Методы центровки валов
Необходимость проверки состояния центровки валов машины. Характеристика основных методик центровки: механических, радиально-осевых и метода обратных индикаторов, их преимуществ и ограничений. Типы лазерных систем для решения задач центровки валов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 15.04.2016 |
Размер файла | 296,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат
на тему: “Методы центровки валов”
Выполнил: Сидиков Д.
Существует широкий спектр методов проведения центровки. Наиболее общие - следующие:
Несоосность в муфтовом соединении, где мощность передается от привода к приводной машине, порождает вибрацию и разрушающие усилия. Следовательно, это именно то место, где необходимо проверять состояние центровки. Все вышеприведенные методы имеют общее то, что измерения проводятся на валах или полумуфтах. Значения корректировок же даются применительно к лапам машины. Положения лап должны быть рассчитаны, чтобы сделать правильные перемещения. Если это не осуществимо, успех будет зависеть от навыков того, кто производит центровку и удачи, потребуется множество перемещений, а точность будет сомнительной.
Механические методы
Край линейки
Щупы
Конусные калибры (иголки)
Эти грубые инструменты центровки, в общем, до сих пор используются в России и нашли свое место в процессе точной центровки в качестве метода достижения грубой центровки.
В основе они зависят от чистоты плоскостей полумуфт и их биения относительно осей валов. Методы просты и, если, к примеру, полумуфты отличаются по диаметру, то измерения невозможно будет выполнить во всех 4-х точках.
Щупы серии «Щ» незаменимы при сборке некоторых муфт для сохранения параллельности и являются частью каждого набора инструментов для устранения «мягкой лапы».
Преимущества:
o Простой метод
o Непосредственное измерение
o При ограниченном доступе может быть использован для тонких полумуфт
Зависит полностью от биения фланцев полумуфт.
Метод с использованием края линейки и щупов
С помощью прямого края линейки и набора щупов измеряется смещение так, как показано на рисунке ниже.
Угловая несоосность измеряется щупами, конусными калибрами, штангенциркулями и т.д. Разница в зазорах, измеренных в двух противоположных точках, используется для определения направления и величины относительного наклона валов.
центровка вал механический лазерный
Радиально-осевой метод
В течение многих лет он был стандартным методом центровки. Преимуществ по сравнению с более современными технологиями у него относительно мало, но на полумуфтах большого диаметра он дает хорошую точность. С его помощью можно замерять биения фланцев больших полумуфт как часть процедуры предварительной проверки.
Когда используется радиально-осевой метод, одно измерение делается по ободу полумуфты для определения смещения вала. Другое измерение производится в осевом направлении на фланце для определения углового положения вала.
Основные ограничения метода:
o Прогиб выносных элементов ограничивает расстояние применимости этой технологии.
o Конструкция муфтового соединения иногда препятствует доступу к плоскости фланца и в этом случае необходимо сочетать его с другими методами, например, щупами.
o Процесс корректировки становится многоэтапным, сначала исключающим параллелизм, а затем концентричность. Поскольку существуют горизонтальные и вертикальные составляющие для каждого компонента, в действительности будет четыре этапа, каждый из которых, если потребуется, может быть повторен.
o Чтобы оценить результат перемещения, необходимо повторное измерение.
o Осевые перемещения вала напрямую влияют на результат измерений.
Хотя, как и в большинстве технологий, имеются определенные преимущества. В ограниченном пространстве только этим методом можно сделать данную работу. Подобный инструмент и методика в большинстве случаев должны использоваться для оценки биения фланцев полумуфт и радиального биения валов в подшипниках.
Многие производители турбин назначают зазор в муфтовом соединении или биение боковой поверхности в качестве допусков при проведении центровки и в этом случае только данные значения необходимо измерять.
Одно важное замечание, относящееся к сопоставлению показаний, полученных методом с использованием индикаторов часового типа (MVR-1701) и лазерных систем, - то, что практически каждая лазерная система покажет положение валов ниже того уровня, где они по предположению должны находиться.
Необходимость разделения этапов центровки и корректировки угловой несоосности и смещения по вертикали и горизонтали с использованием радиальных измерений может замедлить проведение всей процедуры в целом. Во время перемещения механизма вы можете довольно сильно изменить смещение или угол, что потребует проведения повторных измерений и перемещений. Можно было бы закрепить два индикатора на одном стержне, но это не общепринятая практика. Практические ограничения возможности измерений на фланце - одна из причин, почему пренебрегают измерением угловой несоосности, полагаясь на точность изготовления полумуфт. Если имеется смещение или перекос, вы можете ошибочно полагать, что установили механизмы идеально соосно.
Метод обратных индикаторов
Обратных индикаторов, обратный снаружи, обратно-радиальный, обратный часовой, двойной обратный - все это термины для одного и того же метода центровки, использующего два индикатора часового типа и комплект приспособлений центровочный КПЦ (разработанный компанией «Балтех»). При его использовании делаются два измерения по окружности муфтового соединения в двух точках для определения смещения валов. Оба вала вращают одновременно или, в некоторых случая, измерения проводятся в два этапа одним индикатором, но с переменой его положения. Угловое положение вала является наклоном между измеренными смещениями в двух точках.
Этот метод был одобрен и рекомендован к применению в России компанией «Балтех». Заметна тенденция роста стандартизации этой техники в широкой области производств.
Главным преимуществом метода является то, что он дает сразу информацию о смещении и об угловом положении валов и обеспечивает простой расчет и графическое построение положения валов при центровке и корректировке. Увеличение расстояния между измерительными точками (А) увеличивает точность определения углового положения валов. Хотя, для индикаторов часового типа практического значения это не имеет, так как требуется ввод компенсационных значений прогиба.
На коротком расстоянии этот метод уступает в точности определения угла радиально-осевому методу, если расстояние А меньше диаметра полумуфты. Как и для всех измерений часовыми индикаторами, расчет центровки и корректировки требует графического построения. Будьте внимательны при считывании обратных показаний положительных и отрицательных значений. Легко перепутать знаки или пропустить полный оборот стрелки индикатора.
Также как и для радиально-осевого метода перемещения машины в значительной степени - результат пробных смещений с повторными измерениями. Преимущество метода обратных индикаторов в том, что корректирующие значения по смещению и углу даются одновременно, что сокращает время проведения центровки.
Лазерные системы
Несколько типов лазерных систем центровки доступно для решения задач центровки валов. Вместо стальных стержней с часовыми индикаторами, эти системы используют лазерные лучи и электронные детекторы. Одно из главных преимуществ лазерного луча - то, что нет потери точности измерений, вызванной прогибом выносных штанг. Все лазерные системы, включают в себя лазерные излучатели, приемники и электронный блок, который производит расчеты центровки.
В настоящее время существует два типа лазерных систем, основанных на различных методиках.
o Один лазер с одним приемником
o Двойной лазер, использующий метод обратных индикаторов.
Один лазер с одной или двумя мишенями.
Этот тип системы использует авто коллимацию для измерения смещения и угла с помощью отражающей призмы или пяти осевой мишени. Мишень измеряет и вертикальные и горизонтальные компоненты одновременно с углом. Хотя этот метод точен в угловых измерениях на коротких дистанциях, его труднее использовать и для грубой центровки.
Он может быть также чувствителен к люфтам при вращении валов с разъединенными полумуфтами, и без математических компенсаций тут не обойтись. Требуется повторное измерение после каждой подвижки, так как теряется опорная точка.
При этом нельзя определить боковые перемещения самим устройством или независимые повороты каждого вала. Для преодоления такого ограничения необходимо каким-либо образом соединить валы, чтобы заставить их поворачиваться синхронно. Данный тип используется в импортных лазерных системах.
Двойной лазер, использующий метод обратных индикаторов.
Этот тип системы использует главные преимущества метода обратных индикаторов. Две измерительные системы объединяют лазер и приемник в одном блоке. Техника позволяет отображать текущие значения компонент несоосности и непрерывно обновляет показания при перемещении машины.
Последнее поколение систем имеет разрешение 0,001 мм с фильтрацией для компенсации колебаний воздуха или механической вибрации.
Удобство системы в ее гибкости, которое особенно заметно в грубой центровке и технике конуса, применяемой при центровке карданных валов на больших расстояниях или приводов градирен. Данный тип используется в приборах и системах лазерной центровки валов, разработанных компанией «Балтех».
Размещено на Allbest.ru
...Подобные документы
Расчет продольной центровки вертолета Ми-2 перед взлетом и посадкой. Условия самовращения элемента лопасти. Поведение вертолёта при отказе двух двигателей. Силы и моменты, действующие на вертолет на постоянном снижении на авторотации, их обоснование.
курсовая работа [3,1 M], добавлен 09.12.2012Кинематический расчет привода. Определение передаточного числа привода и его ступеней. Силовой расчет частоты вращения валов привода, угловой скорости вращения валов привода, мощности на валах привода, диаметра валов. Силовой расчет тихоходной передачи.
курсовая работа [262,3 K], добавлен 07.12.2015Разработка математических методов и построенных на их основе алгоритмов синтеза законов управления. Обратные задачи динамики в теории автоматического управления. Применение спектрального метода для решения обратных задач динамики, характеристики функций.
курсовая работа [1,4 M], добавлен 14.12.2009Разработка на основе концепций обратных задач динамики математических методов и построенных на их основе алгоритмов синтеза законов управления; определение параметров настройки САУ. Применение спектрального метода для решения обратных задач динамики.
курсовая работа [1,4 M], добавлен 14.01.2010Изучение особенностей и условий получения совместных режимов работы двух двигателей, соединенных общим механическим валом. Возможность получения специальных механических характеристик при наложении движущего режима и режима динамического торможения.
лабораторная работа [802,9 K], добавлен 28.08.2015Кинематический расчет редуктора, его характерные параметры и внутренняя структура. Геометрический и прочностной расчеты передачи. Эскизная компоновка, предварительный и проверочный расчет валов, шпоночных и шлицевых соединений, их конструктивные размеры.
курсовая работа [321,0 K], добавлен 25.03.2015Дифференциальное уравнение теплопроводности. Поток тепла через элементарный объем. Условия постановка краевой задачи. Методы решения задач теплопроводности. Численные методы решения уравнения теплопроводности. Расчет температурного поля пластины.
дипломная работа [353,5 K], добавлен 22.04.2011Общие сведения об электрических машинах. Неисправности, разборка, ремонт токособирательной системы электрических машин. Коллекторы. Контактные кольца. Щеткодержатели. Ремонт сердечников, валов и вентиляторов электрических машин. Сердечники. Вентиляторы.
реферат [104,0 K], добавлен 10.11.2008Изучение основных метрологических характеристик фотометрических методов анализа, их методического и технического обеспечения, методик поверки фотоэлектрических колориметров. Разработка лабораторной работы по поверке фотоэлектрического колориметра КФК-2МП.
дипломная работа [1,4 M], добавлен 08.06.2013Анализ кинематической схемы привода. Определение мощности, частоты вращения двигателя. Выбор материала зубчатых колес, твердости, термообработки и материала колес. Расчет закрытой цилиндрической зубчатой передачи. Силовая схема нагружения валов редуктора.
курсовая работа [298,1 K], добавлен 03.03.2016Постановка задачи дифракции и методы ее решения. Сведения о методах решения задач электродинамики. Метод вспомогательных источников. Вывод интегральных уравнений Фредгольма второго рода для двумерной задачи. Численное решение интегрального уравнения.
курсовая работа [1,2 M], добавлен 13.01.2011Расчет статически определимого стержня переменного сечения. Определение геометрических характеристик плоских сечений с горизонтальной осью симметрии. Расчет на прочность статически определимой балки при изгибе, валов переменного сечения при кручении.
курсовая работа [1,2 M], добавлен 25.05.2015Особенности и суть метода сопротивления материалов. Понятие растяжения и сжатия, сущность метода сечения. Испытания механических свойств материалов. Основы теории напряженного состояния. Теории прочности, определение и построение эпюр крутящих моментов.
курс лекций [1,3 M], добавлен 23.05.2010Описание лазерных эффектов и эффектов квантования. Характеристика изотопного газа и плазменного образования, которое конфокально представляет собой объект в отсутствие тепло- и массообмена с окружающей средой. Когерентность идеальной тепловой машины.
реферат [14,0 K], добавлен 23.12.2010Физические основы метода гамма-гамма каротажа, применение этого метода при решении геологических и геофизических задач. Методы рассеянного гамма-излучения. Изменение характеристик потока гамма-квантов. Глубинность исследования плотностного метода.
курсовая работа [786,8 K], добавлен 01.06.2015Экономический потенциал гидроэнергоресурсов России. Основные виды гидроэлектростанций. Сооружения и оборудование гидроэлектростанций. Радиально-осевая турбина (турбина Френсиса). Определение преимуществ гидроэнергетики. Расчет себестоимости энергии.
реферат [918,7 K], добавлен 24.09.2013Что такое задача, классы, виды и этапы решения задач. Сущность эвристического подхода в решении задач по физике. Понятие эвристики и эвристического обучения. Характеристика эвристических методов (педагогические приемы и методы на основе эвристик).
курсовая работа [44,6 K], добавлен 17.10.2006Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.
контрольная работа [782,4 K], добавлен 27.05.2013Метод конечных элементов (МКЭ) — численный метод решения задач прикладной физики. История возникновения и развития метода, области его применения. Метод взвешенных невязок. Общий алгоритм статического расчета МКЭ. Решение задач методом конечных элементов.
курсовая работа [2,0 M], добавлен 31.05.2012Тахограмма рабочей машины и расчетная продолжительность включения. Механическая характеристика и диаграмма рабочей машины. Определение предварительной мощности двигателя. Выбор электродвигателя. Принципиальные схемы разомкнутой и замкнутой систем.
курсовая работа [1,2 M], добавлен 26.08.2014