Использование возобновляемых источников энергии

Проблемы использования нетрадиционных и вообновляемых источников энергии. Наиболее крупные ветроэнергетические установки. Возможности солнечных электростанций на примере Крымской ЭУ "Перово". Применение энергии небольших водотоков при помощи малых ГЭС.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 31.05.2016
Размер файла 36,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

ВВЕДЕНИЕ

Энергия - не только одно из обсуждаемых сегодня понятий, помимо своего основного физического (а в более широком смысле естественнонаучного) содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты

В начале этого века проблемы истощения ископаемого топлива и его негативного влияние на экологию приобрели особую актуальность. И хотя глобального потепления пока не ощущается, локальное увеличение тепла сказывается на силе и частоте появления ураганов, несущих разрушения, ливни и наводнения. Нефть и нефтепродукты все заметнее дорожают, превышая немыслимые еще два-три года назад уровни цен. Все это заставило по иному оценить современную ситуацию в энергетике и выдвинуло в разряд важнейших задач освоение новых видов энергии.Ежегодно на разных уровнях проводятся семинары, саммиты, конференции по изысканию путей предотвращения кризиса в энергетике, рядом стран принимаются национальные и международные программы освоения энергосберегающих, чистых технологий и получения новых видов энергии. Человечество реально осознало угрозу потери традиционных энергоресурсов, прежде всего нефти, газа и качественного угля, и занялось поисками альтернативных источников энергии. Без преувеличения можно утверждать, что 21 век станет веком интенсивных поисков заменителей углеводородного ископаемого топлива. В свете изложенного, значительно возрос мировой интерес к освоению нетрадиционных и возобновляемых источников энергии (НиВИЭ)

Каковы же эти нетрадиционные и возобновляемые источники энергии? К ним обычно относят солнечную, ветровую и геотермальную энергию, энергию морских приливов и волн, биомассы (растения, различные виды органических отходов), низкопотенциальную энергию окружающей среды. К НВИЭ также принято относить малые ГЭС (мощностью до 30 МВт при мощности единичного агрегата не более 10 МВт), которые отличаются от традиционных - более крупных - ГЭС только масштабом. Эти виды энергии доступны и имеют значительный потенциал на большей территории Земли, по крайней мере, в заселенных районах.

Указанные источники энергии имеют как положительные, так и отрицательные свойства. К положительным относится то, что возобновляемые источники энергии по определению не подвержены истощению, следовательно, способны полностью решить проблему истощения энергетических ресурсов. Также возобновляемые источники энергии находятся в среде обитания человека в естественном состоянии, следовательно, их можно использовать, не нанося экологического урона.Эксплуатационные затраты по использованию нетрадиционных источников не содержат топливной составляющей, так как энергия этих источников как бы бесплатная. Отрицательные качества - это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, «перехватывающие» поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками. Правда, повышенные капиталовложения впоследствии окупаются за счет низких эксплуатационных затрат, но на начальной стадии они чувствительно «бьют по карману» тех, кто хочет использовать НВИЭ. 

ГЛАВА 1. ОБЩИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ НЕТРАДИЦИОННЫХ И ВООБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ

Увеличивающееся загрязнение окружающей среды, нарушение теплового баланса атмосферы постепенно приводят к глобальным изменением климата. Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к нетрадиционным, альтернативным источникам энергии. Они экологичны, возобновляемы, основой их служит энергия Солнца и Земли.

Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии (АИЭ):

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.

Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.

ГЛАВА 2. ВИДЫ НЕТРАДИЦИОННЫХ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ

1)Основным видом «бесплатной» неиссякаемой энергии считается Солнце. Оно ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг урана (U235).

Самый простой способ использования энергии Солнца - солнечные коллекторы, в состав которых входит поглотитель (зачерненный металлический, чаще всего алюминиевый лист с трубками, по которым протекает теплоноситель). Коллекторы устанавливаются неподвижно на крышах домов под углом к горизонту, равным широте местности или монтируются в кровлю. В зависимости от условий инсоляции в коллекторах теплоноситель нагревается на 40-50є С больше, чем температура окружающей среды. Такие системы применяются в индивидуальном жилье, практически полностью покрывая потребность населения в горячей воде; в районных отопительных установках, а также для получения технологической тепловой энергии в промышленности. Солнечные коллекторы производятся во многих городах России, и стоимость их вполне доступна.

2) Вторым по распространению видом нетрадиционной энергии является энергия ветра. Однако, скорость и направление ветра меняются подчас очень быстро и непредсказуемо, что делает его менее «надежным», чем Солнце. Таким образом, возникают две проблемы, которые необходимо решить в целях полноценного использования энергии ветра. Во-первых, это возможность «ловить» кинетическую энергию ветра с максимальной площади. Во-вторых еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема на данный момент решается с трудом. Предполагается, что одним из решений данной проблемы, станет внедрение новой технологии по созданию и использованию искусственных вихревых потоков.

Наиболее распространенным типом ветровых установок (далее ВЭУ) является турбина крыльчатого типа с горизонтальным валом и числом лопастей от 1 до 3 в фиксированном положениис небольшой регулировкой угла наклона. Турбина, мультипликатор и электрогенератор размещаются в гондоле, установленной на верху мачты.

Другая популярная разновидность ВЭУ - карусельные ветродвигатели. Они тихоходны, и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при сильном порыве ветра. Тихоходность выдвигает одно ограничивающее требование - использование многополюсного генератора, работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликатора неэффективно из-за низкого КПД последних. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем, «откуда дует ветер», что весьма существенно для приземных рыскающих потоков.

3) Также, широкое распространение получили так называемые мини-ГЭС. Экономический потенциал малых и мини-ГЭС составляет примерно 10% от общего экономического потенциала. Но используется этот потенциал менее чем на 1%. В настоящее время запущен процесс восстановления разрушенных и строительства новых мини-ГЭС. Однако малые ГЭС, построенные путем полного перегораживания русла рек плотинами, обладают всеми недостатками обыкновенных ГЭС и, строго говоря, не могут относиться к экологически чистым видам энергии.

4) В структуре возобновляемых энергоресурсов весьма перспективным энергоносителем являются океанские волны. Специалисты утверждают, что уже сейчас за счет энергии океанских волн возможно получение электроэнергии производительностью до 10 млрд. кВт. Это лишь незначительная доля совокупной мощности волн морей и океанов Земли. Вместе с тем она больше мощности всех электростанций, работавших на земле в 1990г. Наиболее совершенен проект «Кивающая утка», предложенный конструктором Стефаном Солтером из Эдинбурского университета. Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса (24,33 руб.) за 1 кВт/ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это - 2,5 пенса (23,39 руб.), и заметно ниже, чем дают АЭС ( около 4,5 пенса (42,11 руб.)за 1 кВт/ч).

5) Энергию приливов вполне можно «приручить» на приливных ГЭС, которые демонстрируют достаточно хорошие экономические показатели, но ресурс их ограничен - требуются специфические природные условия - узкий вход в бухту и т.п. Совокупная энергия приливов оценивается в 0,09*1015 кВт/час в год

6) Геотермальная энергия, строго говоря, не является возобновляемой, поскольку речь идет не об использовании постоянного потока тепла, поступающего из недр к поверхности (в среднем 0,03 Вт/м2), а об использовании тепла, запасенного жидкими или твердыми средами, находящимися на определенных глубинах. Мировые запасы геотермальной энергии составляют: для получения электроэнергии - 22400 Твт*ч/год, для прямого использования - более 140 ТДж/год тепла. Существующие геотермальные электростанции (геоТЭС) представляют собой одноконтурные системы, в которых геотермальный пар непосредственно работает в паровой турбине, или двухкнотурные с низкокипящим рабочим телом во втором контуре.

7) Биомасса представляет собой весьма широкий класс энергоресурсов. Ее энергетическое использование возможно через сжигание, газификацию, пиролиз и биохимическую переработку анаэробного сбраживания жидких отходов с получением спиртов или биогаза. Каждый из этих процессов имеет свою область применения и назначение

Однако энергия большинства НиВИЭ обладает малой плотностью потоков энергии ( рассеяностью или низким удельным потенциалом) и нерегулярностью поступления, зависящей от климатических условий, суточных или сезонных циклов. Поэтому для эффективного использования НиВИЭ, а именно ветра, солнца, морских волн и др., необходимо решить ряд инженерных задач по созданию экономичных и надежных устройств и систем, воспринимающих, концентрирующих и преобразующих эти виды источников энергии в приемлемую для потребителя тепловую, механическую и электрическую энергию. Для обеспечения бесперебойного энергоснабжения за счет НиВИЭ особенно автономных потребителей, система должна быть укомплектована аккумуляторами и преобразователями. Особенно перспективны гибридные системы, использующие одновременно два или несколько видов НиВИЭ, например солнце и ветер, взаимно дополняющих друг друга, в сочетании с аккумулятором и резервным двигателем внутреннего сгорания в качестве привода электрогенератора.

ГЛАВА 3. ИСПОЛЬЗОВАНИЕ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ

По прогнозу Мирового энергетического конгресса в 2020 году на долю альтернативных преобразователей энергии (АПЭ) придется 5,8 % общего энергопотребления. При этом в развитых странах (США, Великобритании и др.) планируется довести долю АПЭ до 20 % (20 % энергобаланса США - это примерно все сегодняшнее энергопотребление в России). В странах Европы планируется к 2020 г. обеспечить экологически чистое теплоснабжение 70 % жилищного фонда. Сегодня в мире действует 233 геотермальные электростанции (ГеоТЭС) суммарной мощностью 5136 мВт, строятся 117 ГеоТЭС мощностью 2017 мВт. Ведущее место в мире по ГеоТЭС занимают США (более 40 % действующих мощностей в мире). Там работает 8 крупных солнечных ЭС модульного типа общей мощностью около 450 мВт, энергия поступает в общую энергосистему страны. Выпуск солнечных фотоэлектрических преобразователей (СФАП) достиг в мире 300 мВт в год, из них 40 % приходится на долю США. В настоящее время в мире работает более 2 млн. гелиоустановок горячего водоснабжения. Площадь солнечных (тепловых) коллекторов в США составляет 10, а в Японии - 8 млн. м2. В США и в Японии работают боле 5 млн. тепловых насосов. За последние 15 лет в мире построено свыше 100 тыс. ветроустановок с суммарной мощностью 70000 мВт (10 % энергобаланса США). В большинстве стран приняты законы, создающие льготные условия как для производителей, так и для потребителей альтернативной энергии, что является определяющим фактором успешного внедрения.

3.1 Энергия ветра

Как известно, мы живем на дне воздушного океана, в мире ветров. Энергия движущихся воздушных масс огромна. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты

Первая в нашей стране ветровая электростанция мощностью 8 кВт была сооружена в 1929-1930 гг. под Курском по проекту инженеров А.Г.Уфимцева и В.П.Ветчинкина. Через год в Крыму была построена более крупная ВЭС мощностью 100 кВт, которая была по тем временам самой крупной ВЭС в мире. Значительные успехи в создании ВЭС были достигнуты за рубежом. Во многих странах Западной Европы построено довольно много установок по 100-200 кВт. Во Франции, Дании и в некоторых других странах были введены в строй ВЭС с номинальными мощностями свыше 1 МВт (табл. 1).

Таблица 1. Наиболее крупные ветроэнергетические установки

Страна

Название установки

Диаметр рабочего колеса,м

Мощность, МВт

США

WTS-4

78

4

Канада

Eole

64

4

ФРГ

Growian

100

3

Великобритания

LSI

60

3

Швеция

WTS-3

78

3

Дания

Elsam

60

2

Одна из наиболее известных установок этого класса "Гровиан" была создана в Германии, ее номинальная мощность -- 3 МВт. Но самое широкое развитие ветроэнергетика получила в США. Еще в 1941 г. там была построена первая ВЭС мощностью 1250 кВт, а сейчас общая мощность всех ВЭС в этой стране достигает 1300 МВт, причем среди них есть гиганты с мощностью до 4 МВт (табл.2.) . Всего в мире в настоящее время насчитывается около 3 млн. ветроустановок, из них примерно 3,5 тыс. у нас.

Таблица 2. Данные по БЭС в разных странах

Страна

Установленная мощность, МВт

Производство электроэнергии, ГВт/ч

Доля от установленных мощностей страны, %

США

1300

1700

0,18

Мексика

265

--

1,0

Дания

140

--

1,7

ЮАР

50

--

0,2

Нидерланды

20

10

0,11

СССР

3

5

0,001

Ветроэнергетические установки (ВЭУ) достигли сегодня уровня коммерческой зрелости и в местах с благоприятными скоростями ветра могут конкурировать с традиционными источниками электроснабжения. Из всевозможных устройств, преобразующих энергию ветра в механическую работу, в подавляющем большинстве случаев используются лопастные машины с горизонтальным валом, устанавливаемым по направлению ветра. Намного реже применяются устройства с вертикальным валом.

Кинетическая энергия, переносимая потоком ветра в единицу времени через площадь в 1 м2 (удельная мощность потока), пропорциональна кубу скорости ветра. Поэтому установка ВЭУ оказывается целесообразной только в местах, где среднегодовые скорости ветра достаточно велики.

Ветровое колесо, размещенное в свободном потоке воздуха, может в лучшем случае теоретически преобразовать в мощность на его валу 0,59 (критерий Бетца) мощности потока воздуха, проходящего через площадь сечения, ометаемого ветровым колесом. Этот коэффициент можно назвать теоретическим КПД идеального ветрового колеса. В действительности КПД ниже и достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м/с может иметь мощность на валу в лучшем случае 85 кВт.

Наибольшее распространение из установок, подсоединяемых к сети, сегодня получили ветроэнергетические установки (ВЭУ) с единичной мощностью от 100 до 500 кВт. Удельная стоимость ВЭУ мощностью 500 кВт составляет сегодня около 1200 долл/кВт и имеет тенденцию к снижению.

Наряду с этим создаются ВЭУ и с существенно большей единичной мощностью. В 1978 г. в США была создана первая экспериментальная ВЭУ мегаваттного класса с расчетной мощностью 2 МВт. Вслед за этим в 1979-1982 гг. в США были сооружены и испытаны 5 ВЭУ с единичной мощностью 2,5 МВт. Самая большая к тому времени ВЭУ (Гровиан) мощностью 3 МВт была сооружена в Германии в 1984 г., но, к сожалению, она проработала лишь несколько сот часов. Построенные несколько позже в Швеции ВЭУ WTS-3 и WTS-4 мощностью соответственно 5 и 4 МВт были установлены в Швеции и США и проработали первая 20, а вторая 10 тыс.ч.

Расчетная скорость ветра для больших ВЭУ обычно принимается на уровне 11-15 м/с. Вообще, как правило, чем больше мощность агрегата, тем на большую скорость ветра он рассчитывается. Однако в связи с непостоянством скорости ветра большую часть времени ВЭУ вырабатывает меньшую мощность. Считается, что если среднегодовая скорость ветра в данном месте не менее 5-7 м/с, а эквивалентное число часов в году, при котором вырабатывается номинальная мощность не менее 2000, то такое место благоприятно для установки крупной ВЭУ и даже ветровой фермы.

По мере совершенствования оборудования ВЭУ и увеличения объема их выпуска стоимость ВЭУ, а значит и стоимость производимой ими энергии снижаются. Если в 1981 г. стоимость электроэнергии производимой ВЭУ, составляла примерно 30 американских центов за кВт./ч, то сегодня она составляет 6-8 центов. С учетом того, что только в 1995 г. в США велись работы по четырем большим ветровым фермам с общей мощностью около 200 МВт, станет ясно, что планируемое Департаментом Энергетики США снижение стоимости ветровой электроэнергии до 2,5 центов/ (кВт* ч) вполне реально

3.2 Солнечная энергетика

Всего за три дня Солнце посылает на Землю столько энергии, сколько её содержится во всех разведанных запасах ископаемых топлив, а за 1 сек. - 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть её достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той её части, которую получает Земля, в 5 млрд. раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции. Солнечная энергия - наиболее грандиозный, дешевый, но и, пожалуй, наименее используемый человеком источник энергии.

Использование всего лишь 0,0125% энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5% полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти громадные потенциальные ресурсы удастся реализовать в больших масштабах. Только очень небольшая часть этой энергии может быть практически использована. Едва ли не главная причина подобной ситуации - слабая плотность солнечной энергии. Простой расчет показывает, что если снимаемая с 1 м2 освещенной солнцем поверхности мощность в среднем составляет 160 Вт, то для генерирования 100 тыс. кВт нужно снимать энергию с площади в 1,6 км2. Ни один из известных в настоящее время способов преобразования энергии не может обеспечить экономическую эффективность такой трансформации.

Рассмотрим возможности солнечных электростанций на примере Крымской солнечной электростанции «Перово». «Перово» -- солнечная электростанция общей мощностью 105,56 мегаватт (МВт). По показателю мощности она превзошла солнечный парк «Сарния» в Канаде (97,5 МВт) и может называться самой крупной в мире солнечной электростанцией.Электростанция состоит из 440 000 кристаллических солнечных фотоэлектрических модулей, соединённых 1 500 км кабеля, и установленных на более 200 га площади (охватывает примерно 259 футбольных полей). Установка может производить 132 500 МВт часов чистой электроэнергии в год, что достаточно для удовлетворения плановой пиковой потребностей в электроэнергии санатория «Руза» и Симферополя, столицы Крыма. Станция позволяет сократить выбросы СО2 на 105 тысяч тонн в год. Построена австрийской компанией ActivSolar.

3.3 Малая Гидроэнергетика

Объекты малой гидроэнергетики - малые и микро ГЭС. Эта область энергетического производства занимается применением энергии водных ресурсов и гидравлических систем при помощи гидроэнергетических установок малой мощности (1-3000 кВт). В мире малая энергетика стала развиваться в последние десятилетия, это в основном связано со стремлением избежать экологического ущерба, который наносится водохранилищами крупных ГЭС, с возможностью гарантировать энергоснабжение в изолированных и труднодоступных районах, а также с небольшими затратами капитала при строительстве станций и скорого возврата инвестиций (до 5 лет).

Гидроагрегат малой ГЭС (МГЭС) включает в себя генератор, турбины и системы автоматического управления. По типу используемых гидроресурсов МГЭС делят на категории: новые русловые или приплотинные станции с водохранилищами небольших размеров; станции, работающие за счет скоростной энергии свободного течения рек; станции, применяющие существующие перепады уровней воды в разливных объектах водного хозяйства - от водоочистных комплексов до судоходных сооружений (сегодня есть опыт применения питьевых водоводов, канализационных и промышленных стоков).

Применение энергии небольших водотоков при помощи малых ГЭС - одно из самых эффективных направлений развития возобновляемой энергетики в нашей стране. Большая часть ресурсов малой гидроэнергетики в России сконцентрированы на Дальнем Востоке, на Северном Кавказе, на Северо-Западе (Мурманск, Архангельск, Карелия, Калининград), в Туве, на Алтае, в Тюменской области и в Якутии.

Микро ГЭС (мощность до 100 кВт) устанавливают практически в любом месте. Гидроагрегат включает водозаборное устройство, энергоблок и устройство автоматического регулирования. Микро ГЭС применяются в качестве источников электроэнергии для фермерских хозяйств, дачных поселков, хуторов и небольших производств в труднодоступных районах - там, где невыгодно прокладывать сети.Технико-экономические возможности малой гидроэнергетики в нашей стране превышают возможности следующих возобновляемых источников: солнце, ветер, биомасса, а также все они вместе взятые. Сегодня он оценивается в размере 60 млрд. кВт/ч в год. Но этот потенциал применяется слабо: лишь на 1%.

3.4 Геотермальная энергия

Геотермальная энергетика базируется на использовании природной теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8 * 1014 млрд. кВт * час. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре. 

Источники геотермальной энергии могут быть двух типов. Первый тип - это подземные бассейны естественных теплоносителей - горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип - это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях. 

Но в обоих вариантах использования главный недостаток заключается, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130 - 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования. 

Можно утверждать, что геотермальная энергия имеет четыре выгодных отличительных черты. 

Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива. 

Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара. 

В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии. 

В-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду. 

Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т.п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.). 

3.5 Энергия Мирового океана

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. кв. км) занимают моря и океаны: акватория Тихого океана составляет 180 млн. кв. км, Атлантического - 93 млн. кв. км, Индийского - 75 млн. кв. км.Так, тепловая энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Приливная энергия постоянна. Благодаря этому, количество вырабатываемой на приливных электростанциях (ПЭС) электроэнергии всегда может быть заранее известно, в отличие от обычных ГЭС, на которых количество получаемой энергии зависит от режима реки, связанного не только с климатическими особенностями территории, по которой она протекает, но и с погодными условиями. Тем не менее ученые считают, что технически возможно и экономически выгодно использовать лишь очень небольшую часть приливного потенциала Мирового океана - по некоторым оценкам только 2%.При определении технических возможностей большую роль играют такие факторы, как характер береговой линии, форма и рельеф дна, глубина воды, морские течения и ветер. Опыт показывает, что для эффективной работы ПЭС высота приливной волны должна быть не менее 5 м. Чаще всего такие условия возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Но подобных мест на всём земном шаре не так уж много: по разным источникам 25, 30 или 40.

Принцип действия этих станций заключается в следующем: теплую морскую воду (24-32° С) направляют в теплообменник, где жидкий аммиак или фреон превращаются в пар, который вращает турбину, а затем поступает в следующий теплообменник для охлаждения и конденсации водой с температурой 5-6 °С, поступающей с глубины 200-500 метров. Получаемую электроэнергию передают на берег по подводному кабелю, но ее можно использовать и на месте (для обеспечения добычи минерального сырья со дна или его выделения из морской воды). Достоинство подобных установок - возможность их доставки в любой район Мирового океана. К тому же, разность температур различных слоев океанической воды - более стабильный источник энергии, чем, скажем, ветер, Солнце, морские волны или прибой. Первая такая установка была пущена в 1981 году на острове Науру. Единственный недостаток таких станций - их географическая привязанность к тропическим широтам. Для практического использования температурного градиента наиболее пригодны те районы Мирового океана, которые расположены между 20° с.ш. и 29° ю.ш., где температура воды у поверхности океана достигает, как правило, 27-28° С, а на глубине 1 километр имеет всего 4-5° С.

Одна из извстнейших ПЭС-Сихвинская-- крупнейшая в мире на настоящий момент приливная электростанция, расположенная в искусственном заливе Сихва-Хо на северо-западном побережье Южной Кореи, обладает установленной мощностью 254 МВт и была запущена в августе 2011 года и на данный момент является крупнейшей приливной электростанцией мира. Длина дамбы Сихвинской ПЭС составляет 12,7 км, при объеме водохранилища в 324 млн. м3. Ежедневный расход воды составляет приблизительно 160 миллионов м3/день, при этом высота приливных волн составляет 7,5 м. Годовая выработка такой электростанции составляет 550 ГВт*Ч, что ориентировочно соответствует потребности города в полмиллиона человек.

3.6 Биотопливо

Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта. 

Одно из наиболее перспективных направлений энергетического использования биомассы - производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность - 5-6 тыс. ккал/м3 . 

Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 куб. м метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений , трав и др. 

Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую. Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья. 

В Швандорфе (Германия, Бавария) действует крупнейшая установка по выпуску биогаза в Европе, которая ежегодно вырабатывает около 16 млн. м3экологически чистого энергоносителя из 85 тыс. т растительного сырья.Данная установка работает исключительно на местном сырье - силосе из вторичной продукции растениеводства и травы, кукурузе. В сравнении с другими установками биогаза аналогичного масштаба, размер площадей, требуемых для выращивания сырья, меньше в три раза благодаря новому типу севооборота, который будет способствовать высвобождению посевных земель, необходимых для выращивания продовольственных культур, а также повысит их плодородие, улучшив качество покрова почвы.Продукция биогазовой установки будет подаваться в газовую сеть в качестве природного биогаза (биогаза, который облагорожен до природного уровня). Фриц Вольф, управляющий E.ON Bioerdgas, сообщил, что к 2030 году природный биогаз будет обеспечивать примерно 10% потребления природного газа в Германии, что приравнивается к потреблению биогаза в 5 млн. домашних хозяйств.

ЗАКЛЮЧЕНИЕ

Нетрадиционная и возобновляемая энергия играет неоспоримую роль в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы, прямо или косвенно, большей энергии, чем могут дать мускулы человека.

Потребление энергии - важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж; в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом - 100 МДж. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. Сейчас, в начале 21-го века, начинается новый значительный этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы.

На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость, В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.

СПИСОК ЛИТЕРАТУРЫ

возобновляемый нетрадиционный энергия солнечный

1.Молодежный портал об образовании, науке и карьере MJOB.BY [Электронный ресурс]. Режим доступа: http://mjob.by/

2. С. М. Воронин. Нетрадиционные и возобновляемые источники энергии. Курс лекций. - Зерноград: ФГОУ ВПО АЧГАА, 2008.

3. Альтернативная энергетика. [Электронный ресурс]. Режим доступа: http://alt-energetic.ucoz.ru/

4. Портал «ЗЕЛЕНЕЕТ» [Электронный ресурс]. Режим доступа: http://zeleneet.com/

5. Портал «Объектив Х. За гранью видимого». [Электронный ресурс]. Режим доступа:http://www.objectiv-x.ru/

6. Арбузов Ю.Д., Евдокимов В.М., Зайцев С.В., Муругов В.П., Пузаков В.Н. «Возобновляемая энергетика» 2002 г.

7. Пицунова О.Н. Виды нетрадиционных возобновляемых источников энергии и технологии их освоения. «Вестник энергосбережения Южного Урала» июнь, 2004 г.

Размещено на Allbest.ru

...

Подобные документы

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа [487,3 K], добавлен 15.12.2011

  • Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат [3,0 M], добавлен 18.10.2013

  • Использование ветрогенераторов, солнечных батарей и коллекторов, биогазовых реакторов для получения альтернативной энергии. Классификация видов нетрадиционных источников энергии: ветряные, геотермальные, солнечные, гидроэнергетические и биотопливные.

    реферат [33,0 K], добавлен 31.07.2012

  • Изучение истории рождения энергетики. Использование электрической энергии в промышленности, на транспорте, в быту, в сельском хозяйстве. Основные единицы ее измерения выработки и потребления. Применение нетрадиционных возобновляемых источников энергии.

    презентация [2,4 M], добавлен 22.12.2014

  • Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат [3,4 M], добавлен 04.06.2015

  • Пути и методики непосредственного использования световой энергии Солнца в промышленности и технике. Использование северного холода как источника энергии, его потенциал и возможности. Аккумулирование энергии и повышение коэффициента полезного действия.

    реферат [18,0 K], добавлен 20.09.2009

  • Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат [536,4 K], добавлен 07.05.2009

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Создание институциональной базы в арабских странах. Инвестиционные возможности для развития возобновляемой энергетики. Стратегическое планирование развития возобновляемых источников энергии стран Ближнего Востока. Стратегии развития ядерной энергии.

    курсовая работа [4,7 M], добавлен 08.01.2017

  • Ветер как источник энергии. Выработка энергии ветрогенератором. Скорость ветра как важный фактор, влияющий на количество вырабатываемой энергии. Ветроэнергетические установки. Зависимость использования энергии ветра от быстроходности ветроколеса.

    реферат [708,2 K], добавлен 26.12.2011

  • Количество солнечной энергии, попадающей на Землю, ее использование человеком. Способы пассивного применения солнечной энергии. Солнечные коллекторы. Технологический цикл солнечных тепловых электростанций. Промышленные фотоэлектрические установки.

    презентация [3,3 M], добавлен 06.12.2015

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа [317,6 K], добавлен 19.03.2013

  • Строительство и реконструкция малых ГЭС. Использование энергии водных ресурсов и гидравлических систем с помощью гидроэнергетических установок малой мощности. Малая гидроэнергетика как один из конкурентоспособных возобновляемых источников энергии.

    реферат [69,0 K], добавлен 11.10.2014

  • Применение нетрадиционной энергетики в строительстве энергоавтономных экодомов. Четыре альтернативные системы получения энергии: установка "солнечных батарей" из фотоэлектрических панелей; солнечные коллекторы; ветроэнергетические установки и миниГЭС.

    курсовая работа [2,5 M], добавлен 31.05.2013

  • Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа [82,0 K], добавлен 23.04.2016

  • Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа [135,3 K], добавлен 07.03.2016

  • Преобразованная энергия солнечного излучения. Потенциал и перспектива использования нетрадиционных и возобновляемых источников энергии. Выработка электроэнергии с помощью ветра. Ветроэнергетика в Украине. Развитие нетрадиционной энергетики Крыма.

    реферат [677,3 K], добавлен 20.01.2011

  • Использование возобновляемых источников энергии. Энергия солнца, ветра, биомассы и падающей воды. Генерирование электричество из геотермальных источников. Сущность геотермальной энергии. Геотермальные электрические станции с комбинированным циклом.

    реферат [1,7 M], добавлен 15.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.