Характеристика, технология получения и способы применения биогаза
Биомасса как наиболее эффективный возобновляемый источник энергии. Небольшие габариты при значительных объемах хранимого газа - одно из основных преимуществ газгольдеров высокого и среднего давления. Строение и классификация биогазовых установок.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 10.05.2016 |
Размер файла | 21,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Введение
В данный момент мир стоит на пороге энергетического кризиса. Большая часть используемых в мировом хозяйстве топливных ресурсов невозобновляема. Выход из сложившейся проблемы один - находить, изучать и внедрять в хозяйство альтернативные виды получения топлива/энергии. Сейчас среди уже найденных способов получения энергии имеются: ветряные, солнечные, геотермальные. Однако все они требуют дорогостоящего оборудования и зависят от территориального фактора - энергию с их помощью можно получить только в определенных местах. Одним из «забытых» видов сырья является и биогаз, использовавшийся еще в Древнем Китае и вновь «открытый» в наше время. Сырьё для получения биогаза можно найти практически в любой местности, где развито сельское хозяйство, в первую очередь животноводство, затраты на создание установок для биогенераторов относительно невелики, а само производство экологически чисто. Для переработки используются дешевые отходы сельского хозяйства - навоз животных, помет птицы, солома, отходы древесины, сорная растительность, бытовые отходы и органический мусор, отходы жизнедеятельности человека и т.п.
1. Что такое биогаз и как он образуется?
Биогаз - смесь газов. Его основные компоненты: метан (СН4) - 55-70% и углекислый газ (СО2) - 28-43%, а также в очень малых количествах другие газы, например - сероводород (Н2S).
Наиболее важные для практического применения физические свойства биогаза таковы: средняя теплота сгорания биогаза, содержащего около 60% метана, равна 22 МДж/м3. Поскольку горючая часть биогаза состоит из метана (температура воспламенения метана около 645 ° С), его причисляют к семейству природных газов.
Биогаз получается в результате анаэробной, то есть происходящей без доступа воздуха, ферментации органических веществ самого разного происхождения . «Метановое сбраживание» происходит при разложении органических веществ в результате жизнедеятельности двух основных групп микроорганизмов. Одна группа микроорганизмов, обычно называемая кислотообразующими бактериями, или бродильными микроорганизмами, расщепляет сложные органические соединения (клетчатку, белки, жиры и др.) в более простые, при этом в сбраживаемой среде появляются первичные продукты брожения - летучие жирные кислоты, низшие спирты, водород, окись углерода, уксусная и муравьиная кислоты и др. Эти менее сложные органические вещества являются источником питания для второй группы бактерий - метанообразующих, которые превращают органические кислоты в требуемый метан, а также углекислый газ и др.
В этом сложном комплексе превращений участвует великое множество микроорганизмов, по некоторым данным - до тысячи видов, но главное из них все-таки метанообразующие бактерии. Метанообразующие бактерии значительно медленнее размножаются и более чувствительны к изменениям окружающей среды, чем кислотообразующие микроорганизмы - бродильщики, поэтому вначале в сбраживаемой среде накапливаются летучие кислоты, а первую стадию метанового сбраживания называют кислотной. Потом скорости образования и переработки кислот выравниваются, так что в дальнейшем разложение субстрата и образование газа идут одновременно. И естественно, от условий, которые создаются для жизнедеятельности метанообразующих бактерий, зависит интенсивность газовыделения.
Как кислотообразующие, так и метанообразующие бактерии встречаются в природе повсеместно, в частности в экскрементах животных. Считается, что в навозе крупного рогатого скота имеется полный набор микроорганизмов, необходимых для его сбраживания. И подтверждением этому является то, что в рубце и кишечнике жвачных животных постоянно идет процесс метанообразования. Следовательно, нет необходимости применять для получения биогаза чистые культуры метанообразующих бактерий для того, чтобы вызвать процесс брожения. Достаточно лишь обеспечить для уже имеющихся в субстрате бактерий подходящие условия для их жизнедеятельности. Итак, биогаз - это доходы из отходов.
2. История открытия биогаза. Первые установки
В XVII столетии Ян Батист Ван Гельмон обнаружил, что разлагающая биомасса выделяет воспламеняющиеся газы. Алессандро Вольта в 1776 году пришёл к выводу о существовании зависимости между количеством разлагающиеся биомассы и количеством выделяемого газа. В1808 году сэр Хэмфри Дэви обнаружил метан в биогазе. Первые установки для получения биогаза появились в странах с теплым климатом. Самая первая биогазовая установка была построена в Бомбее, Индия в 1859 году. В 1895 году биогаз применялся в Великобритании для уличного освещения. В 1930 году, с развитием микробиологии, были обнаружены бактерии, участвующие в процессе производства биогаза.
3. Производство биогаза. Ситуация в России и мире
Ведущее место в мире по производству биогаза занимает Китай. Начиная с середины 70-х гг., в этой стране ежегодно строилось около миллиона метантенков1. В настоящее время их количество превышает 20 млн. штук. КНР обеспечивает 30% национальных потребностей в энергии за счет биогаза. В Китае около 10 млн. «семейных» биогазовых реакторов ежегодно производят около 7,3 млрд. м3 биогаза (по данным 2005 г.). Биогазовая продукция в Китае оценивается в 7,9.106Гкал/год.
Второе место в мире по производству биогаза занимает Индия, в которой еще в 30- годы была принята первая в мире программа по развитию биогазовой технологии. На конец 2000 г. в сельских районах Индии было построено свыше 1 млн. метантенков, что позволило улучшить энергообеспеченность ряда деревень, их санитарно-гигиеническое состояние, замедлить вырубку окрестных лесов и улучшить почвы. Сегодня ежедневное производство биогаза в Индии составляет 2,5-3 млн. куб. м.
В Непале создана и активно функционирует национальная биогазовая компания. Биогазовые установки успешно работают в восьми животноводческих хозяйствах Японии. Большое количество биогазового топлива производится: в США - эквивалентно 2,2.106 Гкал, Германии - 3,3.106 Гкал, Японии -1,4.106 Гкал, Швеции - 1,2.106 Гкал.
В странах Западной Европы в настоящее время налажен серийный выпуск биогазовых установок поточного типа. Одна такая установка перерабатывает птичий помет от 10 тыс. кур-несушек, обеспечивая среднесуточное производство 100 м3 биогаза (60% метана), и окупается за 1,9 года при использовании перебродившего шлака в качестве органического удобрения.
Рассмотрим какая ситуация с производством биогаза сложилась в России в настоящее время.
На территории России продуцируется до 14-15 млрд. т биомассы. По результатам исследований Института энергетической стратегии РФ общее количество органических отходов агропромышленного комплекса России в 2005 г. составило 225 млн. т (в расчете на сухое вещество; по энергосодержанию эквивалентно 80,6 млн. т н.э.), включая:
- птицеводство - 5,8 млн. т;
- животноводство - 58,3 млн. т;
- растениеводство - 147 млн. т;
- перерабатывающая промышленность 14 млн. т.
Впервые в СССР о производстве биогаза задумались в начале 60-х гг. прошлого столетия в Институте биохимии им. А.Н.Баха АН СССР. Именно эти исследования и их промышленное воплощение явились точкой отсчета в создании отечественной промышленной биоэнергетики и активного фундаментального исследования процессов биосинтеза метана и биогазификации.
С 1961 г. по 1964 г. на Грозненском ацетонобутиловом заводе (г. Грозный) проводились исследования по разработке технического регламента промышленной технологии и подбору оборудования для производства кормового витамина В-12 и биогаза методом термофильного метанового брожения ацетонобутиловый барды на специально созданной опытно-промышленной установке с объемом опытного метантенка 200 м3.
В дальнейшем эта технология была внедрена на двух ацетонобутиловых заводах. Каждый цех, перерабатывая до 3000 м3 барды в сутки, производил до 30 тыс. м3 биогаза, который использовался как топливо в основном производстве и экономил до 25% природного газа.
Три критерия, определившие создание и развитие биогазовой промышленности в России (и ранее в СССР):
- разработка технологии и создание крупномасштабного производства витамина В-12 и биогаза;
- теория о биологическом происхождении природного газа;
- огромная сырьевая база.
Идея была разработана и просчитана в 1972-1973 гг. и воплотилась в проект в 1979 г. Этот проект был поддержан руководством СССР и в 1980 г. включен в программу Государственного Комитета СССР по науке и технике.
По этой программе в период с 1980 г. по 1990 г. было построено три крупных биогазовых станции:
- г. Пярну бывшей Эстонской ССР (свинокомплекс на 30 тыс. голов);
- совхоз «Огре» Рижского района бывшей Латвийской ССР (свинокомплекс на 5 тыс. голов);
- колхоз «Большевик» Нижнегорского района Крымской обл. (свинокомплекс на 24 тыс. голов).
Вне проекта, но при поддержке государства, была построена опытно-промышленная биоэнергетическая станция на 50 тыс. голов птицы (Октябрьская птицефабрика, Истринский район, Московская обл.). Также вне проекта силами завода Химического машиностроения им. М.Фрунзе в г. Сумы была разработана и создана биогазовая установка «БИОГАЗ-1» на 3 тыс. голов свиней.
Развитие рыночной экономики и появление новых форм собственности в сельскохозяйственном производстве потребовали разработки высокорентабельных технологий и оборудования, работающих в любой климатической зоне и в любой российской глубинке, удаленной от централизованного энергообеспечения. Такие технологии и оборудование создаются с 1992 г.
Биогазовые технологии могут эффективно эксплуатироваться в любом климатическом регионе огромной России. Сама природа дает в руки человека инструмент, с одной стороны, для удержания баланса углекислоты на безопасном уровне («парниковый эффект»), с другой - для повышения урожая зеленой массы - источника энергии.
При интенсивном подъеме сельскохозяйственного производства России через несколько лет общий объем производимых органических отходов может составить 675 млн. т (по сухому веществу), а потенциальное производство биогаза - 225 млрд. м3/год.
4. Биогазовые установки. Строение и классификация
биогазовый энергия газгольдер
Все известные биогазовые установки сходны по своему строению. Основными элементами аппаратов являются: реактор для биомассы (метатенк), газгольдер, нагревательное устройство и устройство для перемешивания субстрата.
Биогазовые установки различаются по нескольким критериям: форме метатенков, способам перемешивания и подогрева биомассы.
Установки для производства биогаза по способам перемешивания и подогрева биомассы обычно подразделяют на четыре основных типа:
· без подвода тепла и без перемешивания сбраживаемой биомассы;
· без подвода тепла, но с перемешиванием сбраживаемой биомассы;
· с подводом тепла и с перемешиванием биомассы;
· с подводом тепла, с перемешиванием биомассы и со средствами контроля и управления процессом сбраживания.
Метатенк может быть разнообразной формы. Различают яйцевидные, цилиндрические с конусными верхней и нижней частями, резервуары, имеющие форму параллелепипеда, а также резервуары в виде вырытой в грунте траншеи. Каждый из этих видов имеет свои преимущества и недостатки, однако наиболее распространены цилиндрические биореакторы.
Рассмотрим каждую из составных частей биогазовой установки.
1. Отличительные черты бродильной камеры (биореактора):
· во-первых, полная герметичность без всякого газообмена и протечек жидкости через стенки;
· во-вторых, надежная теплоизоляция;
· в-третьих, стойкость к коррозии. При этом внутренняя часть камеры должна быть доступной для обслуживания, обязательны простые устройства для загрузки камеры навозом и ее опорожнения.
Биореакторы часто заглубляют в землю, что обеспечивает хорошую их теплоизоляцию и герметизацию. В бродильных камерах обязательно предусмотрена возможность надежной вентиляции.
2. Нагревательные устройства:
Подогрев в биореакторах с перемешивающими устройствами осуществляется с помощью шлангов, труб и других теплообменных устройств, через которые пропускают горячую воду. Температура последней в теплообменнике не превышает 60°С, так как более высокая температура вызывает налипание на поверхностном теплообменнике частиц биомассы.
3. Приспособления для перемешивания:
Для эффективной работы биореактора в нем предусматривается мешалка для перемешивания сбраживаемой массы и предотвращения образования корки. Конструкции мешалок разнообразны. Они бывают механическими (с ручным или электрическим приводом), а также гидравлического или пневматического действия.
4. Газгольдеры:
Эти аппараты выполняются в виде надстроек на бродильные камеры, а также отдельно стоящими, соединенными с бродильными камерами трубопроводами.
5. Биомасса - сырьё для получения биогаза
Биомасса является эффективным возобновляемым источником энергии. Понятие «биомасса» используется как в общем плане - всего сырья состоящего из органических веществ, так и в узком - именно как сырья для биогазовой установки. Использование биомассы проводится в следующих направлениях: прямое сжигание, газификация, производство этилового спирта для получения моторного топлива, производство биогаза из сельскохозяйственных и бытовых отходов.
Биомасса, главным образом в форме древесного топлива, является основным источником энергии приблизительно для 2 млрд. человек. Для большинства жителей сельских районов «третьего мира» она представляет собой единственно доступный источник энергии. Биомасса, как источник энергии, играет важнейшую роль и в развитых странах. В целом биомасса дает седьмую часть мирового объема топлива, а по количеству полученной энергии занимает наряду с природным газом третье место. Из биомассы получают в 4 раза больше энергии, чем дает ядерная энергетика. Ресурсы биомассы в различных видах есть почти во всех регионах, и почти в каждом из них может быть налажена её переработка в энергию и топливо. На современном уровне за счёт биомассы можно перекрыть 6-10% от общего количества энергетических потребностей промышленно развитых стран.
Биомасса - это также и главное, и единственное сырьё биогенератора (не считая воды, конечно). В состав биомассы могут входить любые органические отходы, причём только органические. Ими могут быть: экскременты крупного и мелкого рогатого скота, птиц, растительные и бытовые пищевые отходы.
6. Создание биогазовой установки в домашних условиях
Исследовав теоретические сведения, практические способы получения биогаза наша исследовательская группа загорелась идеей создания собственной портативной биогазовой установки в домашних условиях с помощью подручных средств и материалов.
Для того чтобы сконструировать установку мы изучили методы создания многих приборов для получения биогаза.
Остановились мы на довольно простой конструкции . Метатенками-биогенераторами в нашей установке стали пятилитровые пластиковые бутылки из-под питьевой воды, для фильтрации газа, выходящего из метатенка, мы придумали и создали водный затвор с помощью шприца и части бутылки . Биомасса, используемая установкой, состоит из куриного помёта, пищевых органических отходов (скисшие молочные продукты, овощные очистки) и воды. Нашему биогенератору мы дали название «Радуга-7».
Собрав прибор и залив биомассу, предварительно проверив её кислотность, в метатенки мы запечатали его, поставили установку в помещение с температурой окружающей среды и укрыли изоляционным материалом. Через трое суток мы выпустили воздух из метатенков, чтобы внутри остался только биогаз, и снова поставили биогенератор для дальнейшего процесса сбраживания.
Спустя неделю мы осторожно ослабили зажим и поднесли горящую спичку. Но…, к сожалению, ничего не случилось, мы не смогли получить биогаз. Однако мы не стали отчаиваться и решили попробовать ещё раз, тем более, что в первый раз температура ночью доходила до 0°c. Во второй раз установка была наполнена в середине апреля. И спустя две недели нам всё-таки удалось получить биогаз!!! Итак, экспериментальным способом мы доказали возможность получения биогаза с помощью установки, созданной нами в домашних условия.
7. Способы бытового применения биогаза
В быту биогаз может найти самое широкое применение. Так как по своим физическим свойствам биогаз похож на метан, то практически всё универсальные хозяйственное оборудование, работающее на привычном для нас топливе, прекрасно подходит и для функционирования на биогазе. Единственным затруднением может являться лишь то, что биогаз по сравнению с природным газом обладает несколько худшей способностью к воспламенению, что вызывает небольшие трудности при регулировании последнего. (Например, при установке крана на «малый огонь» в кухонных плитах (это происходит из-за разного давления двух газов на стенки труб)).
Приборами, фактически безукоризненно работающими на биогазе, являются:
· Горелки для отопительных установок (эти приборы используют в системе отопления жилых помещений для подогрева воздуха в различных сушилках и кондиционерах, причем применяют как обычные горелки с забором атмосферного воздуха, так и горелки с дутьем),
· Водонагреватели,
· Газовые плиты с горелками на верхней поверхности и с духовкой (наши кухонные плиты).
Биогаз может использоваться как в сельском, так и в домашнем хозяйстве, основными видами расхода энергии здесь являются:
· Подогрев воды на бытовые нужды,
· Отопление жилых и нежилых помещений,
· Приготовление пищи,
· Консервирование пищевых продуктов.
Биогаз также обладает высокими антидетонационными свойствами и может служить отличным топливом для двигателей внутреннего сгорания с принудительным зажиганием и для дизелей, не требуя их дополнительного переоборудования (необходима только регулировка системы питания). Сравнительные испытания учёных показали, что удельный расход дизельного топлива составляет 220 г/кВт.ч номинальной мощности, а биогаза 0,4 м3/кВт.ч. При этом требуется около 300 г/кВт, ч (м. б. -- 300 г) пускового топлива (дизельного топлива, используемого в качестве «запала» для биогаза). В результате экономия дизельного топлива составила 86%.
8. Системы хранения биогаза
Обычно биогаз выходит из реакторов неравномерно и с малым давлением (не более 5 кПа). Этого давления с учетом гидравлических потерь газотранспортной сети недостаточно для нормальной работы газоиспользующего оборудования. К тому же пики производства и потребления биогаза не совпадают по времени. Наиболее простое решение ликвидации излишка биогаза -сжигание его в факельной установке, однако при этом безвозвратно теряется энергия. Более дорогим, но в конечном итоге экономически оправданным способом выравнивания неравномерности производства и потребления газа является использование газгольдеров различных типов. Условно все газгольдеры можно подразделить на «прямые» и «непрямые». В «прямых» газгольдерах постоянно находится некоторый объем газа, закачиваемого в периоды спада потребления и отбираемого при пиковой нагрузке. «Непрямые» газгольдеры предусматривают аккумулирование не самого газа, а энергии промежуточного теплоносителя (воды или воздуха), нагреваемого продуктами сгорания сжигаемого газа, т.е. происходит накопление тепловой энергии в виде нагретого теплоносителя.
Биогаз в зависимости от его количества и направления последующего использования можно хранить под разным давлением, соответственно и газохранилища называются газгольдерами низкого (не выше 5 кПа), среднего (от 5 кПа до 0,3 МПа) и высокого (от 0,3 до 1,8 МПа) давления. Газгольдеры низкого давления предназначены для хранения газа при малоколеблющемся давлении газа и значительно изменяющемся объеме, поэтому их иногда называют газохранилищами постоянного давления и переменного объема (обеспечивается подвижностью конструкций). Газгольдеры среднего и высокого давления, наоборот, устраиваются по принципу неизменного объема, но меняющегося давления. В практике применения биогазовых установок наиболее часто используются газгольдеры низкого давления.
Вместимость газгольдеров высокого давления может быть различной - от нескольких литров (баллоны) до десятков тысяч кубических метров (стационарные газохранилища). Хранение биогаза в баллонах применяется, как правило, в случае использования газа в качестве горючего для транспортных средств. Основные преимущества газгольдеров высокого и среднего давления - небольшие габариты при значительных объемах хранимого газа и отсутствие движущихся частей, а недостатком является необходимость в дополнительном оборудовании: компрессорной установке для создания среднего или высокого давления и регуляторе давления для снижения давления газа перед горелочными устройствами газоиспользующих агрегатов.
Заключение
Мы выяснили, что биогаз является более экологически чистым веществом, чем большинство других видов топлива. Никаких вредных веществ (кроме небольшого количества углекислого газа) в процессе получения биогаза не выделяется.
Однако, для того, чтобы производство биогаза в России достигло промышленных масштабов необходимо, чтобы этим заинтересовались на государственном уровне, донести сведения об экономической эффективности биогаза до потенциально возможных производителей (предпринимателей, фермеров и др.). Развитие производства биогаза позволит как существенно сэкономить расходы государства в энергетической отрасли, так и защитить кошельки простых граждан от «кусающихся» цен на энергоносители и тарифов на электроэнергию.
Биогаз получают либо на специально организованных установках (метатенки или сельскохозяйственные биогазные установки), либо на полигонах ТБО, где процесс образования газа практически неуправляем. Метатенковые и сельскохозяйственные биогазовые установки не имеют принципиальных отличий, за исключением используемого субстрата. Биогаз образуется в биореакторах в результате сбраживания субстрата под действием микрофлоры при поддержании постоянной температуры. Объем загружаемого бубстрата, время его сбраживания, поддержание постоянства необходимых показателей в реакторе - все это регулируется человеком.
На полигонах ТБО образующийся биогаз собирается с помощью систем горизонтальных или вертикальных труб (часто их используют совместно). Эти тубы диаметром 10-15 см по всей длине имеют щели и отверстия, через которые проникает газ. Горизонтальные трубы закладываются, как правило, на ранних этапах создания полигона ТБО, а вертикальные могут закладываться заранее (что намного дешевле) либо буриться после. Трубы обязательно обсыпаются дренажным материалом (щебенка). Биогаз через систему вертикальных и горизонтальных труб, расположенных в толще ТБО, поступает в газопровод, а затем в газосборный пункт, которых может быть несколько. После главного газосборного пункта газ идет на системы очистки, затем на компрессорные устройства, для создания давления, необходимого для дальнейшего транспорта газа по трубопроводам к месту его потребления.
Обычно биогаз выходит из реакторов неравномерно, а максимумы потребления и накопления биогаза не совпадают. Поэтому проблему избытка образования газа решают двумя способами: сжигают избыток в факельных установках и накапливают в специальных утройствах-газгольдерах. В первом случае энергия теряется безвозвратно. Второй способ является более дорогим, но экономически более оправданным. Кроме того, газ из реакторов выходит под низким давлением, которого оказывается недостаточно для работы газопотребляющих устройств. Газгольдеры позволяют создать необходимое давление.
Условно газгольдеры можно разделить на «прямые», которые содержат в себе газ, и «непрямые», которые сохраняют энергию в виде промежуточного носителя (вода),нагретого от сжигания газа. Газгольдеры либо изменяют свой объем (при помощи подвижных частей) и сохраняют давление, либо изменяют давление при постоянстве объема.
Состав получаемого биогаза зависит от используемого субстрата и способа переработки. Наиболее стабильный состав имеет биогаз, получаемый на метатенках и сельскохозяйственных биогазовых установках. Состав биогаза, получаемого на полигонах ТБО, колеблется больше, так как процесс газообразования здесь неуправляем.
В связи с тем, что получаемый биогаз содержит кроме метана еще и балластные вещества, то пред дальнейшим использованием он подвергается предварительной очистке. Конденсируемая при охлаждении влага может стать причиной замерзания газопровода. Осушку производят следующими методами: охлаждение с последующим пропускание газа через влагоотделитель, адсорбционная осушка (силикагель) и осушка жидким поглотителем (этиленгликоль). Взвешенные частицы могут приводить к забиванию трубопровода и элементов газового оборудования, поэтому от них избавляются путем пропускания газа через фильтры (гравийные, сделанные из стекловолокна). Сероводород и галогенсодержащие углеводороды (и продукты их сгорания) представляют коррозийную опасность. Методы очитки биогаза от них - адсорбция на активированном угле и абсорбция в промывочном растворе. С целью доведения биогаза до качества природного газа производят отделение СО2 (промывка водой при избыточнм давлении, мембранное разделение, абсорбционное разделение).
Биогаз можно использовать:
- для покрытия собственных энергетических нужд БГУ;
- для покрытия энергетических нужд очистных сооружений и сельскохозяйственных производств;
- в качестве горючего для двигателей транспортных средств;
- для получения электроэнергии;
- для подпитки сетей природного газа.
При получении биогаза на сельскохозяйственных биогазовых установках практическое применение находит не только сам газ, но и навоз, используемый в качестве исходного сырья. После метанового сбраживания он улучшает свои свойства и применяется как удобрение.
Размещено на Allbest.ru
...Подобные документы
Методы изготовления аппаратов высокого давления, их структурные компоненты и особенности применения. Назначение трубопроводов, вентилей, рабочей жидкости и газа. Способы соединения отдельных частей установки высокого давления в домашних условиях.
реферат [1,4 M], добавлен 28.09.2009Информация о предприятии сахарного производства и описание ТЭЦ. Поверочный расчет и тепловой баланс котла. Технология выработки биогаза из жома. Определение процентного содержания природного газа, биогаза и смеси. Использование биогаза для когенерации.
дипломная работа [3,3 M], добавлен 27.10.2011Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.
реферат [253,9 K], добавлен 30.05.2016Системы преобразования энергии ветра, экологические и экономические аспекты ее использования. Характеристика и особенности применения волновых энергетических установок. Разница температур воды и воздуха как энергоресурс. Приливные электростанции.
реферат [1,6 M], добавлен 03.01.2011Использование ветрогенераторов, солнечных батарей и коллекторов, биогазовых реакторов для получения альтернативной энергии. Классификация видов нетрадиционных источников энергии: ветряные, геотермальные, солнечные, гидроэнергетические и биотопливные.
реферат [33,0 K], добавлен 31.07.2012Строительство и реконструкция малых ГЭС. Использование энергии водных ресурсов и гидравлических систем с помощью гидроэнергетических установок малой мощности. Малая гидроэнергетика как один из конкурентоспособных возобновляемых источников энергии.
реферат [69,0 K], добавлен 11.10.2014Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.
курсовая работа [3,9 M], добавлен 30.07.2012Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.
реферат [4,5 M], добавлен 29.03.2011Компрессор наружного контура (вентилятор), низкого и высокого давления. Камера сгорания, турбина высокого и низкого давления. Удельные параметры двигателя и часовой расход топлива. Проектный расчет основных параметров компрессора высокого давления.
курсовая работа [593,1 K], добавлен 24.12.2010Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.
курсовая работа [2,2 M], добавлен 11.03.2010Компонентный состав газа и его характеристики. Определение расчетного часового расхода газа по номинальным расходам газовыми приборами и горелочными устройствами. Гидравлический расчет магистральных наружных газопроводов высокого и среднего давления.
дипломная работа [823,6 K], добавлен 20.03.2017Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.
курсовая работа [3,9 M], добавлен 30.07.2012Анализ действия и оценка перспектив использования альтернативных методов получения электрической энергии в России. Вклад в обеспечение государства электроэнергией гидроэлектростанций, ветроэнергетических установок, солнечных и приливных электростанций.
контрольная работа [55,9 K], добавлен 11.04.2010Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.
презентация [2,9 M], добавлен 18.12.2013Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.
реферат [3,1 M], добавлен 27.02.2010Общая характеристика и расчет основных параметров подогревателей высокого давления. Определение рабочих моментов собственно подогревателя, охладителя пара и конденсата. Изучение схемы движения теплообменивающихся сред в исследуемом подогревателе.
контрольная работа [41,1 K], добавлен 09.04.2012Краткая характеристика подогревателя высокого давления ПВД-5 турбины ПT-135/165-130/15. Определение его основных параметров: расхода воды, температуры, теплоперепадов, тепловых нагрузок охладителя пара и конденсата, площадей поверхностей теплообмена.
курсовая работа [187,1 K], добавлен 04.07.2011Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.
реферат [536,4 K], добавлен 07.05.2009Использование энергии биомассы для получения альтернативных видов моторных топлив для двигателей внутреннего сгорания, их преимущество; технология производства биогазов, биоэтанола и биодизеля из сельскохозяйственных и бытовых отходов; зарубежный опыт.
контрольная работа [479,8 K], добавлен 16.01.2011Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.
реферат [3,4 M], добавлен 04.06.2015