Свойства электромагнитных волн
Свойства кристаллов исландского шпата. Объяснение явления двойного лучепреломления на основе своей волновой теории света. Основные свойства электромагнитных волн. Поляризация света и поляризаторы. Предел измерения оптической разности кристаллов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 02.06.2016 |
Размер файла | 218,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Свойства электромагнитных волн
2. Поляризация света
3. Поляризаторы
4. Поляризационные приборы
Список используемой литературы
Введение
Возвращавшиеся из Исландии моряки привозили необычные прозрачные кристаллы известкового шпата (СаСОз), которые часто имели форму правильного ромбоэдра. В 1669 г. датский ученый Э. Бартолин сообщил о своих опытах с этими кристаллами. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провел тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.
Через 20 лет после опытов Э. Бартолина его открытие привлекло к себе внимание нидерландского ученого X. Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввел важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, т. е. их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).
В своих опытах Гюйгенс пошел дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180° вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединенными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.
Эти исследования вплотную подвели. Гюйгенса к открытию явления поляризации света, однако, решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов X. Гюйгенса И. Ньютон, придерживающийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.
В 1808 г. французский физик Э. Малюс, глядя сквозь кусок испанского шпата на блестевшие в лучах заходящего солнца окна Люксембурского дворца в Париже, к своему удивлению, заметил, что при определенном положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определенную ориентацию. Такой «упорядоченный» свет он назвал поляризованным.
Сегодня известно, что видимый свет представляет собой электромагнитные волны с определенной длиной волны. Опыты, в которых была открыта поляризация света, указывают на поперечность этих волн, поскольку свойства продольной волны в плоскости, перпендикулярной направлению ее распространения, различаться не могут. При распространении электромагнитной волны в ней совершают колебания вектор напряженности электрического поля Е и вектор индукции магнитного поля В. Эти векторы всегда перпендикулярны и лежат в плоскости, перпендикулярной распространению волны. Если колебания вектора Е происходят в одной плоскости, то говорят, что свет плоскополяризован (или линейно поляризован), а саму эту плоскость называют плоскостью поляризации. Векторы Е и В могут вращаться относительно направления распространения света; в этом случае световая волна обладает сложной поляризацией (круговой, эллиптической).
Квант света, излученный атомом, поляризован всегда. Однако излучение макроскопического источника света (Солнца, электрической лампочки и т. д.) является суммой излучений огромного числа атомов. Каждый из них излучает квант света примерно за 10 - 8 с, и если все атомы будут излучать свет с различной поляризацией, то поляризация всего пучка будет меняться на протяжении таких же промежутков времени. Поэтому в естественном свете все эффекты, связанные с поляризацией, усредняются, и его называют неполяризованным. Для выделения из неполяризованного света части, обладающей желаемой поляризацией, используют так называемые поляризаторы. В их роли может выступать тот же кристалл исландского шпата или турмалина, а также и искусственный поляризатор. Разберем принцип действия поляризатора на простом механическом примере. Представьте себе двух девочек, которым надоело прыгать через скакалку, и они, став по разные стороны ограды из частых металлических прутьев, решили пускать по скакалке волны. Если волна, пущенная по скакалке, поляризована параллельно прутьям ограды, то она беспрепятственно проходит через ограду. Напротив, поляризованная в перпендикулярном направлении бегущая волна сквозь ограду уже не пройдет, а распадется на две отдельные стоячие волны, отражающиеся по каждую сторону от ограды. Таким образом, ограда служит поляризатором для бегущих по скакалке поперечных волн, пропуская лишь волны, поляризованные в узком диапазоне углов в вертикальной плоскости.
В 1932 г. группа американских ученых во главе с Е. Лэндом изобрела оптический поляризатор, который оказывает на световые волны действие, аналогичное описанному. Для изготовления такого поляризатора было выбрано вещество, состоящее из длинных углеводородных цепей. Затем его растянули так, чтобы молекулы выстроились вдоль направления растяжения, и опустили в раствор йода. Молекулы йода «прикрепились» к углеводородным цепям и отдали в них электроны, свободно перемещающиеся вдоль нитей. При падении электромагнитной волны на получившуюся решетку составляющая электрического поля, параллельная нитям, затухает, так как приходится совершать работу, разгоняя электроны вдоль нитей; перпендикулярная нитям составляющая электрического поля проходит через такой поляризатор, практически не затухая.
Итак, поляризатор поглощает свет, поляризованный параллельно нитям, и пропускает излучение, поляризованное перпендикулярно ориентации нитей. На той же идее основано действие «проволочной ограды» - поляризатора для электромагнитных волн сантиметрового диапазона, выполненного в виде ряда параллельных металлических проволок. Если проволоки в такой ограде сделаны из хорошего проводника, то они представляют собой активную нагрузку, аналогично рассмотренным выше углеводородным цепям с лишними электронами.
Если в солнечный день посмотреть на голубое небо сквозь поляризатор, то, вращая его, можно заметить, что на небе возникают темные полосы. Это опыт свидетельствует о поляризации солнечного света при его рассеивании в атмосфере.
1. Свойства электромагнитных волн
Электромагнитной волной называется распространяющееся в пространстве переменное электромагнитное поле. Электромагнитная волна характеризуется векторами напряженности электрического и индукции магнитного полей.
Возможность существования электромагнитных волн обусловлена тем, что существует связь между переменными электрическим и магнитным полями. Переменное магнитное поле создает вихревое электрическое поле. Существует и обратное явление: переменное во времени электрическое поле порождает вихревое магнитное поле.
Электромагнитные волны в зависимости от длины волны (или частоты колебаний)
разделены условно на следующие основные диапазоны: радиоволны, инфракрасные волны, рентгеновские лучи, видимый спектр, ультрафиолетовые волны и гамма - лучи. Такое разделение электромагнитных волн основано на различии их свойств при излучении, распространении и взаимодействии с веществом.
Несмотря на то, что свойства электромагнитных волн различных диапазонов могут резко отличаться друг от друга, все они имеют единую волновую природу и описываются системой уравнений Максвелла. Величины Е и В и в электромагнитной волне в простейшем случае меняются по гармоническому закону. Уравнениями плоской электромагнитной волны, распространяющейся в направлении Z, являются:
(1)
где
-циклическая частота, -частота,
-волновое число, -начальная фаза колебаний.
Электромагнитные волны являются поперечными волнами, т.е. колебания векторов напряженности переменного электрического и индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости распространения волны. Векторы , и образуют правовинтовую систему: из конца вектора поворот от к на наименьший угол виден происходящем против часовой стрелки (рисунке 1).
Рисунок 1
На рисунке 2 показано распределение векторов и электромагнитной волны вдоль оси OZ в данный момент времени t.
Рисунок 2
Из формулы (1) следует, что вектора и в электромагнитной волне колеблются в одинаковой фазе (синфазно), т.е. они одновременно обращаются в нуль и одновременно достигают максимальных значений.
Основываясь на том, что электромагнитная волна является поперечной, возможно наблюдение явлений, связанных с определенной ориентацией векторов и в пространстве.
2. Виды поляризации света
Для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов, характеризующих электромагнитную волну. Обычно все рассуждения ведутся относительно светового вектора-вектора напряженности электрического поля (при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества).
Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рисунок 3, а; луч перпендикулярен плоскости рисунка).
Рисунок 3
В данном случае равномерное распределение векторов объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов -одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможными равновероятными ориентациями вектора называется естественным. Неполяризованный (естественный) свет испускают большинство типовых источников, например лампы накаливания.
Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное) направление колебаний вектора (рис. 3, б), то мы имеем дело с частично поляризованным светом. Свет, в котором вектор колеблется только в одном направлении, перпендикулярном лучу (рис. 3,в), называется плоско поляризованным (линейно поляризованным).
Плоскость, проходящая через направление колебаний светового вектора плоско поляризованной волны и направление распространения этой волны, называется плоскостью поляризации. Плоско поляризованный свет является предельным случаем эллиптически поляризованного света-света, для которого вектор изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу (рисунок 4,а).
Рисунок 4
Если эллипс поляризации вырождается в прямую (при разности фаз , равной нулю или ), то имеем дело с рассмотренным выше плоско поляризованным светом, если в окружность (при и равенстве амплитуд складываемых волн), то имеем дело с циркулярно поляризованным (поляризованным по кругу) светом (рисунок 4,б и рисунок 4,в соответственно).
3. Поляризаторы
Естественный свет можно преобразовать в плоско поляризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора , например кристаллы. Из природных кристаллов, давно используемых в качестве поляризаторов, следует отметить турмалин. Турмалин сильно поглощает световые лучи, в которых электрический вектор перпендикулярен к оптической оси. Если же электрический вектор параллелен оси, то такие лучи проходят через турмалин почти без поглощения. Поэтому естественный свет, пройдя через пластинку турмалина, наполовину поглощается и становится линейно поляризованным с электрическим вектором, ориентированным параллельно оптической оси турмалина.
Таким же свойством обладают поляроиды, более удобные в обращении. Они представляют собой искусственно приготовленные коллоидные пленки, служащие для получения поляризованного света. Поляроид, подобно турмалину, действует, как один кристалл и поглощает световые колебания, электрический вектор которых перпендикулярен к оптической оси.
Явление поляризации света имеет место и при отражении или преломлении света на границе двух изотропных диэлектриков. Этот способ поляризации был открыт Малюсом, который случайно заметил, что при поворачивании кристалла вокруг луча, отраженного от стекла, интенсивность света периодически возрастает и уменьшается, т.е. отражение от стекла действует на свет подобно прохождению через турмалин. Правда, при этом не происходило полного погасания света при некоторых определенных положениях кристалла, а наблюдалось лишь его усиление и ослабление.
Существуют и другие способы получения поляризованного света.
Итак, всякий прибор, служащий для получения поляризованного света, называется поляризатором. Тот же прибор, применяемый для исследования поляризации света, называется анализатором.
Допустим, что два кристалла турмалина или два поляроида поставлены друг за другом, так что их оси и образуют между собой некоторый угол. Первый поляроид пропустит свет, электрический вектор которого параллелен оси . Обозначим через интенсивность этого света. Разложим на вектор , параллельный оси второго поляризатора, и вектор , перпендикулярный к ней
Составляющая будет задержана вторым поляроидом. Через оба поляроида пройдет свет с электрическим вектором
,
длина которого равна
.
Отношение интенсивностей пропорционально отношению квадратов амплитуд:
и, следовательно
Это соотношение имеет название закон Малюса.
Закон был сформулирован Малюсом в 1810 году и подтвержден тщательными фотометрическими измерениями Араго.
4. Поляризационные приборы
Поляризационные приборы основаны на явлении поляризации света и предназначены для получения поляризованного света и изучения тех или иных процессов, происходящих в поляризованных лучах.
Поляризационные приборы широко применяют в кристаллографии и петрографии для исследования свойств кристаллов; в оптической промышленности для определения напряжений в стекле; в машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений; в медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов. Поляризационные приборы получили распространение также для изучения ряда явлений в электрическом и магнитном поле.
Приборы для определения внутренних натяжений.
На рисунке 1 показана большая поляризационная установка
Большая поляризационная установка предназначена для исследования напряжений в прозрачных моделях деталей машин и сооружений.
Источник света 1 (кинопроекционная лампа К12 или ртутная лампа СВДШ-250) размещен в фокальной плоскости конденсора 2 (фокусное расстояние 180 мм). Параллельный пучок лучей после конденсора проходит через светофильтр 3, поляризатор 4 (поляроид, вклеенный между защитными стеклами), слюдяную пластинку 5 в 1/4 волны и падает на исследуемый образец 6.
Рисунок 5 Схема большой поляризационной установки
После образца образовавшиеся в нем лучи o и e проходят вторую пластинку 7 в 1/4 волны, анализатор 8 (аналогичный поляризатору 7) и падают на объектив 9 (фокусное расстояние 400 мм), который изображает источник света в плоскости апертурной диафрагмы 10 (ирисовая диафрагма фотозатвора; раскрытие диафрагмы от 2 до 4 мм при ртутной лампе, раскрытие диафрагмы полное до 20 мм для кинопроекционной лампы). Одновременно объектив 9 проецирует изображение образца на матовое стекло 15 при помощи откидного зеркала 11 или на фотопластинку 12.
Интерференционную картину наблюдают через защитное стекло 14 и зеркало 16. Ее можно также проецировать с большим увеличением на экране 13.
Поляризатор, анализатор и пластинки в 1/4 волны вращаются в пределах 090; угол поворота отсчитывается по шкале с ценой деления 1. Пластинки в 1/4 волны можно выводить из оптической схемы.
Конструктивно прибор выполнен в виде отдельных узлов: осветитель, в котором смонтированы детали 1--5; нагрузочное устройство, включающее образец 6; фотокамера, содержащая затвор с диафрагмой 10 и оптические детали 7--9 и 11--16, рассчитанная на фотопластинки размером 1318 м.
Значительное усовершенствование процесса поляризационных измерений и повышение точности достигается при использовании объективных методов измерения. В качестве примеров приборов такого типа рассмотрим схему фотоэлектрического поляриметра.
На рисунке 6 приведена схема фотоэлектрического модуляционного поляриметра.
Фотоэлектрический модуляционный поляриметр позволяет измерять в исследуемом объекте разность фаз лучей о и е, меняющуюся во времени.
Лучистый поток от ртутной лампы 1 сверхвысокого давления проходит через иитерференционный светофильтр 2 (с максимумом пропускания при =0,436 мкм и =0,546 мкм), поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в лучах о и е составляют углы /4 с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластину 5, изготовленную из кристалла ADP, вырезанную так, что ее плоскости перпендикулярны оптической оси.
Рисунок 6 Схема фотоэлектрического модуляционного поляриметра
Введение пластины 5 позволяет модулировать проходящий через нее лучистый поток, так как на кристалле ADP очень удобно реализовать эффект Поккельса. При приложении к пластине 5 переменного электрического напряжения в направлении, параллельном оси лучистого потока и оптической оси кристалла, последний становится двухосным. Новые оптические оси образуют симметричные углы /4 с прежним направлением оси. Следовательно, после приложения напряжения к пластине 5 проходящий через нее свет претерпевает двойное лучепреломление. Возникающая при этом разность фаз пропорциональна напряжению электрического поля и не зависит от толщины пластины 5. В связи с возникающей переменной разностью фаз эллиптически поляризованный свет периодически меняет форму эллипса. Следовательно, на выходе компенсатора 6 (в схеме используется компенсатор Сенармона) плоскость линейно поляризованного света колеблется относительно среднего положения. После анализатора 11 модулированный поток света попадает на фотоумножитель l0. Из фотоумножителя ток с основной частотой, соответствующей первой гармонике сигнала, поступает в усилитель 8 и приводит в действие сервомотор 9, поворачивающий анализатор 1l до тех пор, пока в сигнале имеется первая гармоника. Остановка соответствует положению анализатора, при котором на фотоумножитель падает минимальный поток излучения.
Самописец 7 фиксирует углы поворота анализатора, причем измеряемая разность фаз равна удвоенному углу поворота анализатора.
Погрешность измерения составляет в среднем приблизительно 20'.0
На рисунке 3 показана схема полярископа-поляриметра ПКС-56
Полярископ-поляриметр ПКС-56 (рис. 3) служит для измерения двойного лучепреломления в стекле. Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), пластинки 5 в 1/4 волны, анализатора 6 (аналогичного поляризатору 3) и светофильтра 7 (на длину волны 0,54 мкм).
Рисунок 7 Схема полярископа-поляриметра ПКС-56
Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота анализатора.
Зная , можно определить из соотношения
где l -- толщина образца в направлении просмотра.
При l=10 мм погрешность измерения составляет 310-7. С увеличением l погрешность уменьшается.
На рисунке 4 приведена схема переносного малогабаритного поляриметра ИГ-86.
Переносный малогабаритный поляриметр ИГ-86
Рисунок 7 Переносный малогабаритный поляриметр ИГ-86
кристалл лучепреломление электромагнитный волна
Переносный малогабаритный поляриметр ИГ-86 предназначен для визуального исследования напряженного состояния изделий с помощью оптически чувствительных покрытий. Он позволяет наблюдать интерференционную картину в условиях плоской и круговой поляризации и измерять оптическую разность хода как методом сопоставления цветов, так и компенсационным методом.
Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 (аналогичный поляризатору 4) и попадает в зрительную трубу (сменное увеличение 2 и 10) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы.
Предел измерения оптической разности хода -- от 0 до 5 интерференционных порядков. Погрешность измерения -- 0,05 интерференционных порядков.
Габариты прибора 400400800 мм; масса около 2 кг.
Список используемой литературы
1 .Погребысская Е. И. Оптика Ньютона. - М.: Наука, 1989. - 135 с.
2.Мальцев В.М., Селезнев В. А., Андреев В. А. Оптическое излучение. - М.: Знание, 1979. - 64 с.
3. Филонович С. Р. Лучи, волны, кванты. - М.: Наука, 1978.208 с.
4. Тарасов Л.В. Оптика, рожденная лазером. - М.: Просвещение,1977. -143 с.
5. Першинзон Е.М., Малов Н.Н., Эткин В.С. «Курс общей физики. Оптика и атомная физика» Москва, Просвещение, 1981. - 369 с.
6. Ландсберг Г.С. «Оптика» Москва, Наука, 1976. - 563 с.
7. Михайличенко Ю.П. «Двойное лучепреломление сантиметровых электромагнитных волн. Методические указания» Томск, 1986. - 589 с.
8. Портис А. «Берклеевский курс физики. Физическая лаборатория» Москва, Наука, 1972. - 678 с.
Размещено на Allbest.ru
...Подобные документы
Характеристики поляризованного света. Свойство двойного лучепреломления. Поляризация света при отражении и преломлении. Вращение плоскости поляризации. Сжатие или растяжение кристаллов. Действие магнитного поля. Угол поворота плоскости поляризации.
реферат [972,8 K], добавлен 21.03.2014Изучение явлений интерференции и дифракции. Экспериментальные факты, свидетельствующие о поперечности световых волн. Вывод о существовании электромагнитных волн, электромагнитная теория света. Пространственная структура эллиптически-поляризованной волны.
презентация [485,0 K], добавлен 11.12.2009Анализ теорий распространения электромагнитных волн. Характеристика дисперсии, интерференции и поляризации света. Методика постановки исследования дифракции Фраунгофера на двух щелях. Влияние дифракции на разрешающую способность оптических инструментов.
курсовая работа [2,0 M], добавлен 19.01.2015Рассмотрение шкалы электромагнитных волн. Закон прямолинейного распространения света, независимости световых пучков, отражения и преломления света. Понятие и свойства линзы, определение оптической силы. Особенности построения изображения в линзах.
презентация [1,2 M], добавлен 28.07.2015Энергия электромагнитных волн. Вектор Пойнтинга, свойства. Импульс, давление электромагнитного поля. Излучение света возбужденным атомом. Задача на определение тангенциальной силы, действующей на единицу поверхности зеркала со стороны падающего излучения.
контрольная работа [116,0 K], добавлен 20.03.2016Понятие волны и ее отличие от колебания. Значение открытия электромагнитных волн Дж. Максвеллом, подтверждающие опыты Г. Герца и эксперименты П. Лебедева. Процесс и скорость распространения электромагнитного поля. Свойства и шкала электромагнитных волн.
реферат [578,5 K], добавлен 10.07.2011Связь между переменным электрическим и переменным магнитным полями. Свойства электромагнитных полей и волн. Специфика диапазонов соответственного излучения и их применение в быту. Воздействие электромагнитных волн на организм человека и защита от них.
курсовая работа [40,5 K], добавлен 15.08.2011Основы теории дифракции света. Эксперименты по дифракции света, условия ее возникновения. Особенности дифракции плоских волн. Описание распространения электромагнитных волн с помощью принципа Гюйгенса-Френеля. Дифракция Фраунгофера на отверстии.
презентация [1,5 M], добавлен 23.08.2013Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.
презентация [9,4 M], добавлен 25.07.2015Понятие электромагнитных волн, их сущность и особенности, история открытия и исследования, значение в жизни человека. Виды электромагнитных волн, их отличительные черты. Сферы применения электромагнитных волн в быту, их воздействие на организм человека.
реферат [776,4 K], добавлен 25.02.2009Взаимодействие электромагнитных волн с веществом. Отражение и преломление света диэлектриками. Принцип Гюйгенса - Френеля. Рефракция света. Графическое сложение амплитуд вторичных волн. Дифракция плоской световой волны и сферической световой волны.
реферат [168,2 K], добавлен 25.11.2008Волновые свойства света: дисперсия, интерференция, дифракция, поляризация. Опыт Юнга. Квантовые свойства света: фотоэффект, эффект Комптона. Закономерности теплового излучения тел, фотоэлектрического эффекта.
реферат [132,9 K], добавлен 30.10.2006Сложение двух когерентных световых волн, поляризованных в двух взаимноперпендикулярных направлениях. Рассмотрение частного случая поляризации света. Обнаружение эллиптически- и циркулярно-поляризованного света. Пластинки для компенсации разности фаз.
курсовая работа [1,2 M], добавлен 13.04.2012Основные свойства полупроводников. Строение кристаллов. Представления электронной теории кристаллов. Статистика электронов в полупроводниках. Теория явлений переноса. Гальваномагнитные и термомагнитные явления. Оптический свойства полупроводников.
книга [3,8 M], добавлен 21.02.2009Диапазон шкалы электромагнитных волн, особенности ее спектра (полоса частот). Скорость света, основные виды радиоволн. Излучение как поток квантов - фотонов, распространяющихся со скоростью света. Инфракрасное, световое и рентгеновское излучение.
презентация [635,5 K], добавлен 10.04.2014Исследование корпускулярной и волновой теорий света. Изучение условий максимумов и минимумов интерференционной картины. Сложение двух монохроматических волн. Длина световой волны и цвет воспринимаемого глазом света. Локализация интерференционных полос.
реферат [928,6 K], добавлен 20.05.2015Поперечность электромагнитных волн. Примеры различных поляризаций светового луча при различных разностях фаз между взаимно перпендикулярными компонентами. Вращение плоскости поляризации оптически активными веществами. Применение закона Этьенна Малюса.
реферат [489,6 K], добавлен 11.08.2014Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.
презентация [1,3 M], добавлен 02.10.2014Физический механизм рассеяния отдельной частицей. Взаимное усиление или подавление рассеянных волн. Многократное рассеивание света. Полная интенсивность рассеяния скоплением частиц. Поляризация света при рассеянии. Применение поляризованного света.
курсовая работа [283,2 K], добавлен 05.06.2015Дифракция механических волн. Связь явлений интерференции света на примере опыта Юнга. Принцип Гюйгенса-Френеля, который является основным постулатом волновой теории, позволившим объяснить дифракционные явления. Границы применимости геометрической оптики.
презентация [227,5 K], добавлен 18.11.2014