. Для этого характеристика всеми своими точками должна лежать выше прямой сопротивления (рис. 1, а). Это простое заключение не учитывает ёмкости в цепи и относится лишь к постоянному току[2].

Точка пересечения прямой сопротивления с кривой вольт-амперной характеристики установившейся дуги соответствует низшему пределу силы постоянного тока, при котором может возникнуть дуга при разрыве цепи (рис. 1, б). В случае размыкания рубильником дуги переменного тока, потухающей при каждом переходе напряжения через нуль, существенно, чтобы условия, имеющиеся налицо в разрядном промежутке при размыкании, не допускали нового зажигания дуги при последующем возрастании напряжения источника тока. Для этого требуется, чтобы при возрастании напряжения разрядный промежуток был достаточно деионизован. В выключателях сильных переменных токов искусственно добиваются усиленной деионизации путём введения специальных электродов, отсасывающих заряженные частицы газа благодаря двух полярной диффузии, а также путём применения механического дутья или путём воздействия на разряд магнитным полем. При высоких напряжениях применяют масляные выключатели.

2.2 Катодное пятно. Внешний вид и отдельные части дугового разряда

Катодное пятно, неподвижное на угольном катоде, на поверхности жидкой ртути находится в непрерывном быстром движении. Положение катодного пятна на поверхности жидкой ртути может быть закреплено при помощи металлического штифта, погруженного в ртуть и немного высовывающегося из неё.

В случае небольшого расстояния между анодом и катодом тепловое излучение анода сильно влияет на свойства катодного пятна. При достаточно большом расстоянии анода от угольного катода размеры катодного пятна стремятся к некоторому постоянному предельному значению, и площадь, занимаемая катодным пятном на угольном электроде в воздухе, пропорциональна силе тока и соответствует при атмосферном давлении 470 а/смІ.Для ртутной дуги в вакууме найдено 4000 а/смІ.

При уменьшении давления площадь, занимаемая катодным пятном на угольном катоде, при постоянной силе тока увеличивается.

Резкость видимой границы катодного пятна объясняется тем, что сравнительно медленному уменьшению температуры с удалением от центра пятна соответствует быстрое падение как светового излучения, так и термоэлектронной эмиссии, а это равносильно резкой «оптической» и «электрической» границам пятна.

Угольный катод при горении дуги в воздухе заостряется, тогда как на угольном аноде, если разряд не перекрывает всю переднюю площадь анода, образуется круглое углубление--положительный кратер дуги.

Образованно катодного пятна объясняется следующим образом. Распределение пространственных зарядов в тонком слое у катода таково, что здесь разряд требует для своего поддержания тем меньшей разницы потенциалов, чем меньше поперечное сечение канала разряда. Поэтому разряд на катоде должен стягиваться.

Непосредственно к катодному пятну прилегает часть разряда, называемая отрицательной пли катодной кистью или отрицательным пламенем. Длина катодной кисти в дуге при низком давлении определяется тем расстоянием, на которое залетают быстрые первичные электроны, получившие свои скорости в области катодного падения потенциала.

Между отрицательной кистью и положительным столбом расположена область, аналогичная Фарадееву тёмному пространству тлеющего разряда. В дуге Петрова в воздухе, кроме отрицательной кисти, имеется положи-тельное пламя и ряд ореолов. Спектральный анализ указывает на наличие в этих пламенях и ореолах ряда химических соединений (циана и окислов азота).

При горизонтальном расположении электродов и большом давлении газа положительный столб дугового разряда изгибается кверху под действием конвекционных токов нагретого разрядом газа. Отсюда произошло самое название дуговой разряд.

2.3 Распределение потенциала и вольтамперная характеристика при дуговом разряде

В дуге Петрова высокая температура и высокое давление не дают возможности использовать для измерения распределения потенциала метод зондов.

Падение потенциала между электродами дуги складывается из катодного падения и Uк, анодного падения Uа и падения в положительном столбе. Сумму катодного и анодного падений потенциала можно определить, сближая анод и катод до исчезновения положительного столба и измеряя напряжение между электродами. В случае дуги при низком давлении можно определить значения потенциала в двух точках столба дуги, пользуясь методом зондовых характеристик, вычислить отсюда продольный градиент потенциала и далее подсчитать как анодное, так и катодное падение потенциала.

Установлено, что в дуговом разряде при атмосферном давлении сумма катодного и анодного падений примерно той же величины, что и ионизационный потенциал газа или пара, в котором происходит разряд.

В технике применения дуги Петрова с угольными электродами обычно пользуются эмпирической формулой Айртона:

U=a+bl+(c+dl)/I (3)

Здесь U - напряжение между электродами, I - сила тока в дуге, l - длина дуги, а, b, с и d - четыре постоянных. Формула характеристики (3) установлена для дуги между угольными электродами в воздухе. Под l подразумевается расстояние между катодом и плоскостью, проведённой через края положительного кратера[2].

Перепишем формулу (4) в виде

U=а+c/I+l(b+d/I). (4)

В (4) члены, содержащие множитель l, соответствуют падению потенциала в положительном столбе; первые два члена представляют собой сумму катодного и анодного падения Uк+Uа. Постоянные в (3) зависят от давления воздуха и от условий охлаждения электродов, а следовательно, от размеров и формы углей.

В случае дугового разряда в откачанном сосуде, заполненном парами металла (например, ртути), давление пара зависит от температуры наиболее холодных частей сосуда и поэтому ход характеристики сильно зависит от условий охлаждения всей трубки[5].

Динамическая характеристика дугового разряда сильно отличается от статической. Вид динамической характеристики зависит от быстроты изменения режима дуги. Практически наиболее интересна характеристика дуги при питании переменным током. Одновременное осциллографирование тока и напряжения даёт картину, изображенную на рис.2. Начерченная по этим кривым характеристика дуги за целый период имеет вид, представленный на рис.2. Пунктиром показан ход напряжения при отсутствии разряда.

Рис. 2. Осциллограмма тока и напряжения дугового разряда на переменном токе низкой частоты. Точки А, В, С и т.д. соответствуют точкам, обозначенным теми же буквами

Катод, не успевший ещё охладиться после разряда, имевшего место в предыдущем полупериоде тока, с самого начала полупериода, когда внешняя э.д.с. проходит через нуль, эмитирует электроны. От точки О до точки А характеристика соответствует несамостоятельному разряду, источником которого являются эмитируемые катодом электроны. В точке А происходит зажигание дуги. После точки А разрядный ток быстро увеличивается. При наличии сопротивления во внешней цепи напряжение между электродами дуги падает, хотя э.д.с. источника тока (пунктир на рис.3), пробегая синусоиду, ещё увеличивается. С уменьшением напряжения и тока, даваемого внешним источником, разрядный ток начинает уменьшаться.

С уменьшением тока в дуге напряжение между её электродами может вновь возрасти в зависимости от внешнего сопротивления, но часть ВС характеристики на рис.3 может быть и горизонтальной или иметь противоположный наклон. В точке С имеет место потухание дуги.

После точки С ток несамостоятельного разряда уменьшается до нуля вместе с уменьшением напряжения между электродами.

После перехода напряжения через нуль роль катода начинает играть прежний анод и картина повторяется при обратных знаках тока и напряжения.

На вид динамической характеристики оказывают влияние все условия, определяющие режим дуги: расстояние между электродами, величина внешнего сопротивления, самоиндукция и ёмкость внешней цепи, частота переменного тока, питающего дугу, и т. д.

Если на электроды дуги, питаемой постоянным током, наложить переменное напряжение амплитуды, меньшей, чем напряжение питающего дугу постоянного тока, то характеристика имеет вид замкнутой петли, охватывающей статическую характеристику ВС с двух сторон. При увеличении частоты переменного тока ось этой петли поворачивается, сама петля сплющивается и, наконец, стремится принять вид отрезка прямой ОА, проходящей через начало координат (рис.3).

Рис. 3. Изменение динамической характеристики при повышенной частоты переменного тока, наложенного на постоянный

При очень малой частоте петля динамической характеристики превращается в отрезок статической характеристики ВС, так как все внутренние параметры разряда, в частности концентрация ионов и электронов, успевают в каждой точке характеристики принимать значения, соответствующие стационарному разряду при данных U и I. Наоборот, при очень быстром изменении и параметры разряда совершенно не успевают изменяться, поэтому I оказывается пропорциональным и, что соответствует прямой ОА, проходящей через начало координат. Таким образом, при увеличении частоты переменного тока петля характеристики (рис. 3) становится во всех своих точках возрастающей.

В связи с возможностью полной ионизации газа в дуговом разряде стоит вопрос об обрыве дуги при малом давлении газа и очень сильных токах. В явлении обрыва дуги существенную роль играет значительное уменьшение плотности газа вследствие электрофореза и отсоса ионов к стенкам, особенно в таких местах, где разрядный промежуток сильно сужен. Практически это приводит к необходимости избегать чрезмерных сужений при постройке ртутных выпрямителей на очень большие силы тока.

Электрики, имевшие впервые дело с электрической дугой, пытались применить закон Ома также и в этом случае. Для получения результатов расчёта по закону Ома, согласных с действительностью, им пришлось ввести представление об обратной электродвижущей силе дуги. По аналогии с явлениями в гальванических элементах, предполагаемое появление этой э.д.с. назвали поляризацией дуги. Вопросу об обратной э.д.с. дуги посвящены работы русских учёных Д. А. Лачинова и В. Ф. Миткевича. Дальнейшее развитие представлений об электрических разрядах в газах показало, что такая постановка вопроса является чисто формальной и может быть с успехом заменена представлением о падающей характеристике дуги. Справедливость этой точки зрения подтверждается неудачей всех попыток непосредственно обнаружить экспериментально обратную э.д.с. электрической дуги[3].

2.4 Температура и излучение отдельных частей дугового разряда

В случае дуги в воздухе между угольными электродами преобладает излучение раскалённых электродов, главным образом, положительного кратера. Излучение анода, как излучение твёрдого тела, обладает сплошным спектром. Интенсивность его определяется температурой анода. Последняя является характерной величиной для дуги в атмосферном воздухе при аноде из какого-либо данного материала, так как температура анода от силы тока не зависит и определяется исключительно температурой плавления или возгонки материала анода. Температура плавления или возгонки зависит от давления, под которым находится плавящееся или возгоняемое тело. Поэтому температура анода, а следовательно, и интенсивность излучения положительного кратера зависят от давления, при котором горит дуга. В этом отношении известны классические опыты с угольной дугой под давлением, приведшие к получению очень высоких температур[2].

Об изменении температуры положительного кратера с давлением даёт понятие кривая рис 4. Прямая линия, на которую на этом чертеже укладываются точки для давлений от 1 атм. и выше, служит подтверждением предположения, что температура положительного кратера определяется температурой плавления или возгонки вещества анода, так как в этом случае должна существовать линейная зависимость между ln р и 1/T. Отступление от линейной зависимости при более низких давлениях объясняется тем, что при давлении ниже 1 атм. количество тепла, выделяющееся на аноде, недостаточно для нагревания анода до температуры плавления или возгонки.

Рис. 4. Изменение температуры угольного анода электрической дуги в воздухе при изменении давления. Шкала по оси ординат логарифмическая

Температура катодного пятна дуги Петрова всегда на несколько сот градусов ниже температуры положительного кратера. Высокие температуры шнура дуги не могут быть определены при помощи термоэлемента или болометра. В настоящее время для определения температуры в дуге применяют спектральные методы. При больших силах тока температура газа в дуге Петрова может быть выше температуры анода и достигает 6000° К. Такие высокие температуры газа характерны для всех случаев дугового разряда при атмосферном давлении. В случае очень больших давлений (десятки и сотни атмосфер) температура в центральных частях от шнуровавшегося положительного столба дуги доходит до 10 000° К. В дуговом разряде при низких давлениях температура газа в положительном столбе того же порядка, как и в положительном столбе тлеющего разряда.

Температура положительного кратера дуги выше, чем температура катода, потому что на аноде весь ток переносится электронами, бомбардирующими и нагревающими анод. Электроны отдают аноду не только всю приобретённую в области анодного падения кинетическую энергию, но ещё и работу выхода (скрытую теплоту испарения» электронов). Напротив, на катод попадает и его бомбардирует и нагревает малое число положительных ионов по сравнению с числом электронов, попадающих на анод при той же силе тока. Остальная часть тока на катоде осуществляется электронами, при выходе которых в случае

термоэлектронной дуги на работу выхода затрачивается тепловая энергия катода.

2.5 Генерация незатухающих колебаний при помощи электрической дуги

Благодаря тому, что дуга имеет падающую характеристику, она может быть использована в качестве генератора незатухающих колебаний. Схема такого дугового генератора представлена на рис. 5. Условия генерации колебаний в этой схеме можно вывести из рассмотрения условий устойчивости стационарного разряда при заданных параметрах внешней цепи. Пусть электродвижущая сила источника постоянного тока, питающего разряд (рис.5), равна Ъ, напряжение между электродами трубки U, сила стационарного тока через разрядную трубку при данном режиме равна I, ёмкость катод-анод трубки плюс ёмкость всех подводящих проводов С, самоиндукция в цепи L, сопротивление, через которое подаётся ток от источника, R[6].

Рис. 5. Принципиальная электрическая схема дугового генератора.

При установившемся режиме постоянного тока будем иметь:

Ъ=Uо+IR (5)

Допустим, что этот стационарный режим нарушен. Разрядный ток в какой-либо данный момент времени равен I+i, где i - малая величина, а разность потенциалов между электродами равна U. Введём обозначение U?=dU/dI (dU/di)i=0 равно тангенсу угла наклона касательной к вольтамперной характеристике в рабочей точке, соответствующей выбранному нами первоначально режиму (ток I). Посмотрим, как будет дальше изменяться i. Если i будет возрастать, то данный режим разряда неустойчив; если, наоборот, i беспредельно убывает, то режим разряда устойчивый.

Обратимся к вольтамперной характеристике рассматриваемого разрядного промежутка U=f(I+i) - через трубку идёт ток I+i и ёмкость С заряжается (или разряжается). Разность потенциалов на ёмкости С уравновешивается в этом случае не только напряжением на разрядном промежутке, но и э.д.с. самоиндукции цепи. Пусть I+i2 --общий ток через сопротивление R. Обозначим ток, заряжающий ёмкость С, через i1; мгновенное значение разности потенциалов на ёмкости С-- через U1.Разность потенциалов между электродами дуги будет U0+iU'.

Имеем:

Ъ=U1+(i+I2)R, (6)

U1-U0=U'i+Ldi/dt, (7)

i2=i1+i. (8)

Добавочный заряд Q на ёмкости С по сравнению со стационарным режимом:

Q=?i1dt=(U1-U0)C. (9)

Вычитая (5) из (6), находим:

U1-U0=-i2R (10)

Выражения (7), (8) и (10) дают:

U'i+Ldi/dt=-R(i+i1). (11)

Выражения (7) и (9) дают:

1/C?i1dt=U'i+Ldi/dt. (12)

Дифференцируя (12) по t и вставляя результат в (11), находим:

U'i+Ldi/dt=-iR-RCU'di/dt-RLCdІi/dtІ. (13)

dІi/dtІ +(1/CR+U'/L)di/dt + 1/LC(U'/R+1)i=0 (14)

Формула (14) представляет собой дифференциальное уравнение, которому подчиняется добавочный ток i.

Как известно, полный интеграл уравнения (14) имеет вид:

i=А1е^r1t+А2е^r2t, (15)

где r1 и r2-- корни характеристического уравнения, определяемые формулой

r=-1/2(1/CR+U'/L)+v1/4(1/CR+U'/L)І-1/LC(U'/R+1). (16)

Если подкоренная величина в (16) больше нуля, то r1 и r2 оба действительны, i изменяется апериодически по экспоненциальному закону и решение (15) соответствует апериодическому изменению тока. Для того чтобы в рассматриваемой нами схеме возникли колебания тока, необходимо, чтобы r1 и r2 были комплексными величинами, т. е. чтобы

1/LC(U'/R+1)>1/4(1/CR+U'/L)І (17)

В этом случае (15) можно представить в виде

i=A1e-дt+jщt+ A2e-дt-jщt, (18)

д=1/2(1/CR+U'/L); i=v-1.

При д < 0 колебания, возникшие в рассматриваемой цепи, будут раскачиваться. При д > 0 они быстро затухают, и разряд на постоянном токе будет устойчив.

Таким образом, для того чтобы в рассматриваемой схеме в конечном итоге могли установиться незатухающие колебания, надо, чтобы

(1/CR+U'/L)<0. (19)

Так как Р, L и С существенно положительные величины, то неравенство (19) может быть соблюдено только при условии:

dU/di=U'<0. (20)

Отсюда заключаем, что колебания в рассматриваемом контуре могут возникнуть только при падающей вольтамперной характеристике разряда.

Исследование условий, при которых r1 и r2 действительны и оба меньше нуля, приводит к условиям устойчивости разряда постоянного тока: Условия (21) и (22) представляют собой общие условия. Устойчивости разряда, питаемого постоянным напряжением.

(1/CR+U'/L)>0 и (21)

U'/R+1>0. (22)

Из (21) следует, что при возрастающей вольтамперной характеристике разряд всегда устойчив. Объединяя это требование с условием (22), находим, что при падающей характеристике разряд может быть устойчивым только при

|U'|<R<L/CU' (23)

При непосредственном применении формул этого параграфа к вопросу о генерации колебаний при помощи дуги приходится брать U' из «средней характеристики», построенной на основании восходящей и нисходящей ветвей динамической характеристики.

При периодическом изменении силы тока в дуге Петрова изменяются температура и плотность газа и скорости аэродинамических потоков. При подборе соответствующего режима эти изменения приводят к возникновению акустических колебании в окружающем воздухе. В результате получается так называемая поющая дуга, воспроизводящая чистые музыкальные тона.

3. Применение дугового разряда

3.1 Современные методы электрообработки

Среди современных технологических процессов одним из самых распространенных является электросварка. Сварка позволяет сваривать, паять, склеивать, напылять не только металлы, но и пластмассы, керамику и даже стекло. Диапазон применения этого метода поистине необъятен -- от производства мощных подъемных кранов, строительных металлоконструкций, оборудования для атомных и других электростанций, постройки крупнотоннажных судов, атомных ледоколов до изготовления тончайших микросхем и различных бытовых изделий. В ряде производств внедрение сварки привело к коренному изменению технологии. Так, подлинной революцией в судостроении стало освоение поточной постройки судов из крупных сварных секций. На многих верфях страны сейчас строят крупнотоннажные цельносварные танкеры. Электросварка позволила решить проблемы создания газопроводов, рассчитанных на работу в северных условиях при давлении 100--120 атмосфер. Сотрудники Института электросварки им. Е. О. Патона предложили оригинальный метод изготовления труб на основе сварочной технологии, предназначенных для таких газопроводов.

Из таких труб со стенками толщиной до 40 миллиметров и собирают высоконадежные газопроводы, пересекающие континенты.

Большой вклад в развитие электросварки внесли советские ученые и специалисты. Продолжая и творчески развивая наследие своих великих предшественников--В. В. Петрова, Н. Н. Бенардоса, Н. Г. Славянова, они создали науку о теоретических основах сварочной техники, разработали ряд новых технологических процессов. Всему миру известны имена академиков Е. О. Патона, В. П. Вологдина, К. К. Хренова, Н. Н. Рыкалина и др.

В настоящее время широко применяется электродуговая, электрошлаковая и плазменно-дуговая сварка[7].

3.2 Электродуговая сварка

Электродуговая сварка. Простейшим способом является ручная дуговая сварка. К одному полюсу источника тока гибким проводом присоединяется держатель, к другому - свариваемое изделие. В держатель вставляется угольный или металлический электрод. При коротком прикосновении электрода к изделию зажигается дуга, которая плавит основной металл и стержень электрода, образуя сварочную ванну, дающую при затвердевании сварочный шов.

Ручная дуговая сварка требует высокой квалификации рабочего и отличается не самыми лучшими условиями труда, но с ее помощью можно сваривать детали в любом пространственном положении, что особенно важно при монтаже металлоконструкций. Производительность ручной сварки сравнительно невысокая и зависит в значительной мере от такой простой детали, кaк электрододержатель. И сейчас, как и сто лет назад, продолжаются поиски наилучшей его конструкции. Серию простых и надежных электрододержателей изготовили ленинградские новаторы М. Э. Васильев и В.С. Шумский.

При дуговой сварке большое значение имеет защита металла шва от кислорода и азота воздуха. Активно взаимодействуя с расплавленным металлом, кислород и азот атмосферного воздуха образуют окислы и нитриды, снижающие прочность и пластичность сварного соединения.

Существуют два способа защиты места сварки: введение в материал электрода и электродного покрытия различных веществ (внутренняя защита) и введение в зону сварки инертных газов и окиси углерода, покрытие места сварки флюсами (внешняя защита).

В 1932 г. в Московском электромеханическом институте инженеров железнодорожного транспорта под руководством академика К. К. Хренова впервые в мире была осуществлена дуговая электросварка под водой. Однако еще в 1856 г. Л. И. Шпаковский впервые провел опыт по оплавлению дугой медных электродов, опущенных в воду. По совету Д. А. Лачинова, получившего подводную дугу, Н. Н. Бенардос в 1887 г. произвел подводную резку металла. Понадобилось 45 лет, чтобы первый опыт получил научное обоснование и превратился в метод[7].

А 16 октября 1969 г. электрическая дуга впервые вырвалась в космос. Вот как об этом выдающемся событии сообща-лось в газете «Известия»; «Экипаж космического корабля «Союз-6» в составе подполковника Г. С. Шонина и бортинжене-ра В. Н. Кубасова осуществил эксперименты по проведению сварочных работ , в космосе. Целью этих экспериментов яви-лось определение особенностей сварки различных металлов в условиях космического пространства. Поочередно были осуществлены несколько видов автоматической сварки». И далее: «Проведенный эксперимент является уникальным и имеет большое значение для науки и техники при разработке технологии сварочно-монтажных работ в космосе».

3.3 Плазменная технология

Эта технология основана на использовании дуги с высокой температурой. Она включает плазменную сварку, резку, наплавку и плазменно-механическую обработку.

Как повысить производительность дуги? Для этого надо получить дугу с большей концентрацией энергии, т. е. дугу надо сфокусировать. Добиться этого удалось в 1957--1958 гг., когда в Институте металлургии им. А. А. Байкова была создана аппаратура для плазменно-дуговой резки.

Как увеличить температуру дуги? Наверное, так же, как повышают давление водяной или воздушной струи,-пропустив ее через узкий канал.

Проходя через узкий канал сопла горелки, дуга обжимается струей газа (нейтрального, кислородсодержащего) или смесью газов и вытягивается в тонкую струю. При этом резко меняются ее свойства: температура дугового разряда достигает 50 000 градусов, удельная мощность доходит до 500 и более киловатт на один квадратный сантиметр. Ионизация плазмы в газовом столбе настолько велика, что электропроводность ее оказывается почти такой же, как и у металлов.

Сжатую дугу называют плазменной. С ее помощью осуществляют плазменную сварку, резку, направку, напыление и т. п. Для получения плазменной дуги созданы специальные генераторы -- плазмотроны[11].

Плазменная дуга, как и обычная, бывает прямого и косвенного действия. Дуга прямого действия замыкается на изделие, косвенного действия -- на второй электрод, которым служит сопло. Во втором случае из сопла вырывается не дуга, а плазменная струя, возникающая за счет нагрева дугой и последующей ионизации плазмообразующего газа. Плазменная струя применяется в основном для плазменного напыления и обработки неэлектропроводных материалов. Газ, окружающий дугу, выполняет также теплозащитную функцию. Наибольшую нагрузку в плазмотроне несет сопло. Чем выше его теплостойкость, тем больший ток можно получить в плазмотроне косвенного действия. Наружный слой плазмообразующего газа имеет относительно низкую температуру, поэтому он защищает сопло от разрушения.

Значительное повышение температуры плазмообразующего газа в плазмотронах прямого действия может привести к электрическому пробою и возникновению двойной дуги -- между катодом и соплом и между соплом и изделием. В таком случае сопло обычно выходит из строя.

3.4 Плазменная сварка

Существуют две конструкции плазмотронов. В одних конструкциях газ подается вдоль дуги, при этом достигается хорошее ее обжатие. В других конструкциях газ охватывает дугу по спирали, за счет чего удается получить стабильную дугу в канале сопла и обеспечить надежную защиту сопла пристеночным слоем газа.

В плазмотронах прямого действия дуга возбуждается не сразу, так как слишком велик воздушный промежуток между катодом и изделием. Сначала возбуждается так называемая дежурная, или вспомогательная, дуга между катодом и соплом. Развивается она из искрового разряда, который возникает под действием напряжения высокой частоты, создаваемого осциллятором. Поток газа выдувает дежурную дугу, она касается обрабатываемого металла, и тогда зажигается основная дуга. После этого осциллятор выключают, и дежурная дуга гаснет. Если этого не произойдет, может возникнуть двойная дуга. Зону шва при плазменной сварке, как и при других ее видах, защищают от действия окружающего воздуха. Для этого кроме плазмообразующего газа в специальное сопло подают защитный газ: аргон или более дешевый и распространенный углекислый газ. Углекислый газ часто используют не только для защиты, но и для образования плазмы. Иногда плазменную сварку ведут под слоем флюса.

Плазменно-дуговую сварку можно производить как автоматически, так и вручную. В настоящее время этот метод получил довольно широкое распространение. На многих заводах внедрена плазменная сварка сплавов алюминия и сталей. Значительную экономию дало применение однопроходной плазменной сварки алюминия вместо многопроходной аргонно-дуговой сварки. Сварку ведут на автоматической установке с применением углекислого газа в качестве плазмообразующего и защитного[11].

Заключение

В современной жизни применение электрической энергии получило самое широкое распространение. Достижения электротехники используются во всех сферах практической деятельности человека: в промышленности, сельском хозяйстве, на транспорте, в медицине, в быту и т. д. Успехи электротехники оказывают существенное влияние на развитие радиотехники, электроники, телемеханики, автоматики, вычислительной техники, кибернетики. Все это стало возможным в результате строительства мощных электростанций, электрических сетей, создания новых электроэнергетических систем, совершенствования электротехнических устройств. Современная электротехническая промышленность выпускает машины и аппараты для производства, передачи, преобразования, распределения и потребления электроэнергии, разнообразную электротехническую аппаратуру и технологическое оборудование, электроизмерительные приборы и средства электро-связи, регулирующую, контролирующую и управляющую аппаратуру для систем автоматического управления, медицинское и научное оборудование, электробытовые приборы и машины и многое другое. В последние годы дальнейшее развитие получили различные методы электрообработки: электросварка, плазменная резка и наплавка металлов, плазменно-механическая и электроэрозионная обработка. Из вышесказанного видно, что исследование разряда в газе имеет большое значение для общенаучного и технического прогресса. Следовательно, не нужно останавливаться на достигнутом, а необходимо продолжать исследования, отыскивая неизвестное, тем самым стимулируя в дальнейшем построение новых теорий.

Список использованных источников

1. Важов В.Ф., Лавринович В.А., Лопаткин С.А. Техника высоких напряжений/ Курс лекции для бакалавров направления 140200 “Электроэнергетика” - Томск: Изд-во ТПУ, 2006. - 119с.

2. Райзер Ю. П. Физика газового разряда. -- 2-е изд. -- М.: Наука, 1992. -536с.

3. Степанчук К.Ф., Тиняков Н.А. Техника высоких напряжений: [Учеб. Пособие для электро-энерг. Спец. втузов]. - 2-е изд., перераб. и доп. - Мн.: Выш. школа 1982 - 367 с. ил.,

4. Базуткин В.В., Ларионов В.П., Пинталь Ю.С. Техника высоких напряжений: Изоляция и перенапряжения в электрических системах: Учебник для вузов/ Под общ. Ред. Ларионова В.П. - 3-е изд., перераб. и доп. -М.: Энергоатомиздат, 1986. - 464 с.: ил.

5. Лозанский Э. Д., Фирсов О. Б. Теория искры. М., Атомиздат, 1975, 272 с.

6. Лесков Г.И. Электрическая сварочная дуга. М., «Машиностроение», 1970, -335с.

7. Черный О.М. Электродуговая сварка : практика и терия / - Изд. 2-е, доп. и перераб. - Ростов н/Д: Феникс, 2009. - 319 с.

8. Свенчанский А. Д., Смелянский М. Я. Электрические промышленные печи. - М.: 1970.

9. Сапко А.И. Исполнительные механизмы регуляторов мощности дуговых электропечей. М., Энергия, 1969. - 128 с.

10. Ширшов И. Г., Котиков В. Н.Ш64 Плазменная резка. - Л.: Машиностроение. Ленингр. отд-ние,?1987. -192 с.: ил.

11. В. Дембовский. Плазменная металлургия. Прага, СНТЛ. Пер. с чешского. М., «Металлургия», 1981. - 280с. с ил.

12. Гладкий П.В., Переплетчиков Е.Ф., Рябцев И.А. Плазменная наплавка. - К.: «Eкотехнологiя», 2007. - 292с.

13. Коротеев А.С., Миронов В.М., Свирчук Ю.С. - М.: Машиностроение, 1993. - 296 с.

Размещено на Allbest.ru

...

Подобные документы

  • Основные параметры и свойства положительного столба (ПС) тлеющего и дугового разрядов. Метастабильные атомы в ПС. Явление катафореза в смеси газов. Основные механизмы накачки возбужденных энергетических уровней газа. Излучение ПС, параметры плазмы.

    контрольная работа [511,1 K], добавлен 25.03.2016

  • Исследование и физическая интерпретация соотношения, определяющего зависимость напряжения возникновения разряда от давления газа и межэлектродного расстояния. Возникновение коронного и дугового разрядов в газовом промежутке с плоским оксидным катодом.

    реферат [159,5 K], добавлен 30.11.2011

  • Характеристики тлеющего разряда, процессы, обеспечивающие его существование. Картина свечения. Объяснение явлений тлеющего разряда с точки зрения элементарных процессов. Вольт-амперная характеристика разряда между электродами. Процессы в атомарных газах.

    реферат [2,8 M], добавлен 03.02.2016

  • Понятие плазмы тлеющего разряда. Определение концентрации и зависимости температуры электронов от давления газа и радиуса разрядной трубки. Баланс образования и рекомбинации зарядов. Сущность зондового метода определения зависимости параметров плазмы.

    реферат [109,9 K], добавлен 30.11.2011

  • Изучение тлеющего газового разряда как одного из видов стационарного самостоятельного электрического разряда в газах. Создание квантовых источников света в люминесцентных лампах. Формирование тлеющего газового разряда при низком давлении газа, малом токе.

    презентация [437,2 K], добавлен 13.04.2015

  • Емкостной высокочастотный разряд: общие сведения, типы, способы возбуждения, построение простейшей модели, формы существования. Краткая теория метода зондов Ленгмюра. Система уравнений для определения параметров разряда. Измерение разрядного тока.

    дипломная работа [2,6 M], добавлен 30.04.2011

  • Методики экспериментального определения коэффициента ионизации газа. Напряжение возникновения разряда. Вольт-амперные характеристики слаботочного газового разряда в аргоне с молибденовым катодом. Распределение потенциала в газоразрядном промежутке.

    контрольная работа [122,5 K], добавлен 28.11.2011

  • Условия возникновения электрического разряда в газах. Принцип ионизации газов. Механизм электропроводности газов. Несамостоятельный газовый разряд. Самостоятельный газовый разряд. Различные типы самостоятельного разряда и их техническое применние.

    реферат [32,3 K], добавлен 21.05.2008

  • Электрический разряд в газах. Основные типы газового разряда. Исследование квазистационарных токов и квазистационарных напряжений в аргоне. Элементарные процессы в приэлектродном слое. Спектроскопическое исследование аргона. Принцип работы монохроматора.

    реферат [395,2 K], добавлен 13.12.2013

  • Понятие и назначение СО2-лазера, его технические характеристики и составляющие части, принцип работы и выполняемые функции. Порядок расчета основных показателей СО2-лазера. Способы организации несамостоятельного разряда постоянного тока, расчет его КПД.

    контрольная работа [627,3 K], добавлен 11.05.2010

  • Электрический ток в полупроводниках. Образование электронно-дырочной пары. Законы электролиза Фарадея. Прохождение электрического тока через газ. Электрическая дуга (дуговой разряд). Молния - искровой разряд в атмосфере. Виды самостоятельного разряда.

    презентация [154,2 K], добавлен 15.10.2010

  • Самостоятельный и несамостоятельный разряды в газах. Описание установки для измерения тока ионного тока тлеющего разряда. Модель физического процесса. Построение графиков, отображающих зависимость ионного тока тлеющего разряда от расстояния до коллектора.

    курсовая работа [1,3 M], добавлен 14.09.2012

  • Гром — звуковое явление в атмосфере, сопровождающее разряд молнии. Общее понятие и механизм образования искрового разряда. Молния — гигантский электрический искровой разряд в атмосфере. Стадии формирования и виды молний. Поражение человека молнией.

    доклад [18,2 K], добавлен 18.11.2010

  • Механизмы возникновения электрического разряда в газах, условия их электропроводности. Ионная электропроводимость газов. Различные типы самостоятельного разряда и их техническое применение. Искровой, коронный и дуговой разряды. "Огни святого Эльма".

    презентация [2,9 M], добавлен 07.02.2011

  • Устройство для получения высокочастотного индукционного разряда. Условия циклотронного резонанса. Виды реакторов высокочастотного емкостного разряда. Основные способы генерации плазмы. Зависимость скорости плазменного травления от параметров процесса.

    презентация [1,9 M], добавлен 02.10.2013

  • Описание двухступенчатого BOSH-процесса. Классификация электрических разрядов в газе. Способы создания разряда постоянного тока. Движение электрона в постоянном электрическом поле в вакууме. Зависимость типа разряда от частоты отсечки ионов и электронов.

    презентация [2,5 M], добавлен 02.10.2013

  • Физика явлений, происходящих в газовых разрядах с непрерывным и импульсным подводом электрической энергии, как основа лазерных технологий. Виды, свойства и характеристики разрядов. Разряд униполярного пробоя газа, его вольт-амперные характеристики.

    дипломная работа [1,9 M], добавлен 25.02.2013

  • Оптимальные условия возбуждения эксиламп барьерного разряда. Рабочие среды и спектры их излучения. Принцип работы резонансного источника питания гармонического напряжения. Описание экспериментальной установки. Измерение мощности излучения эксилампы.

    дипломная работа [3,7 M], добавлен 08.10.2015

  • Коронный разряд, электрическая корона, разновидность тлеющего разряда; возникает при резко выраженной неоднородности электрического поля вблизи одного или обоих электродов. Подобные поля формируются у электродов с очень большой кривизной поверхности.

    лекция [18,9 K], добавлен 21.12.2004

  • Тлеющий газовый разряд как один из видов стационарного самостоятельного электрического разряда в газах. Применение его как источника света в неоновых лампах, газосветных трубках и плазменных экранах. Создание квантовых источника света, газовых лазеров.

    презентация [437,2 K], добавлен 13.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.