Опасность и применение атомной, ядерной энергетики

Использование атомной энергии в отраслях экономики, биологии, сельском хозяйстве и медицине. Основные недостатки ядерной энергетики в современном мире, воздействие атомных станций на окружающую среду. Перспективы развития ядерной и атомной энергетики.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 12.04.2016
Размер файла 28,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Энергия - это основа основ. Все блага цивилизации, все материальные сферы деятельности человека - от стирки белья до исследования Луны и Марса - требуют расхода энергии. И чем дальше, тем больше. Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное использование источников ядерной энергиисоставляет основу промышленного производства и жизни таких стран, как Франция и Япония, Германия и Великобритания, США и Россия.

Ядерная энергетика вызывает больше дискуссий чем другие виды энергетики. Существуют диаметрально противоположные точки зрения по вопросам её безопасности, воздействия на компоненты биосистем и даже на стоимость киловатт-часа при этом способе его выработки. Изначально ядерная отрасль развивалась для военных целей, а гражданская энергетика была побочной ветвью. На сегодняшний день энергия атома широко используется во многих отраслях экономики. Строятся мощные подводные лодки и надводные корабли с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы.

Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.

АЭС экономичнее обычных тепловых станций, а, самое главное, при правильной их эксплуатации - это чистые источники энергии.

Вместе с тем, развивая ядерную энергетику в интересах экономики, нельзя забывать о безопасности и здоровье людей, так как ошибки могут привести к катастрофическим последствиям.

"Чистая и дешевая энергия для всех" - так еще в 70-е годы прошлого века превозносили атомную энергию. Ей предвещали золотой век: к 2000 году АЭС во всем мире должны были вырабатывать от 3600 до 5000 ГВт. Но к концу 2012 года в электросети поступало всего 335 ГВт - менее одной десятой от запланированного объема. После Чернобыля и особенно Фукусимы эйфория окончательно угасла.

Авария на японской АЭС «Фукусима-1» незначительно отразится на стратегических перспективах атомной отрасли, и доля атомной энергетики в общемировой выработке электроэнергии вырастет до 2035 года на 70 проц. Таковы выводы последнего доклада Международного энергетического агентства (МЭА).

«В сценарии новых стратегий доля атомной энергетики вырастет более чем на 70 % до 2035 года, что лишь немногим меньше, чем прогнозировалось в прошлом году», - говорится в докладе МЭА. В документе отмечается, что события на АЭС «Фукусима» поставили под сомнение роль атомной энергетики в будущем, но не повлияли на подходы Китая, Индии, России и Кореи - странах, которые активно наращивают атомные мощности. Эксперты МЭА считают, что если в мире произойдет масштабный отказ от атомной энергетики, это создаст более благоприятные возможности для возобновляемых источников энергии, но с другой стороны - будет способствовать увеличению спроса на ископаемые виды топлива. В итоге рост глобального спроса на уголь вдвое превысит экспорт энергетических углей из Австралии, а рост спроса на газ составит две трети текущего экспорта природного газа из России

1. Атомная энергетика сегодня

По состоянию на 1 января 2002 г. в мире действовало 438 ядерных реакторов в 33 странах мира, которые вырабатывали 353298 МВт электроэнергии, что составляет 17% общей мировой выработки электроэнергии (но только около 4% в мировом топливном балансе).

Сегодня многие страны, включая Германию, Нидерланды, Болгарию, Венгрию, Литву, Швецию, США и ряд других, закрывают свои атомные электростанции или планируют их закрытие в течение ближайших лет. Атомная энергия теряет свою популярность даже во Франции и Японии - странах, которые когда-то твердо придерживались ориентации на этот источник энергии, так как другими энергетическими ресурсами практически не обладали. Дальнейший и серьезный прирост ядерной энергетики ожидается только в Китае и Индии, а также, возможно, в Иране.

Попытаемся обобщить главные проблемы развития атомной энергетики, о которых многие специалисты этой отрасли предпочитают не говорить публично. С точки зрения экологов, основная проблема - неприемлемый риск возможных аварий и несовершенство существующих ядерных технологий. Правда, многие зарубежные эксперты на первое место среди причин торможения развития этой отрасли ставят экономические.

Проблема 1. Безопасность реакторов. За время эксплуатации атомных реакторов в мире произошло порядка десяти серьезных аварий, из них три - с выбросом радионуклидов за пределы защитной оболочки, которой не было и нет до сих пор у реакторов чернобыльского типа. Неопределенности в отношении безопасности никогда не будут полностью разрешены заранее. Большое их количество будет обнаружено только во время эксплуатации новых реакторов.

Проблема 2. Экономичность вырабатываемой электроэнергии. Существует распространенное мнение, что стоимость электроэнергии АЭС значительно ниже стоимости энергии, вырабатываемой на угольных, а в перспективе - и газовых электростанций. Но если подробно рассмотреть всю схему финансирования атомной энергетики, то мы обнаружим, что строительство АЭС и ее безопасная работа оказываются намного дороже, чем строительство и работа станции такой же мощности на традиционных источниках энергии.

Проблема 3. Снижение эмиссии диоксида углерода. Считается, что вытеснение тепловых электростанций атомными поможет решить проблему снижения выбросов диоксида углерода, одного из главных парниковых газов, способствующих потеплению климата на планете. По расчетам Европейской Комиссии, только для прекращения увеличения выброса диоксида углерода с помощью АЭС в Европе пришлось бы построить не менее 85 новых атомных реакторов. Существует немало других, намного более дешевых путей решения проблемы опасного изменения климата. Основной акцент делается на энергосберегающих технологиях и возобновляемых источниках - таких как солнце, ветер, водная стихия.

Проблема 4. Снятие с эксплуатации реакторов на АЭС. По данным Всемирной ядерной ассоциации (WNA), 130 промышленных ядерных установок выведены из эксплуатации либо ожидают этой процедуры. В остановленной АЭС остаются сотни тонн радиоактивных отходов. По финансовым и техническим причинам быстро утилизировать все отходы, очистить промплощадку и довести ее до состояния «зеленой лужайки» пока не удалось практически ни одной стране. Единственное техническое решение для выведенных из эксплуатации реакторов или всей АЭС - «законсервировать» объект на 30-100 лет и охранять. В России государственная концепция обеспечения безопасности при выводе из эксплуатации энергоблоков АЭС так и не принята, хотя с остановки первого промышленного блока на Белоярской АЭС прошло уже 23 года.

Проблема 5. Опасность использования АЭС для распространения ядерного оружия. Каждый реактор производит ежегодно плутоний в количестве, достаточном для создания нескольких атомных бомб. Поэтому МАГАТЭ старается держать под контролем весь цикл обращения с отработавшим ядерным топливом во всех странах, где работают АЭС. США, которые поставляют свежее ядерное топливо для зарубежных атомных станций, построенных по американским проектам, считают отработавшее топливо своей собственностью и также должны следить за его сохранностью. Такую же позицию занимает и Российская Федерация при строительстве АЭС по своим проектам в Иране, Китае и Индии.

Проблема 6. Отвлечение средств от развития альтернативной энергетики. Существует огромный потенциал для энергосбережения и повышения энергоэффективности, который в России достигает 40% всей производимой электроэнергии. Возобновимые источники энергии (ветровые, солнечные, геотермальные, волновые и др.), модульные станции на природном газе с использованием топливных элементов, утилизация сбросного тепла и отработанного пара, как и многое другое, - реальные пути защиты от изменения климата без создания новых угроз для ныне живущих и будущих поколений.

Проблема 7. Накопление радиоактивных отходов (РАО) в атомной энергетике. Обращение с радиоактивными отходами АЭС имеет критическое значение с точки зрения безопасности и охраны окружающей среды. А некоторые радионуклиды, и в первую очередь плутоний, образующийся в реакторе АЭС в процессе ядерного деления, остаются опасными в течение срока, соизмеримого с историей человечества. Общий объем РАО, накопленный в России, составляет около 600 млн м3 с суммарной радиоактивностью 1,5 млрд Кu. 99,9 % отходов накоплено на предприятиях Минатома России. Самый существенный вклад в образовавшиеся в России радиоактивные отходы внесли радиохимические предприятия, созданные для решения оборонных задач.

Особую проблему представляет отработавшее ядерное топливо (ОЯТ), являющееся самым высокоактивным материалом в атомной энергетике. К настоящему времени в России в хранилищах различного типа находится около 14 тыс. т отработавшего ядерного топлива, его суммарная радиоактивность 5 млрд Ки (34,5 Кu на каждого человека). Переработка ОЯТ до сих пор производится по устаревшей технологии, при которой образуется огромное количество жидких и твердых РАО всех типов активностью 600 тыс. Кu на 1 т ОЯТ.

Основные недостатки ядерной энергетики:

1. Высокая радиоактивность отходов, что постоянно вызывает проблемы, связанные с их утилизацией.

2. Возможность приведения к экологическим и техногенным катастрофам.

3. Возможность использования ее как оружия массового поражения.

4. Возможная утечка опасного ядерного топлива из сферы производства электроэнергии и ее использование в целях создания ядерного оружия.

До определенного времени все экологические проблемы ядерной энергетики сводились к сложностям в утилизации отходов производства станций. Влияние на природу отходов ядерного топлива на сегодняшний день доказано тысячами научных трудов и печальными показателями уже организованных захоронений отработанного топлива. Неизбежной экологической проблемой ядерной энергетики можно считать также тепловое загрязнение вод. В процессе деятельности атомная электростанция потребляет огромные массы воды для охлаждения агрегатов. Еще одной экологической проблемой ядерной энергетики является вывод качественных земель под строительство станций, при котором отчуждаются огромные территории.

2. Воздействие атомных станций на окружающую среду

Техногенные воздействия на окружающую среду при строительстве и эксплуатации атомных электростанций многообразны. Обычно говорят, что имеются физические, химические, радиационные и другие факторы техногенного воздействия эксплуатации АЭС на объекты окружающей среды. Наиболее существенные факторы:

ь локальное механическое воздействие на рельеф - при строительстве,

ь повреждение особей в технологических системах - при эксплуатации,

ь сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты,

ь изменение характера землепользования и обменных процессов в

непосредственной близости от АЭС,

ь изменение микроклиматических характеристик прилежащих районов,

ь сбросы технологических вод, содержащих разнообразные химические компоненты оказывают травмирующее воздействие на популяции, флору и фауну экосистем.

Особое значение имеет распространение радиоактивных веществ в окружающем пространстве. В комплексе сложных вопросов по защите окружающей среды большую общественную значимость имеют проблемы безопасности атомных станций (АС), идущих на смену тепловым станциям на органическом ископаемом топливе. Общепризнанно, что АС при их нормальной эксплуатации намного - не менее чем в 5-10 раз "чище" в экологическом отношении тепловых электростанций (ТЭС) на угле. Однако при авариях АС могут оказывать существенное радиационное воздействие на людей, экосистемы. Поэтому обеспечение безопасности экосферы и защиты окружающей среды от вредных воздействий АС - крупная научная и технологическая задача ядерной энергетики, обеспечивающая ее будущее.

Отметим важность не только радиационных факторов возможных вредных воздействий АС на экосистемы, но и тепловое и химическое загрязнение окружающей среды, механическое воздействие на обитателей водоемов-охладителей, изменения гидрологических характеристик прилежащих к АС районов, т.е. весь комплекс техногенных воздействий, влияющих на экологическое благополучие окружающей среды.

3. Воздействие радиоактивного излучения на человека

Различные радиоактивные вещества по - разному проникают в организм человека. Это зависит от химических свойств радиоактивного элемента. Альфа-частицы представляют собой атомы гелия без электронов, т.е. два протона и два нейтрона. Эти частицы относительно большие и тяжелые, и поэтому легко тормозят. Их пробег в воздухе составляет порядка нескольких сантиметров. В момент остановки они выбрасывают большое количество энергии на единицу площади, и поэтому могут принести большие разрушения. Из-за ограниченного пробега для получения дозы необходимо поместить источник внутрь организма.

Изотопами, испускающими альфа- частицы, являются, например, уран (235U и 238U) и плутоний (239Pu). Бета-частицы - это отрицательно или положительно заряженные электроны (положительно заряженные электроны называются позитроны). Их пробег в воздухе составляет порядка нескольких метров. Тонкая одежда способна остановить поток радиации, и, чтобы получить дозу облучения, источник радиации необходимо поместить внутрь организма, изотопы, испускающие бета-частицы - это тритий (3H) и стронций (90Sr).

Гамма-радиация - это разновидность электромагнитного излучения, в точности похожая на видимый свет. Однако энергия гамма-частиц гораздо больше энергии фотонов. Эти частицы обладают большой проникающей способностью, и гамма-радиация является единственным из трех типов радиации, способной облучить организм снаружи. Два изотопа, излучающих гамма-радиацию, - это цезий (137Сs) и кобальт (60Со).

Пути проникновения радиации в организм человека:

1.Радиоактивные изотопы могут проникать в организм вместе с пищей или водой. Через органы пищеварения они распространяются по всему организму.

2. Радиоактивные частицы из воздуха во время дыхания могут попасть в легкие. Но они облучают не только легкие, а также распространяются по организму.

3. Изотопы, находящиеся в земле или на ее поверхности, испуская гамма-излучение, способны - облучить организм снаружи. Эти изотопы также переносятся атмосферными осадками.

Воздействие радиоактивного излучения. Под действием радиоактивного излучения происходит разрыв химических связей и разрушение молекул. Образующиеся при этом радикалы вступают в различные химические реакции, нарушая нормальное функционирование клеток. Глубина проникновения в организм лучей зависит от их типа. Так, а-лучи через кожу практически не проникают, Р-лучи -- проникают на глубину 10-- 20 мм, у-лучи и рентгеновские лучи через организм проникают практически беспрепятственно. Чрезвычайно опасно попадание в организм радиоактивных веществ с пищей и питьем. Воздействие радиоактивных веществ зависит от их природы. Так,излучение стронция-90, замещающего кальций в костях, вызывает раковые заболевания?. Криптон-85 воздействует на кожу и легкие.

Тяжелые короткоживущие а-излучатели исключительно вредны с точки зрения радиоактивного отравления. Попадание внутрь организма всего лишь нескольких микрограммов этих веществ может вызвать опасные заболевания.

Опасность внутреннего облучения возникает при попадании источников ионизирующих излучений в организм через дыхательные пути, через желудочно-кишечный тракт или кожу. При этом в зависимости от поглощенной дозь1 происходят сначала изменения в крови и структуре клеток, а затем развивается лучевая болезнь. При внешнем облучении действие источника ионизирующих излучений прекращается после удаления источника.

4. Перспективы развития ядерной и атомной энергетики

Авторы недавно выпущенного Массачусетским технологическим институтом (МТИ) доклада об атомной энергетике утверждают, что ядерная энергия может играть большую роль в энергетической политике будущего, нацеленной на сокращение выбросов углекислого газа и сохранение глобального климата. Однако они предупреждают, что высокие затраты, нерешенная проблема радиоактивных отходов, противоречивые подходы к топливным циклам и растущий риск ядерного распространения могут привести к полному исчезновению атомной индустрии из энергетической системы человечества.

Кончина мировой атомной промышленности может наступить уже в конце 21 века, говорят авторы доклада, если только серьезные проблемы атомной энергетики не будут эффективно решены в течение ближайших десяти лет. атомный ядерный энергетический

Основными из этих проблем являются высокие расходы, с которыми связано использование ядерной энергии, и неразрешимые вопросы обращения с радиоактивными отходами. Внимания также требует и проблематика так называемого «закрытого топливного цикла» - экологически опасной практики, при которой отработавшее ядерное топливо (ОЯТ) перерабатывается с целью получения энергетического плутония и урана для последующего использования в качестве топлива, или для обогащения.

Таким образом, предсказываемый специалистами МТИ скачок в потреблении электроэнергии окрашивает в довольно сумрачные тона будущее самой ядерной энергетики, если только мировое сообщество не решит те самые четыре проблемы, дамокловым мечом висящие над атомной индустрией:

· Затратность: Ядерная энергетика требует гораздо более значительных расходов на всем протяжении срока эксплуатации объектов использования атомной энергии, по сравнению с природным газом;

· Небезопасность: После того, как в 1979 году едва удалось предотвратить оплавление активной зоны реактора - и неминуемую экологическую катастрофу - на американской атомной электростанции (АЭС) Три Майл Айленд (Three Mile Island), но не удалось избежать Чернобыльской аварии в 1986 году, опасности, связанные с применением атомной энергии, для окружающей среды и здоровья человека стали хорошо известны и доказаны документально, однако эффективные решения для того, чтобы исключить возникновение подобных рисков, отсутствуют;

· Распространение ядерных материалов: Использование атомной энергии влечет за собой потенциальный риск применения ее в преступных целях либо в целях ядерного устрашения, прежде всего, риск использования коммерческих ядерных предприятий с криминальными намерениями с целью получения технологий и материалов, пригодных для производства ядерного оружия. Особенную тревогу вызывает эксплуатация топливных циклов, связанных с химической переработкой отработанного топлива с целью выделения применяемого в оружии плутония и урана, особенно, учитывая тот факт, что эти технологии продолжают оказываться на вооружении государств, представляющих риск ядерного распространения;

· Отходы: Ядерная энергетика продолжает накапливать проблемы долгосрочного обращения с радиоактивными отходами. Эффективные и реализуемые решения найдены пока не были, и вряд ли будут в ближайшем будущем. Даже если проект строительства могильника в горе Юкка Маунтин покажет свою целесообразность как метод безопасного обращения с высокорадиоактивными отходами и ОЯТ, работа могильника сможет только облегчить - но не решить окончательно - ситуацию с хранением отходов с Соединенных Штатах, особенно, если объемы использования атомной энергии в США и других странах продемонстрируют в будущем значительный рост.

Безопасная атомная энергетика - не больше чем миф
Согласно исследователям МТИ, в мире не существует ни одной атомной электростанции, которая была бы абсолютно безопасной - их просто не может быть. Причин тому две: ограниченные технические возможности и человеческий фактор. Безопасная эксплуатация любого источника атомной энергии, утверждается в докладе, требует эффективного надзора, управления, считающего обеспечение безопасности своей первоочередной задачей, а также высокопрофессионального штата сотрудников.

Однако самым большим риском в обращении с атомной энергией, возможно, является то обстоятельство, что в мире до сих пор отсутствуют успешные методы избавления от высокорадиоактивных отходов. ОЯТ, остающееся от отработки топлива на атомных электростанциях, содержит радиоактивные материалы, которые остаются опасными для здоровья человека и благосостояния окружающей среды тысячи лет, а принятым на данный момент в мире методам хранения отработанного топлива вынести такой ядерный багаж столь долгое время не по силам.

Задачу безопасной изоляции радиоактивных отходов от биосферы земли могут выполнять геологические могильники - такие как могильник в горе Юкка Маунтин в Соединенных Штатах, проект строительства которого осуществляется в данное время. Однако, как уже доказывает проект Юкка Маунтин, выбор подходящего места и само строительство геологических могильников - предприятие дорогостоящее и требующее чрезвычайных усилий, которое возлагает огромную ношу на надзорные ведомства и политические организации, а также и на те организации и должностные лица, в чьей ответственности будет поддержание этих могильников на безопасном уровне.

Однако, если проводимая сегодня политика в сфере обращения с отходами, дорогостоящие исследования в области закрытого топливного цикла, непоследовательная практика ядерного надзора и широкомасштабное распространение ядерных материалов и технологий не прекратятся, атомная энергетика, скорее всего, уже в этом столетии придет к упадку и, возможно, полностью исчезнет как составляющая мирового потенциала производства электроэнергии, предупреждают специалисты МТИ.

Заключение

В конечном итоге можно сделать следующие выводы:

Факторы «За» атомные станции:

Атомная энергетика является на сегодняшний день лучшим видом получении яэнергии. Экономичность, большая мощность, экологичность при правильном использовании.

Атомные станции по сравнению с традиционными тепловыми электростанциями обладают преимуществом в расходах на топливо, что особо ярко проявляется в тех регионах, где имеются трудности в обеспечении топливно-энергетическими ресурсами, а также устойчивой тенденцией роста затрат на добычу органического топлива.

Атомным станциям не свойственны также загрязнения природной среды золой, дымовыми газами с CO2, NOх, SOх, сбросными водами, содержащими нефтепродукты.

Факторы «Против» атомных станций:

Последствия аварий на АЭС.

Локальное механическое воздействие на рельеф - при строительстве.

Повреждение особей в технологических системах - при эксплуатации.

Сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты.

Изменение характера землепользования и обменных процессов в непосредственной близости от АЭС.

Изменение микроклиматических характеристик прилежащих районов.

Список использованной литературы

1. АТОМНАЯ ЭНЕРГЕТИКА СЕГОДНЯ В. Ф. Меньшиков Россия в окружающем мире: 2004 (Аналитический ежегодник). Отв. ред. Н. Н. Марфей. Под общ. ред.: Н. Н. Марфенина, С. А. Степанова.-- М.: МодусК -- Этерна, 2005.

2. «У ядерной энергетики две проблемы: истощение природных ресурсов и ОЯТ» Газета "Энергетика и промышленность России" \№ 12 (248) июнь 2014 года

3. Ядерная и термоядерная энергетика будущего/Под ред. Чуянова В.А. - М.: Энергоатомиздат, 1987.

4. Ядерный след/ Губарев В.С., Камиока И., Лаговский И.К. и др.; сост. Малкин Г. - М.: ИздАТ, 1992.

5. Ефимова Н. Ядерная безопасность: у кого искать защиты? / "Экономика и время", №11 от 20 марта 1999.

6. http://www.greensource.ru/vidy-jenergii/jadernaja-atomnaja-jenergija.html

Размещено на Allbest.ru

...

Подобные документы

  • Мировой опыт развития атомной энергетики. Испытание атомной бомбы. Пуск первой АЭС опытно-промышленного назначения. Чернобыльская авария и ее ущерб людям и народному хозяйству страны. Масштабное строительство атомных станций. Ресурсы атомной энергетики.

    курсовая работа [43,7 K], добавлен 15.08.2011

  • Состояние атомной энергетики. Особенности размещения атомной энергетики. Долгосрочные прогнозы. Оценка потенциальных возможностей атомной энергетики. Двухэтапное развитие атомной энергетики. Долгосрочные прогнозы. Варианты структуры атомной энергетики.

    курсовая работа [180,7 K], добавлен 13.07.2008

  • Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат [430,1 K], добавлен 28.10.2013

  • Мировой опыт развития атомной энергетики. Развитие атомной энергетики и строительство атомной электростанции в Беларуси. Общественное мнение о строительстве АЭС в республике Беларусь. Экономические и социальные эффекты развития атомной энергетики.

    реферат [33,8 K], добавлен 07.11.2011

  • Динамика современного потребления ядерной энергии. Отсутствие выбросов в атмосферу продуктов сгорания. Минусы ядерной энергетики. Позиции государств, имеющих АЭС, по отношению к атомной энергетике. Глобальная структура энергетического потребления.

    презентация [967,6 K], добавлен 14.12.2015

  • Сотрудничество РФ и Республики Корея в сфере атомной энергии. Изменения конъюнктуры мирового рынка в 2014 году. Проектирование, инжиниринг и строительство атомных станций в РФ. Сущность международной экспансии. Динамика портфеля зарубежных заказов.

    реферат [53,9 K], добавлен 30.09.2016

  • Прообраз ядерного реактора, построенный в США. Исследования в области ядерной энергетики, проводимые в СССР, строительство атомной электростанции. Принцип действия атомного реактора. Типы ядерных реакторов и их устройство. Работа атомной электростанции.

    презентация [810,8 K], добавлен 17.05.2015

  • История и перспективы развития атомной электроэнергетики. Основные типы атомных электростанций (АЭС), анализ их преимуществ и недостатков, а также особенности выбора для них реактора. Характеристика атомного комплекса РФ и действующих АЭС в частности.

    курсовая работа [701,2 K], добавлен 02.11.2009

  • Разработка концепции развития топливно-энергетического комплекса Украины. Производство электроэнергии в 2012 году. Основные типы электростанций. Структура суточного энергопотребления промышленного энергорайона. Специфика использования атомной энергетики.

    контрольная работа [169,3 K], добавлен 20.02.2015

  • Виды электростанций, их особенности, достоинства и недостатки, влияние на окружающую среду. Источники энергии для их деятельности. Развитие и проблемы ядерной энергетики. Принципы концепции безопасности атомных ЭС. Допустимые и опасные дозы облучения.

    презентация [963,6 K], добавлен 06.03.2015

  • Мировые лидеры в производстве ядерной электроэнергии. Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Главный недостаток АЭС. Реакторы на быстрых нейтронах. Проект первой в мире плавучей атомной электростанции.

    реферат [1,4 M], добавлен 22.09.2013

  • Физические основы ядерной реакции: энергия связи нуклонов и деление ядер. Высвобождение ядерной энергии. Особенности применениея энергии, выделяющейся при делении тяжёлых ядер, на атомных электростанциях, атомных ледоколах, авианосцах и подводных лодках.

    презентация [1,0 M], добавлен 05.04.2015

  • Физические основы ядерной энергетики. Основы теории ядерных реакторов - принцип вырабатывания электроэнергии. Конструктивные схемы реакторов. Конструкции оборудования атомной электростанции (АЭС). Вопросы техники безопасности на АЭС. Передвижные АЭС.

    реферат [62,7 K], добавлен 16.04.2008

  • Атомная энергия. Мощность Преобразование энергии. Ее виды и источники. История развития атомной энергетики. Радиационная безопасность атомных станций с опредленными типами реакторов. Модернизация и продление сроков эксплуатации энергоблоков АЭС.

    реферат [203,5 K], добавлен 24.06.2008

  • Механизм действия ядерных сил. Искусство управлять ядерной энергией. Как не сделать атомную бомбу из реактора. Ядерно-топливный цикл. "Сердце" атомной станции. Саморегулирование и самоограничение ядерной реакции. Самозащищенность ядерного энергоблока.

    презентация [6,7 M], добавлен 03.04.2014

  • Энергия связывания нейтрона в ядре урана и проверка возможности ядерной реакции. Расчет атомной массы и активности радионуклида. Нахождение энергий, получаемых атомами при их соударении, комптоновское происхождение электронов, их кинетическая энергия.

    контрольная работа [297,5 K], добавлен 17.06.2012

  • Основные задачи и положения проекта плавучей атомной электростанции. Характеристика реакторной установки. Преимущества, недостатки и опасность станции. Объективные обстоятельства актуальности процесса развития атомной генерации малой и средней мощности.

    курсовая работа [26,4 K], добавлен 09.06.2014

  • История создания промышленных атомных электростанций. Принцип работы АЭС с двухконтурным водо-водяным энергетическим реактором. Характеристика крупнейших электростанций мира. Влияние АЭС на окружающую среду. Перспективы использование ядерной энергии.

    реферат [299,9 K], добавлен 27.03.2015

  • Введение в экспуатацию Белоярской атомной электростанции - станции, имеющей энергоблоки разных типов. Необходимость расширения топливной базы атомной энергетики и минимизации радиоактивных отходов за счёт организации замкнутого ядерно-топливного цикла.

    презентация [467,9 K], добавлен 29.09.2013

  • Основные предпосылки быстрого роста ядерной энергетики. Устройство энергетических ядерных реакторов. Требования к конструкциям активной зоны и ее характеристики. Основные требования к безопасности атомных станций с реакторами ВВЭР нового поколения.

    курсовая работа [909,2 K], добавлен 14.11.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.