Экологически чистые нетрадиционные источники энергии
Исследование роль энергии в жизни человека. Изучение ее альтернативных восстановимых видов. Принципы использования различных видов энергетики: солнечной, ветровой, геотермальной, приливов и отливов. Методика применения биомассы в промышленности и быту.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 11.04.2016 |
Размер файла | 699,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
низкотемпературный, используемый в виде теплоты, ТДж/год (нижняя граница)
традиционные технологии
традиционные и бинарные технологии
Европа
1830
3700
>370
Азия
2970
5900
>320
Африка
1220
2400
>240
Северная Америка
1330
2700
>120
Латинская Америка
2800
5600
>240
Океания
1050
2100
>110
Мировой потенциал
11200
22400
>1400
Как видно из таблицы, потенциал геотермальных источников энергии просто таки колоссален. Однако используется он крайне незначительно.
В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.
Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.
5. Энергия приливов и отливов
Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов - все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.
Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны: акватория Тихого океана составляет 180 млн. кв. км, Атлантического - 93 млн. кв. км, Индийского - 75 млн. кв. км. Так, тепловая энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.
Энергия океана давно привлекает к себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т.д.
Впервые идею использования энергии разности температур поверхностных и глубинных слоев воды Мирового океана предложил французский ученый д'Арсонвиль в 1881 году, но первые разработки начались лишь в 1973 году. Энергию разности температур различных слоев Мирового океана оценивают в 20-40 трлн. кВт. Из них практически могут быть использованы лишь 4 трлн. кВт.
Принцип действия этих станций заключается в следующем: теплую морскую воду (24-32° С) направляют в теплообменник, где жидкий аммиак или фреон превращаются в пар, который вращает турбину, а затем поступает в следующий теплообменник для охлаждения и конденсации водой с температурой 5-6 °С, поступающей с глубины 200-500 метров. Получаемую электроэнергию передают на берег по подводному кабелю, но ее можно использовать и на месте (для обеспечения добычи минерального сырья со дна или его выделения из морской воды). Достоинство подобных установок - возможность их доставки в любой район Мирового океана. К тому же, разность температур различных слоев океанической воды - более стабильный источник энергии, чем, скажем, ветер, Солнце, морские волны или прибой. Первая такая установка была пущена в 1981 году на острове Науру. Единственный недостаток таких станций - их географическая привязанность к тропическим широтам. Для практического использования температурного градиента наиболее пригодны те районы Мирового океана, которые расположены между 20° с.ш. и 29° ю.ш., где температура воды у поверхности океана достигает, как правило, 27-28° С, а на глубине 1 километр имеет всего 4-5° С.
Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление - ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Приливные волны таят в себе огромный энергетический потенциал - 3 млрд. кВт.
Растет интерес специалистов к приливным колебаниям уровня океана у побережий материков. Энергию приливов на протяжении веков человек использовал для приведения в действие мельниц и лесопилок. Приливная энергия постоянна. Благодаря этому, количество вырабатываемой на приливных электростанциях (ПЭС) электроэнергии всегда может быть заранее известно, в отличие от обычных ГЭС, на которых количество получаемой энергии зависит от режима реки, связанного не только с климатическими особенностями территории, по которой она протекает, но и с погодными условиями.
Тем не менее ученые считают, что технически возможно и экономически выгодно использовать лишь очень небольшую часть приливного потенциала Мирового океана - по некоторым оценкам только 2%.При определении технических возможностей большую роль играют такие факторы, как характер береговой линии, форма и рельеф дна, глубина воды, морские течения и ветер. Опыт показывает, что для эффективной работы ПЭС высота приливной волны должна быть не менее 5 м. Чаще всего такие условия возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Но подобных мест на всём земном шаре не так уж много: по разным источникам 25, 30 или 40.
При оценке экономических выгод строительства ПЭС также нужно учитывать, что наибольшие амплитуды приливов-отливов характерны для окраинных морей умеренного пояса. Многие из этих побережий расположены в необжитых местах, на большом удалении от главных районов расселения и экономической активности, следовательно, и потребления электроэнергии. Нужно учитывать также и то, что рентабельность ПЭС резко возрастает по мере увеличения их мощности до 3-5 и тем более 10-15 млн. кВт. Но сооружение таких станций-гигантов, к тому же в отдаленных районах, требует особенно больших затрат, не говоря уже и о сложнейших технических проблемах.
Считается, что наибольшими запасами приливной энергии обладает Атлантический океан. В его северо-западной части, на границе США и Канады, находится залив Фанди, представляющий собой внутреннюю суженную часть более открытого залива Мен. Длина его 300 км при ширине 90 км, глубина у входа более 200 м. Этот залив знаменит самыми высокими в мире приливами, достигающими 18 м. Очень высоки приливы и у берегов Канадского арктического архипелага. Например, у побережья Баффиновой земли они поднимаются на 15,6 м. В северо-восточной части Атлантики примерно такие же приливы наблюдаются в проливе Ла-Манш у берегов Франции, в Бристольском заливе и Ирландском море у берегов Англии и Ирландии.
Велики также запасы приливной энергии в Тихом океане. В его северо-западной части особенно выделяется Охотское море, где в Тугурском и Пенжинском заливах высота приливной волны составляет 9-13 м. Значительные приливы наблюдаются и у побережий Китая и Корейского полуострова. На восточном побережье Тихого океана благоприятные условия для использования приливной энергии имеются у берегов Канады, Чилийского архипелага на юге Чили, в узком и длинном Калифорнийском заливе Мексики.
В пределах Северного Ледовитого океана по запасам приливной энергии выделяются Белое море, в Мезенской губе которого приливы имеют высоту до 10 м, и Баренцево море у берегов Кольского полуострова (до 7 м). В Индийском океане запасы такой энергии значительно меньше. В качестве перспективных для строительства ПЭС здесь обычно называются залив Кач Аравийского моря (Индия) и северо-западное побережье Австралии.
Несмотря на такие, казалось бы весьма благоприятные, природные предпосылки, строительство ПЭС пока имеет довольно ограниченные масштабы. По существу реально можно говорить лишь о более или менее крупной промышленной ПЭС «Ранс» во Франции, об опытной Кислогубской ПЭС на Кольском полуострове(Россия) и канадско-американской ПЭС в заливе Фанди.
При сооружении ПЭС необходимо всесторонне оценивать их экологическое воздействие на окружающую среду. Оно довольно велико. В районах сооружения крупных ПЭС существенно изменяется высота приливов, нарушается водный баланс в акватории станции, что может серьёзно сказаться на рыбном хозяйстве, разведении устриц, мидий и пр.
К числу энергетических ресурсов Мирового океана относят также энергию волн и температурного градиента. Энергия ветровых волн суммарно оценивается в 2,7 млрд. кВт в год. Опыты показали, что ее следует использовать не у берега, куда волны приходят ослабленными, а в открытом море или в прибрежной зоне шельфа. В некоторых шельфовых акваториях волновая энергия достигает значительной концентрации: в США и Японии - около 40 кВт на метр волнового фронта, а на западном побережье Великобритании - даже 80 кВт на 1 метр. Использование этой энергии, хотя и в местных масштабах, уже начато в Великобритании и Японии. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому центральному электроэнергетическому управлению.
В океане, который составляет 72% поверхности планеты, потенциально имеются различные виды энергии - энергия волн и приливов; энергия химических связей газов, солей и других минералов; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; энергия температурного градиента и др., и их можно преобразовывать в стандартные виды топлива. Такие количества энергии, многообразие её форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка.
7. Биотопливо
Биотопливные источники
Биотопливо -- топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов.
Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты, топливные гранулы, щепа, солома, лузга) и газообразное (синтез-газ, биогаз, водород).
Существует много способов для получения биотоплива, к примеру, есть заводы по переработке стеблей сахарного тростника, семян рапса, кукурузы, сои, и других растений.
Производится жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и твёрдое биотопливо (дрова, солома).
На ранней стадии разработки находятся технологии по получению топлива из целлюлозы, органических сельскохозяйственных, бытовых отходов, отходов лесной промышленности. Они являются наиболее перспективными и безопасными для окружающей среды.
Считается, что биотопливо в большей степени соответствует экологическим стандартам, потому что при сгорании выделяет меньше парниковых газов, губительных для окружающей среды.
На самом деле, не все биотопливо одинаково безвредно для природы и эффективно, ряд технологий имеет существенные недостатки.
Тем не менее, есть и удачные решения, которые смогут стать достойной альтернативой, или же служить следующей ступенью в процессе перехода от традиционных видов топлива к экологически чистым ресурсам нового поколения.
Достоинства
·Производство биотоплива осуществляется с помощью самых разнообразных органических материалов. Опираясь на это преимущество можно сказать, что такой вид альтернативной энергии может быть доступен каждому и кстати в любой стране и регионе в независимости от того какие там условия (климат, рельеф и многое другое).
·Производство биотоплива в виде топливные брикеты производство поможет решить очень важную проблему окружающей среды, как утилизация мусора. Ведь имеются большие перспективы на решение такой экологически важной проблемы. О ней уже много лет думают большое количество людей, в том числе и ученые всего мира.
Недостатки
·Многие ученые беспокоятся о том, что уничтожение лесов нанесет очень большой вред окружающей среде. Но, как известно биотопливо производится не только с помощью деревьев, которые проходят такую процедуру, как сушка пиломатериалов.
·Также некоторые ученые утверждают, что если выращивать большое количество разнообразных растений для производства, то это может привести к истощению плодотворности нашей планеты. Впоследствии многие страны третьего мира могут просто-напросто умереть с голода. [5]
Энергия биомассы. Биомасса ѕ это выраженное в единицах массы количество живого вещества организмов, приходящееся на единицу площади или объема. В процессе переработки она преобразуется в органические отходы и биогаз.
В настоящее время биомасса широко используется в качестве топлива, что является результатом постоянных усилий ученых и специалистов по созданию экологически чистой энергии и предотвращению выбросов загрязняющих веществ в атмосферу.
В энергетических целях биомассу либо сжигают, используя теплоту сгорания (в этом случае продукты пиролиза могут загрязнять атмосферу), либо перерабатывают путем анаэробного сбраживания с целью получения биогаза (рис. 1). Биогаз, состоящий на 60-70% из метана и на 20-40% из углекислого газа, получают в специальных установках, основной частью которых является реактор (метантенк), т. е. бродильная камера, в которую загружают биомассу.
1 ѕ приемный бункер; 2 ѕ мостовой грейферный кран; 3 ѕ дробилка; 4 ѕ магнитный сепаратор;
5 ѕ насос-смеситель; 6 ѕ метантенк; 7 ѕ шнековый пресс; 8 ѕ рыхлитель; 9 ѕ емкость для сбора
отжима; 10 ѕ цилиндрический грохот; 11 ѕ упаковочная машина; 12 ѕ крупный отсев;
13 ѕ склад удобрений; 14 ѕ газголдер; 15 ѕ компрессор; 16 ѕ уравнительная касера; I ѕ направление движения отходов; II ѕ направление движения биогаза
Рис. 1. Принципиальная схема переработки ТБО методом анаэробного компостирования для получения биогаза:
Материалом для переработки на биогазовых установках служат твердые бытовые отходы, навоз, отходы деревообработки (кора, опилки, стружки), осадки биологических очистных устройств и др.
С экологической точки зрения укажем на некоторые отличительные особенности использования этого энергетического направления:
1) биотехнологическая трансформация биомассы в энергию считается абсолютно безвредной;
2) в отличие от традиционных источников энергии данный метод не загрязняет окружающую среду;
3) вырабатывается не только энергия, но и одновременно природная среда очищается (освобождается) от продуктов жизнедеятельности и других отходов.
После очищения от углекислого газа и сероводорода биогаз сжигают и используют в стандартных водонагревателях, газовых плитах, горелках и других приборах.
В строительной сфере биогаз, как показывает мировой опыт, широко используется как источник экологически чистой энергии при производстве многих строительных материалов: гипса, стекла, керамзита и др. Доказано также, что при сухом способе производства цемента экологически и экономически выгоднее во вращающихся обжиговых печах использовать не традиционные источники энергии, а биогаз.
К нетрадиционным возобновляемым источникам энергии относят также энергию приливов, энергию ветровых волн, тепловые насосы, энергию температурных колебаний различных слоев морской воды и т. д.
Перспективным методом использования нетрадиционных источников энергии считается объединение ряда зданий в единую энергосистему в виде гелио- и ветрогелиокомплексов, а также ветроэнергоактивных комплексов, дополненных тепловыми насосами для трех сред (Селиванов, 1993). Эксплуатация подобных жилищно-энергетических комплексов позволит не только экономить невозобновляемые источники энергии, но и исключить или свести к минимуму вредное воздействие энергетики на окружающую среду.
Россия.
В Белгородской области весной 2005г. прошли первые испытания тепловоза с дизельным двигателем, адаптированным и работающем на рапсовом масле. Уже в 2006г., все тепловозы, приписанные к местной железной дороге, рассчитывают перевести на топливо из рапса. 2
Большие надежды за рубежом возлагают на получение энергии из биомассы, содержащей различные сахара, путем ее сбраживания с получением спирта (этанола). В Бразилии разработана национальная программа использования этанола, полученного из сахарного тростника, для замены почти четверти потребляемого в стране бензина. Уже сегодня около 10% продаваемого там бензина содержит 10% -ную добавку этанола, что заметно снижает содержание вредных веществ в выхлопных газах.
Масштабная программа замены бензина этанолом, получаемым при переработке излишков кукурузы и других зерновых культур, осуществляется и в США. На долю так называемого газохола (смеси бензина с этанолом) уже приходится около 10% топливного рынка страны. Причем, как заключили американские эксперты, если спирта в бензин добавлять не больше 8%, то нет нужды даже в перенастройке карбюраторов или инжекторов.
Использование спирта в качестве топлива на транспорте получило широкое распространение во Франции и Швеции. 3
Биотомпливо -- это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, солома) и газообразное (биогаз, водород).
Энергия биомассы -Для производства электрической и тепловой энергии в лесоперерабатывающей промышленности широко используется биомасса -- энергоносители растительного происхождения, образуемые в процессе фотосинтеза. Если производство биомассы соизмеримо с ее сжиганием, содержание углекислого газа в атмосфере остается неизменным. Наиболее оптимальный способ использования биомассы -- ее газификация с последующим срабатыванием в газовых турбинах. Предварительные расчеты показывают, что турбогенераторы, работающие на продуктах газификации биомассы, могут успешно конкурировать с традиционными тепловыми, ядерными и гидравлическими энергоустановками. Наиболее перспективными областями применения таких турбогенераторов уже в ближайшем будущем могут стать отрасли экономики, в которых скапливаются большие объемы биомассы (в частности, сахарные и винокуренные заводы, перерабатывающие сахарный тростник). Ежегодный объем органических отходов (биомассы) в СНГ составляет 500 млн. т. Их переработка потенциально позволяет получить до 150 млн.т условного топлива в год: за счет производства биогаза (120 млрд. м3) -- 100-110 млн. т, этанола -- 30-40 млн. т. Окупаемость современных технологий производства биогаза из отходов по оценкам специалистов составляет от 3 до 5 лет. За счет использования биогаза к 2000 г. можно получить годовую экономию органического топлива 6 млн. т, а к 2010 г. в 3 раза больше. Для этого необходимо создать высокоэффективные штампы анаэробных микроорганизмов, специальные виды энергетической биомассы, технологии, эффективное оборудование. Специалисты научно-исследовательского центра “АКМАС” во Владивостоке (Россия) разработали метод получения биотоплива из морской воды. Сейчас все говорят о биотопливе, как об экологически чистом продукте. В Европа его делают из рапса, из пшеницы, в Америке - из кукурузы, в Юго-Восточной Азии - из риса. Но все это продукты питания, цены на которые будут расти, так же, как и на углеводороды. Например, в Приморье собираются к форуму АТЭС построить завод по производству биотоплива из сои, который будет перерабатывать 40 тыс. т сои в год.
-Биотоплива второго поколения. Биотоплива второго поколения -- различные топлива, полученные различными методами разложение химических соединений при нагревании биомассы, или другие топлива, отличные от метанола, этанола, биодизеля. Этот способ позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций.
-Биотоплива третьего поколения
С 1978 года по 1996 года исследовал водоросли с высоким содержанием масла. Проблема заключается в агроклиматичекских условиях не всегда пригодных для выращивания водорослей. Например, водоросли любят высокую температуру, для их производства хорошо подходит пустынный климат, но требуется некая температурная регуляция при ночных перепадах
температур. Кроме выращивания водорослей в открытых прудах из можно культивировать в биореакторах, которые могут работать на основе ТЭЦ, а значит не требуется жаркий климат. На основе переработки водорослей получают газообразное топливо.
Энергия биомассы
Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта.
Одно из наиболее перспективных направлений энергетического использования биомассы - производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность - 5-6 тыс. ккал/м3 .
Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 куб. м метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений , трав и др.
Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина.
Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую.
Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья.
Размещено на Allbest.ru
...Подобные документы
Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.
курсовая работа [419,7 K], добавлен 06.05.2016Возрастание интереса к проблеме использования солнечной энергии. Разные факторы, ограничивающие мощность солнечной энергетики. Современная концепция использования солнечной энергии. Использование океанской энергии. Принцип действия всех ветродвигателей.
реферат [57,6 K], добавлен 20.08.2014Основные способы получения энергии, их сравнительная характеристика и значение в современной экономике: тепловые, атомные и гидроэлекростанции. Нетрадиционные источники энергии: ветровая, геотермальная, океаническая, энергия приливов и отливов, Солнца.
курсовая работа [57,0 K], добавлен 29.11.2014Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.
презентация [911,5 K], добавлен 20.12.2009Ознакомление с основными направлениями и перспективами развития альтернативной энергетики. Определение экономических и экологических преимуществ использования ветровой, солнечной, геотермальной, космической, водородной, сероводородной энергии, биотоплива.
реферат [706,0 K], добавлен 15.12.2010Оценка состояния энергетической системы Казахстана, вырабатывающей электроэнергию с использованием угля, газа и энергии рек, и потенциала ветровой и солнечной энергии на территории республики. Изучение технологии комбинированной возобновляемой энергетики.
дипломная работа [1,3 M], добавлен 24.06.2015Нетрадиционные экологически чистые источники энергии и их применение в сельском хозяйстве. Общая характеристика агрофирмы "Росток" Ивнянского района. Расчет экономической эффективности применения системы гелеоэлектрического обогрева и охлаждения теплиц.
дипломная работа [2,7 M], добавлен 08.07.2011Возобновление как преимущество альтернативных источников энергии. Энергетическая и сырьевая проблемы в России. Энергия солнца, ветра, приливов, глубинное тепло Земли, топливо из биомассы. Исследования в области применения биотоплива вместо нефти.
реферат [25,8 K], добавлен 05.01.2010Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.
презентация [1,1 M], добавлен 25.05.2016Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.
курсовая работа [3,9 M], добавлен 30.07.2012Основные сведения об альтернативной энергетики. Преимущества и недостатки вакуумных коллекторов. Снижение зависимости от поставок энергоносителей. Применение фокусирующих коллекторов. Преимущества использования экологически чистой солнечной энергии.
реферат [346,4 K], добавлен 21.03.2015Основные достоинства и недостатки геотермальной энергии. Мировой потенциал геотермальной энергии и перспективы его использования. Система геотермального теплоснабжения, строительство геотермальных электростанций. Востребованность геотермальной энергетики.
контрольная работа [4,0 M], добавлен 31.10.2011Технология выработки энергии на тепловых, атомных и гидравлических электростанциях. Изучение нетрадиционных методов получения ветровой, геотермальной, водородной энергии. Преимущества использования энергетических ресурсов Солнца и морских течений.
реферат [1,1 M], добавлен 10.06.2011Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.
курсовая работа [3,9 M], добавлен 30.07.2012Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.
реферат [253,9 K], добавлен 30.05.2016Изучение альтернативной гидроэнергетики, ее истории и использование в современный период. Исследование энергии волн, морских приливов и отливов. Создание геликоидных турбин. Особенности применения гидроэнергетики в различных областях науки и техники.
реферат [21,5 K], добавлен 14.11.2014Прогноз и требования к энергетике с позиции устойчивого развития человечества. Нетрадиционные источники энергии: Энергия Солнца, ветра, термальная энергия земли, энергия внутренних вод и биомассы. Попытки использования нетрадиционные источников энергии.
реферат [32,9 K], добавлен 02.11.2008История развития геотермальной энергетики и преобразование геотермальной энергии в электрическую и тепловую. Стоимость электроэнергии, вырабатываемой геотермальными элетростанциями. Перспективность использования альтернативной энергии и КПД установок.
реферат [37,7 K], добавлен 09.07.2008Прогнозы мировых и отечественных запасов нефти. Российская система классификации запасов. Переход к альтернативным источникам. Энергия приливов и отливов. Поиски экологически чистого и высокоэффективного энергоносителя, неисчерпаемого источника энергии.
реферат [24,8 K], добавлен 09.11.2013Солнечная энергетика. История развития солнечной энергетики. Способы получения электричества и тепла из солнечного излучения. Достоинства и недостатки использования солнечной энергетики. Типы фотоэлектрических элементов. Технологии солнечной энергетики.
реферат [19,4 K], добавлен 30.07.2008