Пластическая деформация твердых тел

Определение механизмов реализации ползучести твердых тел. Оценка методов использования различных сортов малоуглеродистой листовой и полосовой стали, обладающих высокими пластическими свойствами. Характеристика дефектов строения кристаллических тел.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 02.05.2016
Размер файла 322,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Пластическая деформация твердых тел (ползучесть) может происходить двумя принципиально разными механизмами: дислокационным и диффузионным. Первый механизм реализуется за счёт движения в объёме кристаллов дислокаций и других дефектов решётки и не требует термической активации.

Диффузионный механизм реализуется путём перемещения вакансий и характерен для повышенных температур.

Кроме того в качестве дополнительного механизма выделяется скольжение по границам зерен.

Основными механизмами сдвиговой пластической деформации кристаллических тел являются скольжение и двойникование. Скольжение -- это такое перемещение одной части кристалла относительно другой, при котором кристаллическое строение обеих частей остается неизменным. Скольжение происходит, когда касательное напряжение в плоскости скольжения достигает определенного значения для данного материала - так называемого сопротивления сдвигу. В области сдвига кристаллическая решётка остается такой же, как и в обеих частях кристалла, и каждый атом в этой области перемещается на одинаковые расстояния, составляющие целое число периодов повторяемости решётки. Отполированная поверхность кристалла после деформации скольжением при рассмотрении в оптическом микроскопе оказывается покрытой одной или несколькими системами параллельных тонких линий, называемых линиями скольжения. Эти линии представляют собой ступеньки на поверхности, возникающие в результате сдвига кристалла вдоль плоскости, которая и называется плоскостью скольжения, а направление сдвига в этой области -- направлением скольжения. Комбинация данной плоскости и направления скольжения в ней составляет систему скольжения.

2. В основу классификации положено содержание в стали серы и фосфора, т. е. вредных примесей. Качество стали тем выше, чем меньше в ней серы и фосфора. По качеству можно выделить следующие основные группы сталей:

* стали обыкновенного качества, содержащие до 0,06% серы и 0,07% фосфора;

* качественные стали, содержащие до 0,04% серы и 0,035% фосфора;

* высококачественные стали, содержащие до 0,025% серы и 0,025% фосфора, выплавляемые в электропечах. Сера в таких количествах растворяется в железе, поэтому сульфиды не образуются, следовательно, высококачественные стали не подвержены красноломкости;

* особовысококачественные стали получают путем применения специальных металлургических технологий: электрошлакового переплава (ЭШП) -- переплав стали под слоем специального шлака позволяет снизить содержание серы до 0,002… 0,008%; вакуум нодуговой переплав (ВДП) почти полностью выводит из стали газы.

Маркировка углеродистых сталей. Углеродистые стали выпускают обыкновенного качества, качественные и высококачественные. Легированные стали -- качественные, высококачественные и особовысококачественные.

Стали обыкновенного качества обозначают буквами Ст и цифрой, указывающей порядковый номер стали: СтО, Ст1, Ст2, СтЗ, Ст4, Ст5, Стб. С увеличением номера повышаются содержание углерода и прочностные свойства, но снижается пластичность. Так, в зависимости от марки (номера) содержание углерода в сталях увеличивается от 0,06 до 0,43%, возрастают предел прочности ав от 300 до 600 МПа и предел текучести а0,2 от 150 до 300 МПа, а относительное удлинение 8 снижается от 32 до 14%. Стали обыкновенного качества используют в основном как строительн ы е. Их не подвергают термической обработке.

Качественные углеродистые стали являются машиностроительными, их применяют для изготовления деталей машин (конструкционные стали) или инструментов (инструментальные стали). Для обеспечения требуемых свойств они подвергаются термической обработке и поэтому поставляются с гарантированным химическим составом, который указывается в обозначении марки.

Конструкционные стали обозначаются цифрами, указывающими среднее содержание углерода в сотых долях процента. В машиностроении используются следующие марки сталей: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. Для каждой марки стали установлены пределы содержания углерода; например, сталь 20 содержит 0,18…0,22%, сталь 25 -- 0,23…0,27%, сталь 40 -- 0,37…0,42% и т.п. Цифры, обозначающие марку стали, получаются округлением концентрации углерода до ближайшего числа, кратного пяти.

Инструментальные углеродистые стали содержат от 0,7 до 1,3% С. Они обозначаются буквой У и цифрами, показывающими среднее содержание углерода в десятых долях процента. Так, содержание углерода в стали У7 -- 0,7%, в стали У12 -- 1,2%. Для инструментов применяются следующие стали: У7, У8, У9, У10, У11, У12 и У13.

Высококачественные стали (инструментальные углеродистые и легированные и конструкционные легированные) обозначают буквой А в конце марки сталей. Например, У8А, У10А, У12А.

3. По промышленному значению и количеству потребляемому при штамповке, наибольшее применение имеет сталь. Используется, главным образом, различные сорта малоуглеродистой листовой и полосовой стали, обладающие высокими пластическими свойствами. Также применяется углеродистая и легированная конструкционная сталь с содержанием углерода до 0,5-0,6%.В зависимости о состояния поверхности, качественная листовая сталь разделяется на 4 группы: I - особой отделки, II - высокой отделки, III - повышенной отделки и IV - нормальной отделки.

Листы I и II изготавливаются холоднокатаными, III группы холодно- и горячекатаными и IV группы - горячекатаными.

Листовая углеродистая сталь поставляется тремя группами:

группа А - поставляется по механическим свойствам : ст 0, ст 1, ст 2, ст 3, ст 5, ст 6, ст 7;

группа Б - поставляется по химическому составу: мартеновская - М ст 0, М ст 1 кп, М ст 2 кп, М ст 3 кп, М ст 3, М ст 4 кп, М ст 4, 5, 6, 7; бессемеровская - Б ст 0, Б ст 3 кп, Б ст 4 кп, Б ст 5,6 и 6;

группа В - сталь поставляемая по механическим свойствам с дополнительным требованиям по химическому составу - В ст 2 кп, В ст 3 кп, В ст 3, В ст 4 кп, В ст 4, В ст 5.

1. Дефекты строения кристаллических тел

Идеальная кристаллическая решетка представляет собой многократное по­вторение элементарных кристаллических ячеек. Для реального металла ха­рактерно наличие большого количества де­фектов строения, нарушающих периодичность расположения атомов в кристаллической решетке. Эти де­фекты оказывают существенное влияние на свойства материала.

Различают три типа дефектов кристаллического строения: точечные, линейные и поверхностные.

Точечные дефекты

Точечные дефекты (рис. 1.5) характеризуются малыми размерами во всех трех измерениях. Величина их не превышает нескольких атомных диамет­ров. К точечным дефектам относятся: а) свободные места в узлах кристал­лической решетки -- вакансии (дефекты Шоттки); б) атомы, сместившиеся из узлов кристаллической решетки в межузельные промежутки -- дислоци­рованные атомы (дефекты Френкеля); в) атомы других элементов, находя­щиеся как в узлах, так и в междоузлиях кристаллической решетки -- при­месные атомы.

Точечные дефекты образуются в процессе кристаллизации под воздей­ствием тепловых, механи­ческих, электрических воздействий, а также при облучении нейтронами, электронами, рентгеновскими лучами.

Вакансии и дислоцированные атомы могут появляться вследствие тепловых движений атомов. В характерных для металлов решетках энергия образования дислоцированных атомов значительно больше энергии образования тепловых вакансий. Поэтому основными точечными дефектами в металлах являются тепловые вакансии.

Точечные дефекты приводят к локальным изменениям межатомных расстояний и, следовательно, к искажениям кристаллической решетки. При этом увеличивается сопротивление решетки дальнейшему смещению атомов, что способствует некоторому упрочнению кристаллов и повышает их электросопротивление.

Линейные дефекты

Линейные дефекты характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третьем измерении. Наиболее важный вид линейных дефектов -- дислокации (лат. dislocation -- смещение). Теория дислокаций была впервые применена в середине тридцатых годов ХХ века физиками Орованом, Поляни и Тейлором для описания процесса пластической деформации кристаллических тел. Ее использование позволило объяснить природу прочности и пластичности металлов. Теория дислокаций дала возможность объяснить огромную разницу между теоретической и практической прочностью металлов. Вблизи линии дислокации атомы смещены со своих мест и кристал­лическая решетка искажена, что вызывает образование поля напряже­ний: выше линии дислокации решетка сжата, а ниже растянута.

Поверхностные дефекты

Поверхностные дефекты имеют малую толщину и значительные размеры в двух других измерениях. Обычно это места стыка двух ориентированных участков кристаллической решетки. Ими могут быть границы зерен, грани­цы фрагментов внутри зерна, границы блоков внутри фрагментов. Соседние зерна по своему кристаллическому стро­ению имеют неодинаковую про­стран­ст­венную ориентировку решеток. Вследствие того, что границы зерен препятствуют перемещению дислокаций и являются местом повышенной концентрации примесей, они оказывают существенное влияние на механические свойства метал­ла.

2. Комвкий чугумн -- условное название мягкого и вязкого чугуна, получаемого из белого чугуна отливкой и дальнейшей термической обработкой. Используется длительный отжиг, в результате которого происходит распад цементита с образованием графита, то есть процесс графитизации, и поэтому такой отжиг называют графитизирующим.

Ковкий чугун, как и серый, состоит из сталистой основы и содержит углерод в виде графита, однако графитовые включения в ковком чугуне иные, чем в обычном сером чугуне. Разница в том, что включения графита в ковком чугуне расположены в форме хлопьев, которые получаются при отжиге, и изолированы друг от друга, в результате чего металлическая основа менее разобщена, и чугун обладает некоторой вязкостью и пластичностью. Из-за своей хлопьевидной формы и способа получения (отжиг) графит в ковком чугуне часто называют углеродом отжига.

По составу белый чугун, подвергающийся отжигу на ковкий чугун, является доэвтектическим и имеет структуру ледебурит + цементит (вторичный) + перлит. Для получения структуры феррит + углерод отжига в процессе отжига должен быть разложен цементит ледебурита, вторичный цементит и цементит эвтектоидный, то есть входящий в перлит. Разложение цементита ледебурита и цементита вторичного (частично) происходит на первой стадии графитизации, которую проводят при температуре выше критической (950--1000 °С); разложение эвтектоидного цементита происходит на второй стадии графитизации, которую проводят путём выдержки при температуре ниже критической (740--720 °C), или при медленном охлаждении в интервале критических температур (760--720 °C).

3. Диаграмма состояния трехкомпонентных сплавов с неограниченной растворимостью в твердом и жидком состоянии может иметь место лишь в случае, когда каждая из двойных систем обладает неограниченной растворимостью компонентов в обоих состояниях. [c.236]

На рис. 78 представлена пространственная диаграмма подобной системы. Она состоит из двух поверхностей. Поверхность ликвидуса проходит через соответствующие линии ликвидуса двойных систем. Поверхность солидуса проходит через соответствующие линии солидуса двойных систем. [c.236]

Превращения, происходящие при переходе таких сплавов из жидкого в твердое состояние, протекают подобно превращениям в двойных сплавах, кристаллизующихся с образованием непрерывного ряда твердых растворов. Точки поверхности ликвидуса соответствуют температурам начала кристаллизации тройного твердого раствора при охлаждении. Точки поверхности солидуса соответствуют исчезновению последних следов жидкости, т. е. концу кристаллизации тройного твердого раствора. [c.236]

Пространственная модель диаграммы состояния, несмотря на большую наглядность, для практических целей почти не употребляется ввиду сложности ее изображения и искажения размеров концентрационного треугольника диаграммы и других ее элементов. Поэтому в реальных случаях для того, чтобы составить представление о диаграмме состояния, изображают серию изотермических и политермических разрезов, совокупность которых позволяет судить о характере превращений, претерпеваемых сплавами системы при изменении их температуры. [c.237]

Изотермическими разрезами диаграммы состояния называются изображения диаграмм в сечении плоскостью, параллельной плоскости концентрационного треугольника. Иногда эти разрезы называют горизонтальными разрезами диаграммы. [c.238]

На рис. 79 изображено пространственное расположение изотермических разрезов, проведенных в области температур, лежащих между температурами плавления чистых компонентов. Изо- термические разрезы при этих температурах являются оптимальными для более или менее полной характеристики диаграммы. Изотермический разрез при температуре tl (при tв l t ) представлен на рис. 80. В разрезе имеются три области область твердых растворов а, область жидких растворов L и область гетерогенного равновесия жидкого и твердого раствора Границы раздела областей представляют собой сечение поверхностей солидус и ликвидус, а прямые линии, проведенные в области равновесия двух фаз, являются конодами. [c.238] ползучесть твердый кристаллический сталь

Концы конод изображают составы жидкой (на поверхности ликвидус) и твердой (на поверхности солидус) фаз при температуре, соответствующей температуре данного изотермического разреза. На том же рис. 80 изображен изотермический разрез при более низкой температуре Ь (при t t2 t ). Этот разрез-отличается от предыдущего более широкой областью твердого раствора. [c.239]

Политермическими разрезами называют изображения диаграмм в сечении плоскостью, перпендикулярной к плоскости концентрационного треугольника. Иногда эти разрезы называют вертикальными разрезами диаграммы. [c.239]

Исходя из практических соображений, удобно строить политермически е разрезы либо проходящие через вершину одного из компо- нентов, либо проходящие параллельно одной из сторон концентрационного треугольника. [c.239]

Пространственное расположение этих основных видов политермических разрезов представлено на рис. 81. [c.239]

Плоскостное изображение этих разрезов дается на рис. 82. [c.239]

Для полного представления о диаграмме состояния необходимо построить несколько изотермических и несколько политермических разрезов, количество которых зависит от степени сложности интересующей нас диаграммы. [c.239]

В системе железо -- углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

2. Феррит -- Твёрдый раствор внедрения углерода в б-железе с ОЦК (объёмно-центрированной кубической) решёткой.

Феррит имеет переменную предельную растворимость углерода: минимальную -- 0,006 % при комнатной температуре (точка Q), максимальную -- 0,02 % при температуре 700 °C (точка P). Атомы углерода располагаются в центре грани или (что кристаллогеометрически эквивалентно) на середине рёбер куба, а также в дефектах решетки.

При температуре выше 1392 °C существует высокотемпературный феррит, с предельной растворимостью углерода около 0,1 % при температуре около 1500 °C (точка I)

Свойства феррита близки к свойствам чистого железа. Он мягок (твердость -- 130 НВ) и пластичен, магнитен (при отсутствии углерода) до 770 °C.

3. Аустенит (г) -- твёрдый раствор внедрения углерода в г-железе с ГЦК (гране-центрированной кубической) решёткой.

Атомы углерода занимают место в центре гранецентрированной кубической ячейки.

Предельная растворимость углерода в аустените -- 2,14 % при температуре 1147 °C (точка Е).

Аустенит имеет твёрдость 200--250 НВ, пластичен, парамагнитен.

При растворении других элементов в аустените или в феррите изменяются свойства и температурные границы их существования.

4. Цементит (Fe3C) -- химическое соединение железа с углеродом (карбид железа), со сложной ромбической решёткой, содержит 6,67 % углерода. Он твёрдый (свыше 1000 HВ), и очень хрупкий. Цементит фаза метастабильная и при длительным нагреве самопроизвольно разлагается с выделением графита.

В железоуглеродистых сплавах цементит как фаза может выделяться при различных условиях:

-- цементит первичный (выделяется из жидкости),

-- цементит вторичный (выделяется из аустенита),

-- цементит третичный (из феррита),

-- цементит эвтектический и

-- эвтектоидный цементит.

Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зёрен аустенита (после эвтектоидного превращения они станут зёрнами перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зёрен.

Эвтектический цементит наблюдается лишь в белых чугунах. Эвтектоидный цементит имеет пластинчатую форму и является составной частью перлита.

Цементит может при специальном сфероидизируюшем отжиге или закалке с высоким отпуском выделяться в виде мелких сфероидов.

Влияние на механические свойства сплавов оказывает форма, размер, количество и расположение включений цементита, что позволяет на практике для каждого конкретного применения сплава добиваться оптимального сочетания твёрдости, прочности, стойкости к хрупкому разрушению и т. п.

5. Графит -- фаза состоящая только из углерода со слоистой гексагональной решёткой. Плотность графита (2,3) много меньше плотности всех остальных фаз (около 7,5 -- 7,8) и это затрудняет и замедляет его образование, что и приводит к выделению цементита при более быстром охлаждении. Образование графита уменьшает усадку при кристаллизации, графит выполняет роль смазки при трении, уменьшая износ, способствует рассеянию энергии вибраций.

Графит имеет форму крупных крабовидных (изогнутых пластинчатых) включений (обычный серый чугун) или сфероидов (высокопрочный чугун).

Графит обязательно присутствует в серых чугунах и их разновидности -- высокопрочных чугунах. Графит присутствует также и в некоторых марках стали -- в графитизированных сталях.

3. Конструкционная прочность - комплексная характеристика, определяемая сочетанием следующих критериев: прочности, надёжности, долговечности.

Критерии прочности металла выбирают в зависимости от условий его работы. Если работа предстоит в условиях стати­ческой нагрузки, то критерием прочности являются предел те­кучести, временное сопротивление или твердость НВ; если деталь испытывает длительные циклические нагрузки, то критерием прочности является предел выносливости. По величине выбранных критериев прочности рассчитывают допустимые рабочие напряжения в условиях эксплуатации. Высокая конструкционная прочность деталей достигается прежде всего металлургическими и технологическими методами, к которым относят легирование, термическую, химико-терми­ческую, термомеханическую и другие виды обработок металла. Для повышения технической прочности металлов применяют увеличение плотности дислокации путем легирования (внедре­ния в решетку данного металла чужеродных атомов и созда­ния искажения кристаллической решетки металла-матрицы. препятствующего свободному перемещению дислокации), ме­ханического наклепа, измельчения зерен, термической и термо­механической обработки и т. д. Так, при наклепе путем холод­ной пластической деформации металла плотность дислокаций достигает 1011.. 1012 см-2, что значительно повышает его проч­ность.

1.Улучшаемые углеродистые и легированные стали (состав, марки, свойства, термическая обработка, применение).

Улучшаемыми конструкционными сталями называют среднеуглеродистые стали, содержащие 0,3--0,5 % углерода и легирующие элементы обычно в количестве не более 5 %, которые используют после операции так называемого «улучшения», состоящей из закалки и высокого отпуска. Закалку таких сталей обычно прово­дят в масле. Температура отпуска составляет 550--650 °С.

После термообработки улучшаемые стали имеют структуру, хорошо воспринимающую ударные нагрузки.

Улучшаемые стали имеют высокую прочность, вязкость, ма­лую чувствительность к концентраторам напряжений и хорошую прокаливаемость.

Обычное содержание кремния в улучшаемых сталях составляет 0,17--0,37%, марганца -- 0,5--0,8 %, и менее 0,035% фосфора и серы.

К этой группе относятся:

углеродистые стали марок 35, 40, 45;

хромистые стали марок 30Х, 40Х;

хромистые стали, дополнительно легиро­ванные еще одним или двумя элементами: 30ХМ, 40ХГ, З0ХГТ

хромансили 20ХГС, ЗОХГС

хромоникелевые стали, содержащие до 1,5 % Ni: 40ХН, 40ХНМ

комплекснолегированные стали, содер­жащие 3--4 % Ni; 38ХНЗМ, 38ХНЗМФА.

Из сталей этой группы изготовляются сложные по конфигурации детали, подвер­гаемые ударным нагрузкам. Их недостаток состоит в склон­ности к флокенообразованию и трудности обработки реза­нием.

Назначение легирующих элементов.

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100)oС.

Дополнительные легирующие элементы.

Бор - 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 oС.

Марганец - увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.

Титан (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.

Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до -20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.

Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает прочность и вязкость.

Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.

Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

При легировании хромомарганцевых сталей кремнием получают, стали - хромансиль (20ХГС, 30ХГСА). Стали обладают хорошим сочетанием прочности и вязкости, хорошо свариваются, штампуются и обрабатываются резанием.Кремний повышает ударную вязкость и температурный запас вязкости.

Добавка свинца, кальция - улучшает обрабатываемость резанием. Применение упрочнения термической обработки улучшает комплекс механических свойств.

Распределение легирующих элементов в стали.

Легирующие элементы растворяются в основных фазах железоуглеродистых сплавов ( феррит, аустенит, цементит), или образуют специальные карбиды.

Растворение легирующих элементов в происходит в результате замещения атомов железа атомами этих элементов. Эти амомы создают в решетке напряжения, которые вызывают изменение ее периода.

Изменение размеров решетки вызывает изменение свойств феррита - прочность повышается, пластичность уменьшается. Хром, молибден и вольфрам упрочняют меньше, чем никель, кремний и марганец. Молибден и вольфрам, а твкже кремний и марганец в определенных количествах, снижают вязкость.

В сталях карбиды образуются металлами, расположенными в таблице Менделеева левее железа (хром, ванадий, титан), которые имеют менее достроенную d - электронную полосу.

В процессе карбидообразования углерод отдает свои валентные электроны на заполнение d - электронной полосы атома металла, тогда как у металла валентные электроны образуют металлическую связь, обуславливающую металлические свойства карбидов.

При соотношении атомных радиусов углерода и металла более 0,59 образуются типичные химические соединения: Fe3C, Mn3C, Cr23C6, Cr7C3, Fe3W3C - которые имеют сложную кристаллическую решетку и при нагреве растворяются в аустените.

При соотношении атомных радиусов углерода и металла менее 0,59 образуются фазы внедрения: Mo2C, WC, VC, TiC, TaC, W2C - которые имеют простую кристаллическую решетку и трудно растворяются в аустените.

Все карбиды обладают высокой твердостью и температурой плавления.

Значений букв в названии:

А - азот М - молибден

Ю - алюминий Н - никель

Р - бор Б - ниобий

Ф- ванадий С - селен

В - вольфрам Т - титан

К - кобальт У - углерод

С - кремний П - фосфор

Г - марганец X - хром

Д - медь Ц - цирконий

2. По степени графитизации, формам графита и условиям их обра­зования различают следующие типы чугунов:

а) белый,

б) половин­чатый,

в) серый с пластинчатым графитом,

г) высокопрочный с шаровидным графитом и

д) ковкий.

Белый чугун. Белым называется чугун, у которого почти весь углерод находится в химически связанном состоянии. Белый чугун весьма тверд, хрупок и очень трудно обрабатывается резцами (даже из твердых сплавов).

В легированных или термообработанных чугунах вместо перлита может быть троостит, мартенсит или аустенит.

Отливки из белого чугуна из-за большой твердости и хрупкости имеют ограниченное применение. Они применяются как износо­стойкие, коррозионностойкие и жаростойкие.

Белым чугун называется потому, что вид излома у него светло-кристаллический, лучистый.

Дюралюмимн, дюралюминий, дюраль -- собирательное обозначение группы высокопрочных сплавов на основе алюминия с добавками меди, магния и марганца. Название происходит от торговой марки Dural -- коммерческого обозначения одного из первых упрочняемых термообработкой и последующим старением алюминиевых сплавов. Основными легирующими элементами в нём являлись медь (4,5 % массы), магний (1,5 %) и марганец (0,5 %), остальное -- алюминий (93,5 %). Типовое значение предела текучести дюралюминов составляет порядка 250 МПа, предела кратковременной прочности -- 400…500 МПа, однако характеристики конкретного сплава зависят от состава и -- в особенности -- термообработки

Дюралюминий -- основной конструкционный материал в авиации и космонавтике, а также в других областях машиностроения с высокими требованиями к весовой отдаче.

Первое применение дюралюминия -- изготовление каркаса дирижаблей жёсткой конструкции, начиная с 1911 года -- широкое применение. Состав сплава и термообработка в годы Первой мировой войны были засекречены. Благодаря высокой удельной прочности дюралюминий начиная с 1920-х годов становится важнейшим конструкционным материалом в самолётостроении.

Недостаток дюралюминов -- низкая коррозионная стойкость, изделия требуют тщательной защиты от коррозии. Дюралюминиевый прокат, как правило, плакируют чистым алюминием, создавая из него лист с двухсторонней плакировкой, - так называемый альклед. Также, как правило, все применяемые в конструкции самолёта детали из алюминиевых сплавов покрываются специально разработанными для авиации грунтовками (обычно жёлтого или зелёного цветов) и, при необходимости, окрашиваются

Размещено на Allbest.ru

...

Подобные документы

  • Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.

    контрольная работа [782,4 K], добавлен 27.05.2013

  • Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.

    лекция [2,0 M], добавлен 13.03.2007

  • Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат [1,1 M], добавлен 26.04.2010

  • Изучение электропроводности твердых растворов ферритов. Анализ результатов опыта, которые позволяют утверждать, что в исследованных твердых растворах системы CoXMn1-XS реализуются переходы типа металл-диэлектрик как по температуре, так и по концентрации.

    реферат [1,8 M], добавлен 21.06.2010

  • Теоретические сведения о физических явлениях, возникающих при столкновении твердых тел. Проверка законов сохранения импульса и энергии для случаев прямого и косого центральных ударов тел. Определение для заданных случаев коэффициента восстановления.

    лабораторная работа [193,9 K], добавлен 05.05.2011

  • Определение понятия "газ" как агрегатного состояния вещества, характеризующегося очень слабыми связями между молекулами, атомами и ионами. Основные состояния жидкостей: испарение, конденсация, кипение, смачивание и смешиваемость. Свойства твердых тел.

    презентация [711,7 K], добавлен 31.03.2012

  • Электрификация производственных процессов на участке твердых сплавов, расчет электрического освещения и облучения. Расчет внутренних сетей. Описание изобретения для смешивания сыпучих материалов. Меры безопасности при обслуживании установки, охрана труда.

    курсовая работа [1,5 M], добавлен 20.01.2010

  • Деформация как изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга, ее причины и механизмы. Виды: растяжение, сжатие, кручение, изгиб и сдвиг. Основные факторы, влияющие на жесткость и прочность твердого тела.

    презентация [1,3 M], добавлен 26.01.2014

  • Определение минимального удельного давления на контактных поверхностях соединения, необходимого для создания сил трения. Минимальный допустимый натяг с учетом поправок. Наибольший расчетный натяг, при котором отсутствует пластическая деформация детали.

    задача [39,8 K], добавлен 21.12.2011

  • Виды реакций твердых тел. Радиационно-химическое разложение ионных и ионно-молекулярных кристаллов. Релаксация и автолокализация электронных возбуждений. Механизмы фундаментальной реакционной способности. Твердофазные превращения без изменения состава.

    презентация [710,4 K], добавлен 22.10.2013

  • Решение экспериментальных задач по определению плотности твердых веществ и растворов, с различной массовой долей растворенного вещества. Измерение плотности веществ, оценка границ погрешностей. Установление зависимости плотности растворов от концентрации.

    курсовая работа [922,0 K], добавлен 17.01.2014

  • Кинематическое предположение Ньютона. Понятие упругого и неупругого удара. Соударение точки с гладкой поверхностью. Изменение кинематического момента и количества движения. Нахождение ударного импульса. Прямой центральный удар двух твердых тел.

    лекция [399,6 K], добавлен 02.10.2013

  • Кристаллическая структура и полупроводниковые свойства карбида кремния и нитрида алюминия. Люминесцентные свойства SiC и твердых растворов (SiC)1-x(AlN)x. Технологическая установка для выращивания растворов. Электронный микроскоп-микроанализатор ЭММА-2.

    дипломная работа [175,9 K], добавлен 09.09.2012

  • Физика твердого тела – один из столпов, на которых покоится современное технологическое общество. Физическое строение твердых тел. Симметрия и классификация кристаллов. Особенности деформации и напряжения. Дефекты кристаллов, способы повышения прочности.

    презентация [967,2 K], добавлен 12.02.2010

  • Расчет пределов существования твердых растворов со структурой перовскита в системе. Установление закономерностей температурно-частотных зависимостей характеристик диэлектрического отклика. Характер частотной зависимости составляющих электропроводности.

    реферат [1,1 M], добавлен 26.06.2010

  • Газовая постоянная воздуха. Изотермическое сжатие и адиабатное расширение воздуха. Измерение теплоемкости твердых тел. Измерение теплопроводности твердых тел. Теплопроводность однослойных и многослойных стенок. Соотношения между единицами давления.

    методичка [2,3 M], добавлен 22.11.2012

  • Свойства твердых тел. Основные виды деформации. Основные допущения о свойствах материалов и характере деформирования. Геометрическая схематизация элементов строительных конструкций. Внешнее воздействие на тело. Классификация нагрузок. Крутящий момент.

    реферат [2,4 M], добавлен 28.01.2009

  • Тепловые свойства твердых тел. Классическая теория теплоемкостей. Общие требования к созданию анимационной обучающей программы по физике. Ее реализация для определения удельной теплоемкости твердых тел (проверка выполнимости закона Дюлонга и Пти).

    дипломная работа [866,2 K], добавлен 17.03.2011

  • Тушение возбужденных состояний примесных молекул в твердых растворах органических соединений. Особенности температурной зависимости параметров сенсибилизированной фосфоресценции примесных молекул в замороженных н-парафинах.

    диссертация [410,5 K], добавлен 13.03.2007

  • Приведены результаты исследования влияния температуры на интенсивность и кинетику сенсибилизированной фосфоресценции трифенилена в Н-декане в интервале от 77 до 150 К в необезгаженном и обезгаженном твердых растворах.

    статья [10,2 K], добавлен 22.07.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.