Справочник электрика
Электрические величины и понятия. Определение сопротивления и проводимости. Условные обозначения контактных соединений, включателей, выключателей, разъединителей, контактов реле. Магнитные свойства электрического тока. Напряжение, трехфазный ток.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 05.05.2016 |
Размер файла | 501,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Справочник электрика
Кривой Рог
2015
1. Основные электрические величины и понятия
Суть электричества состоит в том, что поток электронов движется по проводнику в замкнутой цепи от источника тока к потребителю и обратно. Перемещаясь, эти электроны выполняют определённую работу. Это явление называется - электрический ток, а единица измерения носит имя ученого, который первым исследовал свойства тока. Фамилия ученого - Ампер.
Необходимо знать, что ток при работе нагревает, изгибает и, старается поломать провода и все, по чему он протекает. Это свойство следует учитывать при расчетах цепей, т.е., чем больше ток, тем толще провода и конструкции.
Если мы разомкнем цепь, ток прекратится, но на зажимах источника тока все-таки будет какой то потенциал, всегда готовый к работе. Разность потенциалов на двух концах проводника называется напряжением (U).
U=f1-f2.
В свое время ученый по фамилии Вольт скрупулезно изучил электрическое напряжение и дал ему подробное объяснение. В последствии единице измерения присвоили его имя.
В отличие от тока, напряжение не ломает, а прожигает. Электрики говорят - пробивает. Поэтому все провода и электрические агрегаты защищены изоляцией, и чем больше напряжение, тем толще изоляция. Немного позже еще один знаменитый физик - Ом, тщательно экспериментируя, выявил зависимость между этими электрическими величинами и описал ее.
Сейчас каждый школьник знает закон Ома
I=U/ R.
Его можно использовать для расчета простых цепей. Накрыв пальцем величину, которую ищем - увидим как ее вычислить. Не стоит бояться формул. Для использования электроэнергии необходимы не столько они (формулы), сколько понимание того, что происходит в электроцепи.А происходит следующее. Произвольный сточник тока, (назовем его пока - генератор) вырабатывает электроэнергию и по проводам передает ее потребителю (назовём его, пока словом - нагрузка). Таким образом, у нас получилась замкнутая электрическая цепь ''генератор-нагрузка''. Пока генератор вырабатывает энергию, нагрузка ее потребляет и работает (т.е., преобразует электрическую энергию в механическую, световую или любую другую). Поставив обычный рубильник в разрыв провода, мы можем включать и выключать нагрузку, когда нам надо. Таким образом, получаем неисчерпаемые возможности регулирования работы. Интересно то, что при выключенной нагрузке нет необходимости отключать генератор (по аналогии с другими видами энергии - тушить костер под паровым котлом, перекрывать воду на мельнице и т.п.)
Важно при этом соблюдать пропорции генератор-нагрузка. Мощность генератора не должна быть меньше мощности нагрузки. Нельзя к слабому генератору подключать мощную нагрузку. Это все равно, что старую клячу запрячь в тяжеленную телегу. Мощность всегда можно узнать из документации на электроприбор или его маркировки на табличке, прикрепляемой к боковой или задней стенке электроприбора. Понятие мощность ввели в обиход более века назад, когда электричество вышло за пороги лабораторий и, стало применяться в быту и промышленности.
Мощность - произведение напряжения и тока. За единицу принят Ватт. Эта величина показывает, какой ток потребляет нагрузка при таком напряжении.
Р=U х I
2. Электрические материалы. Сопротивление, проводимость
Мы уже упоминали величину под названием ОМ. Теперь остановимся на ней подробнее. Уже давно ученые обратили внимание на то, что разные материалы по-разному ведут себя с током. Одни беспрепятственно его пропускают, другие упорно ему сопротивляются, третьи пропускают его только в одну сторону, или же пропускают "на определенных условиях". После испытаний на проводимость всех возможных материалов стало понятным, что абсолютно все материалы, в той или иной степени, могут проводить ток. Для оценки "меры" проводимости вывели единицу электрического сопротивления, и назвали её ОМ, а материалы, в зависимости от их "способности" пропускать ток, разделили на группы. Одна группа материалов это проводники. Проводники без особых потерь проводят ток. К проводникам относятся материалы, имеющие сопротивление от нуля до 100 Ом/м. Такими свойствами обладают, в основном, металлы.
Другая группа - диэлектрики. Диэлектрики тоже проводят ток, но с огромными потерями. Их сопротивление от 10000000 Ом и до бесконечности. К диэлектрикам, в своем большинстве, относятся неметаллы, жидкости и различные соединения газов.
Сопротивление 1 Ом означает, что в проводнике сечением 1 кв. мм и длиной 1 метр потеряется 1 Ампер тока.
Величина обратная сопротивлению - проводимость. Величину проводимости того или иного материала всегда можно найти в справочниках.
3. Условные обозначения в схемах
Для полного понимания происходящих в цепи процессов необходимо уметь правильно читать электрические схемы. Для этого надо знать условные обозначения. С 1986 года вступил в силу стандарт, который во многом убрал разночтения в обозначениях, имеющиеся между европейскими и российскими ГОСТами. Теперь электрическую схему из Финляндии может прочитать электрик из Милана и Москвы, Барселоны и Владивостока.
В электрических схемах встречаются два вида обозначений: графические и буквенные.
Буквенные коды наиболее распространенных видов элементов
Условные графические обозначения представлены в таблицях. Провода на схемах обозначаются прямыми линиями.
Одним из основных требований при составлении схем является простота их восприятия. Электрик, при взгляде на схему должен понять, как устроена цепь и как действует тот или иной элемент этой цепи.
Условные обозначения контактных соединений
Место контакта или присоединения может располагаться на любом участке провода от одного разрыва до другого.
Условные обозначения включателей, выключателей, разъединителей:
Вертикальные линии, пересекающие подвижные контакты, говорят, что все три контакта замыкаются (или размыкаются) одновременно от одного воздействия.
При рассмотрении схемы необходимо учитывать то, что некоторые элементы цепи чертятся одинаково, но их буквенное обозначение будет отличаться (например, контакт реле и выключатель).
Обозначение контактов реле контакторов
замыкающие |
размыкающие |
||
обычные |
|||
сзамедлением при срабатывании |
|||
сзамедлением при возврате |
|||
сзамедлением при срабатывании и при возврате |
Полупроводниковые приборы
Диод |
||
Стабилитрон |
||
Тиристор |
||
Фотодиод |
||
Светодиод |
||
Фоторезистор |
||
Солнечный фотоелемент |
||
Транзистор |
||
Конденсатор |
||
Дроссель |
||
сопротивление |
||
Электрические машины постоянного тока |
||
Асинхронные трехфазные электрические машины переменного тока |
В зависимости от буквенного обозначения эти машины будут, либо генератором, либо двигателем.
При маркировке электрических цепей соблюдают следующие требования:
1.Участки цепи, разделенные контактами аппаратов, обмотками реле, приборов, машин и другими элементами, маркируют по-разному.
2.Участки цепи, проходящие через разъемные, разборные или неразборные контактные соединения, маркируют одинаково.
3.В трехфазных цепях переменного тока фазы маркируют: "А", "В", "С", в двухфазных - "А", "В"; "В", "С"; "С", "А", а в однофазных - "А"; "В"; "С". Ноль обозначают буквой - "О".
4.Участки цепей положительной полярности маркируют нечетными числами, а отрицательной полярности - четными.
5.Рядом с условным обозначением силового оборудования на чертежах планов дробью указывают номер оборудования по плану (в числителе) и его мощность (в знаменателе), а у светильников - мощность (в числителе) и высоту установки в метрах (в знаменателе).
Необходимо понимать, что все электрические схемы показывают состояние элементов в исходном состоянии, т.е. в тот момент, когда в цепи отсутствует ток
Электрическая цепь. Параллельное и последовательное включение.
Как уже говорилось выше, мы можем отключать нагрузку от генератора, мы можем подключать к генератору другую нагрузку, а можно подключить несколько потребителей одновременно. В зависимости от стоящих задач мы можем включить несколько нагрузок параллельно или последовательно. При этом меняется не только схема, но и характеристики цепи.
При параллельном подключении напряжение на каждой нагрузке будет одинаковой, и работа одной нагрузки не будет влиять на работу других нагрузок.
При этом ток в каждой цепи будет разный и будет суммироваться в местах соединений.
Iобщ = I1+I2+I3+…+In
Подобным образом подключается вся нагрузка в квартире, например лампы в люстре, конфорки в электрической кухонной плите и т.п.
При последовательном включении, напряжение равными долями распределится между потребителями
В этом случае по всем включенным в цепь нагрузкам будет проходить суммарный ток и в случае выхода из строя одного из потребителей вся схема перестанет работать. Такие схемы используются в новогодних гирляндах. Кроме того, при использовании элементов разной мощности в последовательной цепи, слабые приемники просто перегорают.
Uобщ = U1 + U2 + U3 + … + Un
Мощность, при любом способе подключения, суммируется:
Робщ = Р1 + Р2 + Р3 + … + Рn.
4. Расчет сечения проводов
Ток, проходя по проводам, нагревает их. Чем тоньше проводник, и чем больше проходящий через него ток, тем сильнее нагрев. При нагреве плавится изоляция провода, что может привести к короткому замыканию и пожару. Расчет тока в сети не сложен.
Для этого надо мощность прибора в ваттах разделить на напряжение:
I=P/U.
Все материалы имеют допустимую проводимость. Это значит, что такой ток они могут пропустить через каждый квадратный миллиметр (т.е. сечение) без особых потерь и нагрева.
Диаметр D |
Сечение S (кв.мм.) |
Допустимый |
ток I |
|
мм |
медь |
алюминий |
||
0,8 |
0,5 |
5 |
3 |
|
0,97 |
0,75 |
7 |
4,5 |
|
1,12 |
1,0 |
10 |
6 |
|
1,23 |
1,2 |
12 |
8 |
|
!.38 |
1,5 |
15 |
10 |
|
1,59 |
2,0 |
19 |
13 |
|
1,78 |
2,5 |
21 |
16 |
|
1,95 |
3,0 |
25 |
18 |
|
2,25 |
4,0 |
27 |
21 |
|
2,52 |
5,0 |
30 |
24 |
|
2,76 |
6,0 |
34 |
26 |
|
3,56 |
10 |
50 |
38 |
|
4,51 |
16 |
70 |
55 |
|
5,64 |
25 |
85 |
65 |
|
6,67 |
35 |
100 |
75 |
Теперь, зная ток, мы без труда выбираем из таблицы нужное сечение провода и, если надо, рассчитываем диаметр провода, пользуясь простой формулой:
D=vS/рЧ2
В качестве примера рассчитаем толщину проводов для подключения бытовой кухонной плиты: Из паспорта или по табличке на оборотной стороне агрегата узнаем мощность плиты. Допустим, мощность (P) равна 11 кВт (11 000 Ватт). Разделив мощность на напряжение сети (в большинстве регионов России это 220 Вольт) получим ток, который будет потреблять плита: I=P/ U=11000/220=50А. Если использовать медные провода, то сечение провода S должно быть не менее 10 кв. мм. (см. таблицу).
Надеюсь, читатель не обидится на меня за то, что я напомню ему о том, что сечение проводника и его диаметр, это не одно и тоже. Сечение провода равно п (Пи) умноженное на r в квадрате (п X r X r ). Диаметр провода можно рассчитать, вычислив квадратный корень из сечения провода, деленного на р умножив полученное значение на два.
5. Магнитные свойства электрического тока
Давно замечено, что при прохождении тока по проводникам возникает магнитное поле способное воздействовать на магнитные материалы. Из школьного курса физики мы, возможно, помним, что разноимённые полюса магнитов притягиваются, а одноименные отталкиваются. Это обстоятельство следует учитывать при прокладке проводок. Два провода, по которым ток течет в одну сторону, будут притягиваться друг к другу, и наоборот.
Если провод скрутить в катушку, то, при пропускании через него электрического тока, магнитные свойства проводника проявятся еще сильнее. А если в катушку вставить еще и сердечник, тогда получим мощный магнит.
В конце позапрошлого века американец Морзе изобрел устройство, которое позволяло передавать информацию на большие расстояния без помощи гонцов. Аппарат этот основан, на способности тока возбуждать магнитное поле вокруг катушки. Подавая на катушку питание от источника тока, в ней возникает магнитное поле, притягивающее подвижный контакт, который замыкает цепь другой такой же катушки, и т.д. Таким образом, находясь на значительном расстоянии от абонента можно без особых проблем передавать закодированные сигналы. Это изобретение получило широкое применение, как в связи, так в быту и промышленности.
Описанное устройство уже давно устарело и почти не используется на практике. На смену ему пришли мощные информационные системы, но в основе своей все они продолжают работать по тому же принципу.
6. Силовые цепи. Цепи управления
Мощность любого двигателя несоизмеримо выше мощности катушки реле. Поэтому провода к основной нагрузке толще, чем к управляющим аппаратам.
Введём понятие силовых цепей и цепей управления. К силовым цепям относятся все ведущие к нагрузке ток части цепи (провода, контакты, измерительные и контролирующие приборы). На схеме они выделены цветом.
Все провода и аппаратура управления, контроля и сигнализации относятся к цепям управления. На схеме они выделены отдельно. Бывает что нагрузка не очень велика или особо не выражена. В таких случаях цепи условно делят по силе тока в них. Если ток превышает 5 Ампер - цепь силовая.
7. Реле. Контакторы
Важнейшим элементом, упоминавшегося уже аппарата Морзе является РЕЛЕ.
Это устройство интересно тем, что на катушку можно подать относительно слабый сигнал, который преобразуется в магнитное поле и замыкает другой, более мощный, контакт, или группу контактов.
Некоторые из них могут не замыкаться, а, наоборот, размыкаться. Это тоже нужно для разных целей. На чертежах и схемах это изображается так:
А читается следующим образом: при подаче питания на катушку реле - К контакты: К1, К2, К3, и К4 замыкаются, а контакты: К5,К6,К7 и К8 - размыкаются. Важно помнить, что на схемах показываются только те контакты, которые будут задействованы, не смотря на то, что реле может иметь большее количество контактов.
На принципиальных схемах показывается именно принцип построения сети и её работы, поэтому контакты и катушка реле не рисуются вместе. В системах, где много функциональных устройств, основную трудность представляет то, как правильно найти соответствующие катушкам контакты. Но с приобретением опыта эта проблема решается проще.
Как мы уже говорили ток и напряжение, разные материи. Ток, сам по себе, очень силен и, надо приложить немалые усилия, что бы его отключить. При отключении цепи (электрики говорят - коммутации) возникает большая дуга, которая может зажечь материал.
При силе тока I=5А, возникает дуга длинной 2 см. При больших токах размеры дуги достигают чудовищных размеров. Приходится применять специальные меры, чтобы не расплавить материал контактов. Одна из таких мер - ''дугогасительные камеры''.
Эти устройства ставят у контактов на силовых реле. Кроме того, контакты имеют другую, отличную от реле форму, это позволяет еще до возникновения дуги разделить ее пополам. Такое реле называется контактором. Некоторые электрики окрестили их пускателями. Это неправильно, но в точности передает суть работы контакторов.
Все электроприборы производятся различных типоразмеров. Каждый размер говорит о способности выдержать токи определенной силы, поэтому, устанавливая аппаратуру необходимо следить за тем, чтобы типоразмер коммутирующего прибора соответствовал току загрузки:
Величина, (условный номер типоразмера) |
Номинальный Ток, А |
Номинальная Мощность, кВт |
|
1 |
10 |
4 |
|
2 |
23 |
10 |
|
3 |
40 |
17 |
|
4 |
56 |
28 |
|
5 |
115 |
55 |
|
6 |
140 |
75 |
8. Генератор. Двигатель
Магнитные свойства тока интересны еще и тем, что они обратимы. Если с помощью электричества можно получить магнитное поле, то можно и наоборот. После не очень продолжительных исследований (всего то около 50 лет) было выяснено, что если проводник перемещать в магнитном поле, то по проводнику начинает течь электрический ток. Это открытие помогло человечеству преодолеть проблему запасания и хранения энергии. Теперь у нас на вооружении есть электрический генератор. Простейший генератор устроен не сложно. Виток провода вращается в поле магнита (или наоборот) и по нему течет ток. Остаётся только замкнуть цепь на нагрузку.
Конечно же, предложенная модель сильно упрощенна, но в принципе генератор отличается от этой модели не так уж и сильно. Вместо одного витка берутся километры проволоки, (это называется обмоткой). Вместо постоянных магнитов используются электромагниты, (это называется возбуждением). Наибольшую проблему в генераторах представляют способы отбора тока. Устройством для отбора вырабатываемой энергии является коллектор.
При монтаже электрических машин необходимо следить за целостностью щеточных контактов и плотностью прилегания их к коллекторным пластинам. При замене щеток, их придется притирать. Имеется еще одна интересная особенность. Если у генератора не забирать ток, а, наоборот, подавать на его обмотки, то генератор превратится в двигатель. Это означает, что электрические машины полностью обратимы. То есть, не изменяя конструкцию и схему, мы можем использовать электрические машины, как в качестве генератора, так и в качестве источника механической энергии. Например, электропоезд при движении в горку потребляет электроэнергию, а под горку - выдает её в сеть. Таких примеров можно привести много.
9. Измерительные приборы
Одним из самых опасных факторов, связанных с эксплуатацией электричества является то, что наличие тока в цепи можно определить, только очутившись под его воздействием, т.е. соприкоснувшись с ним. До этого момента электрический ток ничем не выдает своего присутствия. В связи с таким поведением возникает острая необходимость его обнаружения и измерения. Зная магнитную природу электричества, мы можем не только определить наличие/отсутствие тока, но и измерить его.
Существует много приборов для измерения электрических величин. Многие из них имеют обмотку магнита. Ток, протекая по обмотке, возбуждает магнитное поле и отклоняет стрелку прибора. Чем сильнее ток, тем больше отклоняется стрелка. Для большей точности измерений применяется зеркальная шкала, чтобы взгляд на стрелку был перпендикулярен измерительной панели.
Для измерения тока используется амперметр. Он включается в цепь последовательно. Чтобы измерить ток, величина которого больше номинального, чувствительность прибора уменьшают шунтом (мощным сопротивлением).
Напряжение измеряют вольтметром, к цепи он подключается параллельно. Комбинированный прибор для измерения и тока и напряжения называют авометром.
Для замеров сопротивления используют омметр или мегомметр. Этими приборами часто прозванивают цепь, что бы найти обрыв или удостовериться в ее целостности.
Измерительные приборы должны проходить периодическое тестирование. На крупных предприятиях специально для этих целей создаются измерительные лаборатории. После тестирования прибора лаборатория ставит на его лицевую сторону свое клеймо. Наличие клейма говорит о том, что прибор работоспособен, имеет допустимую точность (погрешность) измерения и, при условии правильной эксплуатации, до следующей поверки его показаниям можно верить.
Счетчик электроэнергии тоже является измерительным прибором, в который добавлена еще и функция учета используемой электроэнергии. Принцип действия счётчика предельно прост, как и его устройство. Он имеет обычный электродвигатель с редуктором, подключенным к колесикам с циферками. При увеличении силы тока в цепи двигатель крутится быстрей, быстрее перемещаются и сами цифры.
В быту мы пользуемся не профессиональной измерительной техникой, но в силу отсутствия необходимости очень точного измерения это не столь существенно.
10. Заземление
От долгой работы материалы "устают" и изнашиваются. При недосмотре может случиться так, что какая-нибудь токопроводящая деталь отваливается и падает на корпус агрегата. Мы уже знаем, что напряжение в сети обусловлено разностью потенциалов. На земле, обычно, потенциал равен нулю, и если на корпус упал один из проводов, то напряжение между землей и корпусом будет равно напряжению сети. Касание корпуса агрегата, в этом случае, смертельно опасно.
Человек также является проводником и может через себя пропустить ток от корпуса на землю или в пол. В этом случае человек подключается к сети последовательно и, соответственно, весь ток нагрузки из сети пойдет по человеку. Даже если нагрузка в сети небольшая все равно это грозит существенными неприятностями. Сопротивление среднестатистического человека примерно равно 3 000 Ом. Произведенный по закону Ома расчет тока покажет, что по человеку потечет ток
I = U/R = 220/3000 =0,07 Ом.
Казалось бы, немного, но может и убить.
Во избежание этого, делают заземление. Т.е. намеренно соединяют корпуса электрических устройств с землей, что бы вызвать короткое замыкание, в случае пробоя на корпус. При этом срабатывает защита и отключает неисправный агрегат.
Заземлители заглубляют в грунт, сваркой присоединяют к ним заземляющие проводники, которые болтами прикручивают ко всем агрегатам, чьи корпуса могут оказаться под током.
Кроме того, в качестве меры защиты, применяют зануление. Т.е. с корпусом соединяют ноль. Принцип срабатывания защиты аналогичен заземлению. Разница лишь в том, что заземление зависит от характера почвы, ее влажности, глубины залегания заземлителей, состояния множества соединений и т.д. и т.п. А зануление напрямую соединяет корпус агрегата с источником тока.
Правила устройства электроустановок говорят, что при устройстве зануления, заземлять электроустановку необязательно.
Заземлитель представляет собой металлический проводник или группу проводников, находящихся в непосредственном соприкосновении с землей.
Различают следующие виды заземлителей:
1. Углубленные, выполненные из полосовой или круглой стали и, укладываемые горизонтально на дно котлованов зданий по периметру их фундаментов;
2. Горизонтальные, выполненные из круглой или полосовой стали и уложенные в траншею;
3. Вертикальные - из стальных, вертикально вдавленных в грунт стальных стержней.
Для заземлителей применяют круглую сталь диаметром 10-16 мм, полосовую сталь сечением 40х4 мм, отрезки угловой стали 50х50х5 мм.
Длина вертикальных ввинчиваемых и вдавливаемых заземлителей - 4,5-5 м; забиваемых - 2,5-3 м. В производственных помещениях с электроустановками напряжением до 1 кВ применяют магистрали заземления сечением не менее 100 кв. мм, а напряжением выше 1 кВ - не менее 120 кв. мм.
Наименьшие допустимые размеры стальных заземляющих проводников (в мм)
Сечение заземлителя |
В зданиях |
снаружи |
В земле |
|
Круглые |
5 |
6 |
10 |
|
Прямоугольные |
3 |
4 |
4 |
|
Угловые |
2 |
2,5 |
4 |
Наименьшие допустимые размеры медных и алюминиевых заземляющих и нулевых проводников (в мм)
Тип проводника |
алюминий |
медь |
|
Кабели или многожильные провода в общей защитной оболочке с фазными жилами |
2,5 |
1 |
|
Изолированные провода |
2.5 |
1,5 |
|
Неизолированные проводники при открытой проводке |
6 |
4 |
Над дном траншеи вертикальные заземлители должны выступать на 0,1-0,2 м для удобства приварки к ним соединительных горизонтальных стержней (сталь круглого сечения более устойчива против коррозии, чем полосовая). Горизонтальные заземлители укладывают в траншеи глубиной 0,6-0,7 м от уровня планировочной отметки земли.
У мест ввода проводников в здание устанавливают опознавательные знаки заземлителя. Расположенные в земле заземлители и заземляющие проводники не окрашивают. Если в грунте содержатся примеси, вызывающие повышенную коррозию, применяют заземлители увеличенного сечения, в частности, круглую сталь диаметром 16 мм, оцинкованные или омедненные заземлители, или осуществляют электрическую защиту заземлителей от коррозии.
Заземляющие проводники прокладывают горизонтально, вертикально или параллельно наклонным конструкциям зданий. В сухих помещениях заземляющие проводники укладывают непосредственно по бетонным и кирпичным основаниям с креплением полос дюбелями, а в сырых и особо сырых помещениях, а также в помещениях с агрессивной атмосферой - на подкладках или опорах (держателях) на расстоянии не менее 10 мм от основания.
Проводники крепят на расстояниях 600-1 000 мм на прямых участках, 100 мм на поворотах от вершин углов, 100 мм от мест ответвлений, 400 - 600 мм от уровня пола помещений и не менее 50 мм от нижней поверхности съемных перекрытий каналов.
Открыто проложенные заземляющие и нулевые защитные проводники имеют отличительную окраску - по зеленому фону прокрашивают желтую полосу вдоль проводника.
В обязанность электриков входит, периодически проверять состояние заземления. Для этого мегомметром замеряется сопротивление заземления. ПУЭ.
Регламентируют следующие значения сопротивлений заземляющих устройств в електроустановках
Напряжение сети |
Сопротивление заземление |
|
до 1000 Вольт |
< 10 Ом |
|
Выше 1000 Вольт (глухозаземленная нейтраль) |
<0,5 Ом |
|
Выше 1000 Вольт (изолированная нейтраль) |
<250/Iз |
Заземляющие устройства (заземление и зануление) на электроустановках выполняют во всех случаях если напряжение переменного тока равно или выше 380 В, а напряжение постоянного тока выше или равно 440 В; При напряжении переменного тока от 42 В до 380 Вольт и от 110 В до 440 Вольт постоянного тока заземление выполняется в помещениях с повышенной опасностью, а также на особо опасных и наружных установках. Заземление и зануление во взрывоопасных установках выполняют при любых напряжениях. Если характеристики заземления не соответствуют допустимым стандартам, проводятся работы по восстановлению заземления.
11. Шаговое напряжение
В случае обрыва провода и попадания его на землю или корпус агрегата, напряжение равномерно "растекается" по поверхности. В точке касания провода земли, оно равно сетевому напряжению. Но чем дальше от центра касания, тем падение напряжения больше.
Тем не менее, при напряжении между потенциалами в тысячи, и десятки тысяч вольт, даже в нескольких метрах от точки касания провода земли, напряжение все-таки будет опасным для человека. При попадании человека в эту зону, по телу человека потечёт ток (по цепи: земля - ступня - колено - пах - другое колено - другая ступня - земля). Можно, с помощью закона Ома, быстро посчитать какой именно ток потечет, и представить последствия. Так как напряжение возникает, по сути, между ног человека, оно получило название - шаговое напряжение.
Не стоит испытывать судьбу, увидев свисающий со столба провод. Надо принять меры к безопасной эвакуации. А меры следующие:
Во-первых, не стоит двигаться широким шагом. Нужно шаркающими шажками, не отрывая ног от земли удалиться подальше от места касания.
Во-вторых, нельзя падать и ползти!
И, в-третьих, до прибытия аварийной бригады необходимо ограничить доступ людей в опасную зону.
12. Трехфазный ток
Выше мы разобрались, как работает генератор и двигатель постоянного тока. Но эти двигатели имеют ряд недостатков, которые сдерживают их применение в промышленной электротехнике. Большее распространение получили машины переменного тока. Устройство снятия тока в них представляет собой кольца, которое проще в изготовлении и обслуживании. Переменный ток ничуть "не хуже" постоянного, а по некоторым показателям превосходит его. Постоянный ток всегда течет в одном направлении при постоянной величине. Переменный ток изменяет направление или величину. Основной его характеристикой является частота, измеряемая в Герцах. Частота показывает, сколько раз в секунду ток меняет направление или амплитуду. В европейском стандарте промышленная частота f=50 Герц, в стандарте США f=60 Герц.
Принцип работы двигателей и генераторов переменного тока, такой же, как и у машин постоянного тока. У двигателей переменного тока имеется проблема ориентирования направления вращения. Приходится либо смещать направление тока дополнительными обмотками, либо применять специальные пусковые устройства. Использование трехфазного тока решило эту проблему. Суть его "устройства" в том, что три однофазных системы связали в одну - трехфазную. По трем проводам подаётся ток с небольшим запозданием друг от друга. Эти три провода всегда называют ''А'', ''В'' и ''С''. Ток течет следующим образом. По фазе "А" на нагрузку и от неё возвращается по фазе "В", из фазы "В" в фазу "С", а из фазы "С" в "А".
Существуют две системы трехфазного тока: трех проводная и четырех проводная. Первую мы уже описали. А во второй присутствует четвертый нулевой провод. В такой системе по фазам ток подается, а по нулю отводится. Данная система оказалась настолько удобной, что сейчас применяется повсеместно. Удобна она, в том числе и тем, что не надо что-то переделывать, если нужно включить в нагрузку только один или два провода. Просто подключаемся/отключаемся и все.
Напряжение между фазами называется линейным (Uл) и равно напряжению в линии. Напряжение между фазным (Uф) и нулевым проводом называется фазным и вычисляется по формуле:
Uф=Uл/V3; Uф=Uл/1,73.
Стандартный ряд напряжений
Uл |
660 |
380 |
220 |
|
Uф |
380 |
220 |
127 |
При включении в трехфазную сеть однофазных нагрузок необходимо следить за равномерностью подключения. В противном случае выйдет, что один провод будет сильно перегружен, а два других при этом останутся без дела.
Все трехфазные электрические машины имеют по три пары полюсов и ориентируют направление вращения подключением фаз. При этом для изменения направления вращения (электрики говорят - РЕВЕРСа) достаточно поменять местами только две фазы, любые.
Аналогично и с генераторами.
13. Включение в "треугольник" и "звезду"
Имеются три схемы включения трехфазной нагрузки в сеть. В частности, на корпусах электродвигателей имеется контактная коробка с выводами обмоток. Маркировка в клеммных коробках электрических машин следующая: начала обмоток С1, С2 и С3, концы, соответственно С4, С5 и С6 (крайний левый рисунок).
Подобную маркировку крепят и на трансформаторах.
Соединение''треугольником'' показано на среднем рисунке. При таком соединении весь ток из фазы к фазе проходит по одной обмотке нагрузки и, в этом случае, потребитель работает на полную мощность. На крайнем правом рисунке показаны соединения в клемной коробке.
Соединение''в звезду'' может "обходиться" без нуля. При таком подключении линейный ток, проходя через две обмотки, делится пополам и, соответственно, потребитель работает в половину силы.
При соединение''в звезду'' с нулевым проводом на каждую обмотку нагрузки поступает только фазное напряжение: Uф=Uл/V3. Мощность потребителя получается меньше на v3.
14. Электрические машины из ремонта
Большую проблему представляют старые двигатели, вышедшие из ремонта. Такие машины, как правило, не имеют табличек и клеммных выходов. Провода торчат из корпусов, и похожи на лапшу из мясорубки. И если подключить их неправильно, то в лучшем случае, двигатель будет перегреваться, а в худшем - сгорит.
Происходит это, потому что одна из трех, неправильно подключённых обмоток, будет стараться провернуть ротор двигателя, в сторону, противоположную вращению, создаваемому двумя другими обмотками.
Чтобы подобного не случилось необходимо найти концы одноименных обмоток. Для этого с помощью тестера "прозванивают" все обмотки, одновременно проверяя и их целостность (отсутствие обрыва и пробоя на корпус). Найдя концы обмоток, их маркируют. Цепь собирается следующим образом. К предполагаемому окончанию первой обмотки присоединяем предполагаемое начало второй обмотки, конец второй соединяем с началом третьей, а с оставшихся концов снимаем показания омметра.
Заносим значение сопротивления в таблицу.
Схема |
Сопротивление |
|
123456 |
0,456 |
|
213456 |
0,567 |
|
124356 |
0,678 |
|
123465 |
0,234 |
|
213465 |
0,345 |
|
214365 |
0,453 |
Потом цепь разбираем, меняем конец и начало первой обмотки местами и снова собираем. Как и в прошлый раз, результаты измерений заносим в таблицу.
Далее опять повторяем операцию, поменяв местами концы второй обмотки. Повторяем подобные действия столько раз, сколько имеется возможных схем включения. Главное, аккуратно и точно снимать показания с прибора. Для точности, весь цикл измерений стоит повторить дважды. После заполнения таблицы сравниваем результаты измерений.
Правильной будет схема с наименьшим измеренным сопротивлением.
15. Включение трехфазного двигателя в однофазную сеть
Случается необходимость, когда трехфазный двигатель надо включить в обычную бытовую розетку (однофазную сеть). Для этого, способом сдвига фазы при помощи конденсатора, принудительно создают третью фазу.
На рисунке показано подключение двигателя по схеме "треугольник" и "звезда". На один вывод подключают "ноль", на второй фазу, к третьему выводу также подключают фазу, но через конденсатор. Для вращения вала двигателя в нужную сторону применяют пусковой конденсатор, который включается в сеть параллельно рабочему.
При напряжении сети 220 В и частоте 50 Гц емкость рабочего конденсатора в мкФ рассчитываем по формуле
Сраб = 66 Рном,
где Рном - номинальная мощность двигателя в кВт.
Ёмкость пускового конденсатора рассчитывают по формуле
Спуск = 2 Сраб = 132 Рном.
Для пуска не очень мощного двигателя (до 300 Вт) пусковой конденсатор может и не понадобиться.
16. Магнитный пускатель
Включение электродвигателя в сеть при помощи обычного выключателя, дает ограниченную возможность регулирования.
Кроме того, в случае аварийного отключения электроэнергии (например, перегорают предохранители), машина перестает работать, но после починки сети двигатель запускается уже без команды человека. Это может привести к несчастному случаю.
Необходимость защиты от исчезновения тока в сети (электрики говорят нулевой защиты) привела к изобретению магнитного пускателя. В принципе, это схема с использованием, уже описанного нами, реле.
Для включения машины используем контакты реле "К" и кнопку S1.
При нажатии на кнопку цепь катушки реле "К" получает питание и контакты реле К1 и К2 замыкаются. Двигатель получает питание и работает. Но, отпустив кнопку, схема перестает работать. Поэтому один из контактов реле "К" используем для шунтирования кнопки.
Теперь, после размыкания контакта кнопки, реле не теряет питание, а продолжает удерживать свои контакты в замкнутом положении. И для выключения схемы используем кнопку S2.
Правильно собранная схема после отключения сети не включится до тех пор, пока человек не даст на это команду.
17. Монтажные и принципиальные схемы
В предыдущем параграфе мы начертили схему магнитного пускателя. Эта схема является принципиальной. Она показывает принцип работы устройства. В ней задействованы элементы, используемые в данном устройстве (схеме). Несмотря на то, что реле или контактор может иметь большее число контактов, вычерчиваются только те, которые будут задействованы. Провода рисуются, по возможности, прямыми линиями и не в натуральном исполнении.
Наряду с принципиальными схемами, используют монтажные схемы. Их задача показать, как должны монтироваться элементы электрической сети или устройства. Если реле имеет несколько контактов, то все контакты обозначаются. На чертеже они ставятся так, как будут стоять после монтажа, места присоединения проводов рисуются там, где они действительно должны крепиться, и т.п. Ниже, на левом рисунке показан пример принципиальной электрической схемы, а на правом рисунке монтажная схема того же самого устройства.
18. Как собирать схемы
Одной из сложностей в работе электрика является понимание того, как взаимодействуют элементы схемы между собой. Необходимо уметь читать, понимать и собирать схемы.
При сборке схем следуйте необременительным правилам:
1. Сборку схемы следует проводить в одном направлении. Например: собираем схему по часовой стрелке.
2. При работе со сложными, разветвленными схемами, удобно разбить ее на составные части.
3. Если в схеме много разъемов, контактов, соединений, удобно разбить схему на участки. Например, сначала собираем цепь от фазы до потребителя, потом собираем от потребителя к другой фазе, и т.д.
4. Сборку схемы следует начинать от фазы.
5. Каждый раз, выполнив присоединение, задавайте себе вопрос: А что произойдёт, если напряжение подать сейчас?
В любом случае, после сборки у нас должна получиться замкнутая цепь: Например, фаза розетки - разъем контакта выключателя - потребитель - "ноль" розетки.
Пример: Попробуем собрать самую распространенную в быту схему - подключить домашнюю люстру из трёх плафонов. Используем двухклавишный выключатель.
Для начала определимся для самих себя, как люстра должна работать? При включении одной клавиши выключателя должна зажечься одна лампа в люстре, при включении второй клавиши загораются две другие.
На схеме можно видеть, что и на люстру и на выключатель идут по три провода, в то время как от сети идет всего лишь пара проводов.
Для начала, при помощи индикаторной отвертки, находим фазу и подсоединяем её к выключателю (ноль прерывать нельзя). То, что от фазы к выключателю идут два провода не должно нас смущать. Место соединения проводов мы выбираем сами. Провод мы привинчиваем к общей шине выключателя. От выключателя пойдут два провода и, соответственно, будут смонтированы две цепи. Один из этих проводов присоединяем к патрону лампы. Из патрона выводим второй провод, и соединяем его с нулем.
Цепь одной лампы собрана. Теперь, если включить клавишу выключателя, лампа загорится.
Второй провод, идущий от выключателя соединяем с патроном другой лампы и, так же как и в первом случае, провод из патрона подключаем к нулю. При попеременном включении клавиш выключателя будут загораться разные лампы.
Осталось присоединить третью лампочку. Ее мы соединяем параллельно к одной из готовых цепей, т.е. из патрона подключенной лампы выводим провода и соединяем с патроном последнего источника света.
Из схемы видно, что один из проводов в люстре общий. Обычно он отличается от двух других проводов цветом. Как правило, не составляет труда, не видя проводов скрытых под штукатуркой, правильно подключить люстру.
Если все провода одинакового цвета, то поступаем следующим образом: соединим один из проводов с фазой, а другие поочередно прозваниваем индикаторной отвёрткой. Если индикатор светится по-разному (в одном случае ярче, а в другом более тускло), значит мы выбрали не "общий" провод. Меняем провод и повторяем действия. Индикатор должен светиться одинаково ярко при "прозвонке" обоих проводов.
19. Защита схем
Львиную долю стоимости любого агрегата составляет цена двигателя. Перегрузка двигателя приводит к его перегреву и последующему выходу из строя. Защите двигателей от перегрузок уделяется большое внимание.
Мы уже знаем, что при работе двигатели потребляют ток. При нормальной работе (работе без перегрузок) двигатель потребляет нормальный (номинальный) ток, при перегрузке двигатель потребляет ток в очень больших количествах. Мы можем контролировать работу двигателей с помощью устройств, которые реагируют на изменение тока в цепи, например, реле максимального тока и теплового реле. Реле максимального тока (его часто называют "магнитным расцепителем") представляет собой несколько витков очень толстого провода на подвижном сердечнике нагруженным пружиной. Реле устанавливается в цепь последовательно нагрузке.
Ток протекает по проводу обмотки и создает вокруг сердечника магнитное поле, которое пытается сдвинуть его с места. При нормальных условиях работы двигателя сила пружины, удерживающей сердечник, больше магнитной силы. Но, при увеличении нагрузки на двигатель (например, хозяйка положила в стиральную машину белья больше, чем того требует инструкция) ток увеличивается и магнит "пересиливает" пружину, сердечник смещается и воздействует на привод размыкающего контакта, сеть размыкается.
Реле максимального тока срабатывает при резком увеличении нагрузки на электродвигатель (перегрузке). Например, произошло короткое замыкание, заклинивает вал машины, и т.п. Но бывают случаи, когда перегрузка незначительна, но действует продолжительное время. В такой ситуации двигатель перегревается, изоляция проводов оплавляется и, в конце концов, двигатель выходит из строя (сгорает). Для предотвращения развития ситуации по описанному сценарию, используют тепловое реле, которое представляет собой электромеханическое устройство с биметаллическими контактами (пластинами), пропускающими через себя электрический ток.
При увеличении тока выше номинального значения нагрев пластин увеличивается, пластины изгибаются и размыкают свой контакт в цепи управления, прерывая ток к потребителю.
Для подбора аппаратуры защиты можно воспользоваться таблицей:
Рном |
Iном |
Iпуск |
Iном автомата |
Iмагнитного расцепителя |
Iном теплового реле |
S алюм. жилы |
|
0,37 |
0,93 |
4,18 |
1,6 |
17,6 |
1 |
2,5 |
|
0,55 |
1,33 |
6 |
2,5 |
27,5 |
1,6 |
2,5 |
|
0,75 |
1,7 |
9,35 |
4 |
44 |
2 |
2,5 |
|
1,1 |
2,5 |
13,75 |
4 |
44,5 |
2,5 |
2,5 |
|
1,5 |
3,3 |
21,4 |
6,4 |
70 |
4 |
2,5 |
|
2,2 |
4,7 |
30,6 |
10 |
110 |
5 |
2,5 |
|
3,0 |
6,1 |
39,6 |
10 |
110 |
6,3 |
2,5 |
20. Автоматика
В жизни мы часто сталкиваемся с устройствами, название которых объединяется под общим понятием - "автоматика". И хотя такие системы разрабатывают очень умные конструкторы, обслуживают их простые электрики. Не следует пугаться этого термина. Оно означает всего лишь "БЕЗ участия человека".
В автоматических системах человек дает только начальную команду всей системе и иногда отключает ее для обслуживания. Всю остальную работу на протяжении очень продолжительного времени система проделывает сама.
Если внимательно присмотреться к современной технике, то можно увидеть большое количество автоматических систем, которые ею управляют, сводя вмешательство человека в этот процесс к минимуму. В холодильнике автоматически поддерживается определенная температура, а в телевизоре заданная частота приема, свет на улице загорается с наступлением сумерек и гаснет на рассвете, дверь в супермаркете открывает перед посетителями, а современные стиральные машинки "самостоятельно" выполняют весь процесс стирки, полоскания, отжима и сушки белья. Примеры можно приводить бесконечно.
По своей сути, все схемы автоматики повторяют схему обычного магнитного пускателя, в той или иной степени улучшая его быстродействие или чувствительность. В уже известную схему пускателя вместо кнопок "ПУСК" и "СТОП" вставляем контакты В1 и В2, которые срабатывают от различных воздействий, например, температуры и получим автоматику холодильника.
При повышении температуры включается компрессор и гонит охладитель в морозилку. Когда температура опустится до нужного (заданного) значения, другая такая кнопка отключит насос. Выключатель S1 в этом случае играет роль ручного выключателя, для выключения схемы, например, на время технического обслуживания.
Эти контакты называются "датчиками" или "чувствительными элементами". Датчики имеют различную форму, чувствительность, возможности настройки и назначение. Например, если перенастроить датчики холодильника и, вместо компрессора подключить обогреватель, то получится система поддержания тепла. А, подключив светильники - получим систему поддержания освещенности. Таких вариаций может быть бесконечно много.
В целом, назначение системы определяется назначением датчиков. Поэтому в каждом отдельном случае применяются различные датчики. Изучение каждого конкретного чувствительного элемента не имеет большого смысла, так как они постоянно совершенствуются и изменяются. Целесообразнее понять принцип действия датчиков вообще.
21. Освещение
В зависимости от выполняемых задач освещение делится на следующие виды:
1. Рабочее освещение - обеспечивает нужную освещенность на рабочем месте.
2. Охранное освещение - устанавливается вдоль границ охраняемых участков.
3. Аварийное освещение - предназначается для создания условий безопасной эвакуации людей при аварийном отключении рабочего освещения в помещениях, проходах и лестницах, а также для продолжения работ там, где эти работы останавливать нельзя.
И что бы мы делали без обычной лампочки Ильича? Раньше, на заре электрификации нам светили лампы с угольными электродами, но они быстро перегорали. Позже стали применять вольфрамовые нити, при этом из колб ламп откачивался воздух. Такие лампы работали дольше, но были опасными из-за возможности разрыва колбы. Внутрь колб современных ламп накаливания закачивают инертный газ, такие лампы безопаснее своих предшественниц.
Выпускаются лампы накаливания с колбами и цоколями разной формы. Все лампы накаливания имеют ряд преимуществ, обладание которыми гарантирует их использование еще долгое время.
Перечислим эти преимущества:
1. Компактность;
2. Способность работать как при переменном, так и постоянном токе.
3. Не подверженность влиянию окружающей среды.
4. Одинаковая светоотдача в течение всего срока службы.
Наряду с перечисленными преимуществами эти лампы имеют очень малый срок службы (примерно 1000 часов).
В настоящее время, благодаря повышенной светоотдаче, широкое применение нашли галогенные лампы накаливания трубчатой формы.
Случается, что лампы перегорают неоправданно часто и, казалось бы, без всяких причин. Подобное может происходить из-за резких скачков напряжения в сети, при неравномерном распределении нагрузок в фазах, а также по некоторым другим причинам. Этому "безобразию" можно положить конец, если заменить лампу на более мощную и включить в цепь дополнительный диод, позволяющий снизить напряжение в цепи наполовину. При этом более мощная лампа будет светить так же, как и предыдущая, без диода, но срок её службы увеличится вдвое, а потребление электроэнергии, как и плата за неё, останутся на прежнем уровне.
Трубчатые люминесцентные ртутные лампы низкого давления по спектру излучаемого света делятся на следующие типы:
ЛБ - белая.
ЛХБ - холодно-белая.
ЛТБ - тепло-белая.
ЛД - дневная.
ЛДЦ - дневная, правильной цветопередачи.
Люминесцентные ртутные лампы имеют следующие преимущества:
1. Высокая светоотдача.
2. Большой срок службы (до 10 000 часов).
3. Мягкий свет
4. Широкий спектральный состав.
Наряду с этим люминесцентные лампы имеют и ряд недостатков, таких как:
1. Сложность схемы подключения.
2. Большие размеры.
3. Невозможность применения ламп, предназначенных для переменного тока, в сети постоянного тока.
4. Зависимость от температуры окружающего воздуха (при температуре ниже 10 градусов Цельсия зажигание ламп не гарантируется).
5. Снижение светоотдачи к концу службы.
6. Вредные для глаза человека пульсации (их можно снизить только совместным применением нескольких ламп и использованием сложных схем включения).
Дуговые ртутные лампы высокого давления обладают большей светоотдачей и применяются для освещения больших пространств и площадей.
К преимуществам ламп можно отнести:
1. Большой срок службы.
2. Компактность.
3. Устойчивость к условиям внешней среды.
Перечисленные ниже недостатки ламп сдерживают их применение в бытовых целях.
1. В спектре ламп преобладают сине-зеленые лучи, что приводит к неправильному восприятию цвета.
2. Лампы работают только на переменном токе.
3. Лампу можно включить только через балластный дроссель.
4. Длительность загорания лампы при включении доходит до 7 минут.
5. Повторное зажигание лампы, даже после кратковременного отключения, возможно лишь после её, практически полного, остывания (т.е., примерно, через 10 минут).
6. Лампы имеют значительные пульсации светового потока (большие, чем у люминесцентных ламп).
Последнее время все чаще находят применение металлогалоидные (ДРИ) и металлогалоидные зеркальные (ДРИЗ) лампы, имеющие лучшую цветопередачу, а также натриевые лампы (ДНАТ), которые излучают золотисто-белый свет.
22. Электрическая проводка
Различают три вида проводки.
Открытая - проложенная по поверхностям стен перекрытий и других элементов зданий. Скрытая - проложенная внутри конструктивных элементов зданий, в том числе и под съемными панелями, полами и потолками.
Наружная - проложенная по наружным поверхностям зданий, под навесами, в том числе и между зданиями (не более 4 пролетов по 25 метров, вне дорог и линий электропередачи).
При открытом способе проводки необходимо соблюдать следующие требования:
По сгораемым основаниям под провода кладут листовой асбест толщиной не менее 3 мм с выступанием листа из-за краев провода не менее 10 мм.
Крепить провода с разделительной перегородкой можно гвоздями с подкладыванием под шляпку эбонитовых шайб.
При повороте провода на ребро (т.е. на 90 градусов), вырезается разделительная пленка на расстояние 65-70 мм и ближняя к повороту жила изгибается внутрь поворота.
При креплении оголённых проводов на изоляторах, последние должны устанавливаться юбкой вниз, независимо от места их крепления. Провода в этом случае должны быть недосягаемы для случайного прикосновения.
При любом способе прокладки проводов необходимо помнить, что линии проводки должны бать только вертикальными или горизонтальными и параллельными архитектурным линиям здания (исключение возможно для скрытой проводки, прокладываемой внутри конструкций толщиной более 80 мм).
Трассы для питания розеток располагаются на высоте установки розеток (800 или 300 мм от пола) или в углу между перегородкой и верхом перекрытия.
Спуски и подъемы к выключателям и светильникам выполняют только вертикально.
Электроустановочные устройства крепятся:
Выключатели и переключатели на высоте 1,5 метра от пола (в школьных и дошкольных учреждениях 1,8 метра).
Штепсельные соединители (розетки) на высоте 0,8-1 м от пола (в школьных и дошкольных учреждениях 1,5 метра)
Расстояние от заземленных устройств должно быть не менее 0,5 метра.
Надплинтусные розетки, устанавливаемые на высоте 0,3 метра и ниже должны иметь защитное устройство, закрывающее гнезда при вынутой вилке.
При подключении электроустановочных устройств, необходимо помнить, что ноль разрывать нельзя. Т.е. к выключателям и переключателям должна подходить только фаза, и подсоединяться она должна к неподвижным частям устройства.
Провода и кабели маркируются буквами и цифрами: Первая буква обозначает материал жил:
А - алюминиевые; АМ - алюмомедные; АС - из алюминиевого сплава. Отсутствие буквенных обозначений означает, что жилы медные.
Следующие буквы обозначают тип изоляции жил:
ПП - плоский провод; Р - резина; В - поливинилхлорид; П - полиэтилен.
Наличие последующих букв говорит о том, что мы имеем дело не с проводом, а с кабелем. Буквы обозначают материал оболочки кабеля: А - алюминиевая; С - свинцовая; Н - найритовая; П - полиэтиленовая; СТ- стальная гофрированная.
Изоляция жил имеет обозначение, подобное проводам.
Четвертые буквы от начала говорят о материале защитного покрова: Г - без покрова; Б - бронированная (стальная лента).
Цифры в обозначениях проводов и кабелей обозначают следующее: Первая цифра - число жил Вторая цифра - сечение жилы в кв. мм.
Третья цифра - номинальное напряжение сети.
Например:
АМППВ 2х3-380 - провод с алюмомедными жилами, плоский, в поливинилхлоридной изоляции. Жилы две сечением по 3 кв. мм. каждая, рассчитан на напряжение 380 вольт, или ВВГ 3х4-660 - провод с 3-мя медными жилами сечением по 4 кв. мм. каждая в поливинилхлоридной изоляции и такой же оболочке без защитного покрова, расчитан на 660 вольт.
23. Оказание доврачебной помощи пострадавшему при поражении электрическим током
При поражении человека электрическим током необходимо принять срочные меры для быстрейшего освобождения пострадавшего от его воздействия и немедленного оказания пострадавшему медицинской помощи. Даже малейшее промедление в оказании такой помощи может привести к летальному исходу. Если невозможно отключить напряжение, пострадавшего следует освободить от токоведущих частей. Если поражение человека произошло на высоте, перед отключением тока принимают меры для предотвращения падения пострадавшего (человека принимают на руки или натягивают под местом предполагаемого падения брезент, прочную ткань, или же подкладывают мя...
Подобные документы
Классификация реле. Реле, реагирующее на одну электрическую величину (ток, напряжение, время), реле с интегральными микросхемами. Электромеханические системы с втягивающим, поворотным и поперечным движением якоря. Электрические контакторы реле.
лекция [1,2 M], добавлен 27.07.2013Назначение, устройство и виды, особенности действия короткозамыкателей, отделителей, предохранителей, разъединителей, выключателей нагрузки наружной и внутренней установок с приводом и трансформатором тока. Условные обозначения и маркировка устройств.
презентация [266,2 K], добавлен 08.07.2014Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.
презентация [194,6 K], добавлен 15.05.2009Выбор материала и конструктивных форм коммутирующих контактов реле тока с клапанной магнитной системой. Определение размеров основных элементов магнитопровода и обмоточного пространства. Расчет коэффициентов рассеяния и построение тяговых характеристик.
курсовая работа [2,6 M], добавлен 08.01.2014Расчёт трехфазного управляемого выпрямителя, преобразующего входное напряжение до необходимой выходной величины с заданным коэффициентом пульсаций и величиной выходного тока, за счёт использования трансформатора напряжения. Работы схемы управления.
курсовая работа [736,4 K], добавлен 16.07.2009Устройство, принцип действия, пригодность и электрическая схема реле РТ-40/0,6. Динамика сопротивления реостата при увеличении и уменьшении тока в цепи. Методика определения значения коэффициента возврата и погрешности (отклонения) тока срабатывания реле.
лабораторная работа [23,7 K], добавлен 12.01.2010Понятие электрической цепи и электрического тока. Что такое электропроводность и сопротивление, определение единицы электрического заряда. Основные элементы цепи, параллельное и последовательное соединения. Приборы для измерения силы тока и напряжения.
презентация [4,6 M], добавлен 22.03.2011Основные понятия о трехфазной цепи, соединения по схемам "звезда" и "треугольник". Построение векторных диаграмм токов и напряжений. Расчёт тока в нейтральном проводе. Последовательность обозначения фаз генератора. Преимущества асинхронных двигателей.
презентация [931,1 K], добавлен 09.04.2019Выбор главной схемы электрических соединений станций. Расчет токов короткого замыкания на шинах РУ 220 кВ и РУ 110 кВ. Выбор высоковольтных выключателей, разъединителей, сборных шин и токоведущих, измерительных трансформаторов тока и напряжения.
дипломная работа [1,2 M], добавлен 19.05.2014Расчет трехфазной цепи с несимметричной нагрузкой. Определение тягового усилия электромагнита. Магнитные цепи с постоянными магнитодвижущими силами. Расчет неразветвленной магнитной цепи. Свойства ферромагнитных материалов. Фазные и линейные токи.
презентация [1,6 M], добавлен 22.09.2013Переменные электрические величины, их значения в любой момент времени. Изменение синусоидов тока во времени. Элементы R, L и C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Диаграмма изменения мгновенных значений тока.
курсовая работа [403,1 K], добавлен 07.12.2011Характеристики реле на комплексной плоскости и их анализ. Реле направления мощности и сопротивления. Схемы сравнения двух и более электрических величин. Примеры применения реле сопротивления. Главные схемы сравнения абсолютных значений входных величин.
лекция [656,4 K], добавлен 27.07.2013Электромагнитные реле являются распространенным элементов многих систем автоматики, в том числе они входят в конструкцию реле постоянного тока. Расчет магнитной цепи сводится к вычислению магнитной проводимости рабочего и нерабочего воздушных зазоров.
курсовая работа [472,4 K], добавлен 20.01.2009Исследование особенностей применения трансформаторов тока и напряжения. Изучение схемы подключения приборов и реле к вторичным обмоткам. Измерение показателей качества электроэнергии. Расчетные счетчики активной и реактивной энергии трехфазного тока.
презентация [2,0 M], добавлен 23.11.2014Расчет показателей чувствительности и инерционности датчиков. Электрические принципиальные схемы вращающегося трансформатора, индуктосина, сельсина и тахогенератора. Понятие и классификация реле; правила их обозначения на схемах и принцип действия.
презентация [1,1 M], добавлен 30.11.2014Понятие и разновидности электромагнитных систем, применение системы с поперечным движением якоря. Изучение принципа действия и конструктивных особенностей электромагнитных реле максимального тока РТ-40 и напряжения РН-50. Основные характеристики реле.
лабораторная работа [999,6 K], добавлен 12.01.2012Метод комплексных амплитуд. Напряжение на активном сопротивлении. Применение комплексных величин для расчётов цепей переменного тока. Отношение комплексной амплитуды напряжения к амплитуде силы тока. Определение комплексного сопротивления участка цепи.
реферат [280,7 K], добавлен 20.03.2016Влияние величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения резонанса напряжений.
лабораторная работа [105,2 K], добавлен 22.11.2010Параметры выключателей высокого напряжения. Физико-химические свойства элегаза. Конструкция элегазовых выключателей, характеристика его составных частей. Преимущества, принцип работы и устройство выключателей серии ВГТ-110-40/2500 У1 И ВГТ-220-40/2500 У1.
курсовая работа [1,6 M], добавлен 06.04.2012Основные понятия, определения и величины, характеризующие трехфазные электрические цепи. Источник электрической энергии в трехфазной цепи. Способы соединения фаз источника трехфазного тока и соотношения. Соединение приемников звездой и треугольником.
контрольная работа [240,1 K], добавлен 19.01.2011