Техника высоких напряжений

Схематическое изображение распространения отрицательного лидера в воздухе. Развитие грозового разряда. Линейная молния, развернутая во времени. Электрическое поле между облаком и землей. Форма стандартного грозового импульса напряжения и его особенности.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 31.05.2016
Размер файла 549,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Техника высоких напряжений

Лидерная стадия разряда

В воздушных промежутках длиной в несколько метров или десятков метров проводимость образовавшихся стримеров для развития разряда оказывается недостаточной и по следу одного из стримеров возникает разряд в новой так называемой лидерной форме. Термически ионизированная часть канала стримера называется лидером. Плотность заряженных частиц в канале лидера значительно выше, чем у стримера. Поэтому потенциал головки возрастает и создаются условия для лучшего продвижения стримера и преобразования этого стримера в лидер.

Рис. 9. Схематическое изображение распространения отрицательного лидера в воздухе: АВ -- первая лавина; СД -- стример

На рис. 9 показана схема образования отрицательного лидера. Поток электронов движется от отрицательного электрода (катода) к положительному (аноду).

Лавины электронов показаны в виде заштрихованных конусов, а пути вылетевших фотонов -- волнистыми линиями.

Внутри движущейся лавины (заштрихованные конусы) воздух ионизируется ударами электронов. Вылетевшие фотоны также ионизируют воздух (в конце волнистой линии). Электроны, получившиеся в результате ионизации молекул воздуха фотонами, дают начало новым лавинам, далеко отстоящим впереди от первой лавины, которые, развиваясь, сливаются в сплошной канал. При этом фотоны имеют скорость 3-1010 см/с, а скорость продвижения электронов на фронте лавины достигает примерно 1,5-107 см/с. Стример развивается быстрее, чем продвигаются лавины электронов. Из рис. 9 видно, что за время, пока первая лавина пройдет путь АВ, в результате фотоионизации образуется канал стримера с повышенной электропроводностью на длине СД. Средняя скорость развития стримера в сторону анода равна примерно 108--109 см/с. При высокой концентрации электронов, т. с. при достаточно большом токе, возникает интенсивная термоионизация в канале стримера. В результате происходит преобразование канала стримера в хорошо проводящий плазменный канал -- лидер.

По мере продвижения лидера в глубь промежутка на конце лидера появляются новые стримеры, которые затем также превращаются в лидер. Постепенное продвижение отрицательного лидера в длинном промежутке с неравномерным полем показано на рис. 10.

По каналу стримера ТК распространяется лидер 777 (рис. 10,а). Как только завершается преобразование канала стримера ТК в лидер, начинается образование новых лавин. Электроны из этих лавин уходят в глубь промежутка (рис. 10,6) и возникает новый стример КЛ (рис. 10,в). Траектория стримеров носит случайный характер.

При таком механизме развития разряда в длинных воздушных промежутках лидер может перекрывать большие расстояния при весьма небольших средних напряженностях поля -- порядка 1--2 кВ/см.

Когда лидер достигает противоположного электрода, заканчивается лидерная стадия разряда и начинается стадия главного (обратного) разряда.

В процессе образования главного разряда по лидерному каналу от земли распространяется электромагнитная волна, которая снижает потенциал лидера практически до нуля. Между электродами образуется канал, обладающий очень высокой проводимостью, через который проходит ток разряда. отрицательный грозовой разряд импульс

Развитие грозового разряда

Разряд молнии аналогичен в основных чертах разряду в длинных промежутках.

Условия для развития молнии создаются в том месте облака, где образовались скопления зарядов и электрическое поле с напряженностью, равной критическому значению. В этом месте начинается процесс ударной ионизации, создаются лавины электронов, под воздействием фотоионизации и термоионизации образуются стримеры, которые преобразуются в лидеры.

Рис. 10. Схема образования отрицательного лидера

Рис. 11. Линейная молния, развернутая во времени:а -- оптическая картина; б -- токовая картина; /л -- ток лидера; /г р--ток главного разряда; /_ -- ток после свечения

Молния может иметь длину от нескольких сотен метров до нескольких километров (в среднем 5 км). Лидерная форма развития молнии позволяет ей перекрывать такие расстояния.

Глазу человека молния представляется в виде сплошной непрерывной линии -- узкой яркой полосы или нескольких полос белого, светло-голубого или ярко-розового цвета. В действительности разряд молнии состоит из нескольких отдельных импульсов.

Каждый импульс имеет две стадии: начальную, которая называется лидерной, и главный разряд.

Если импульсы развернуть во времени, как это показано на рис. 11, то видно, что разряд лидерной стадии первого импульса развивается ступенями. Средняя линия ступени составляет примерно 50 м, а пауза между отдельными ступенями -- 30--90 мкс. Средняя скорость продвижения лидера составляет 107--108 см/с. Задержки в развитии ступенчатого лидера объясняются по-разному.

Согласно одной гипотезе, задержка происходит из-за того, что для развития лидера должно происходить движение электронов вниз по каналу ведущего стримера, чтобы обеспечить возникновение необходимого градиента потенциала, а на это требуется некоторое время. Это время и является паузой между отдельными ступенями. Второй и последующие импульсы имеют стреловидную форму лидерной стадии, а не ступенчатую. Так как они развиваются по ионизированному каналу, то необходимость в ступенчатом лидере отпадает. При достижении земли лидером первого импульса образуется хорошо проводящий ионизированный канал. Заряд с конца лидера быстро стекает в землю. Этот момент является началом второй стадии грозового разряда, который называется главным (обратным) разрядом. Главный разряд распространяется в виде сплошной светящейся линии от земли к облаку (линейная молния). Как только главный разряд достигает облака, свечение канала ослабевает. Фаза слабого свечения называется послесвечением.

Повторных импульсов в одном разряде молнии может быть до 20 и более, продолжительность одного разряда молнии достигает 1,33 с. Примерно в 40% случаев разряд молнии имеет многократный характер, в среднем с тремя-четырьмя импульсами в одном разряде.

Происхождение повторных импульсов объясняется постепенным притоком зарядов в облаке к каналу молнии.

Избирательность грозового разряда.

На первых стадиях развития лидерного канала молнии напряженность электрического поля на его головке определяется собственными зарядами лидера и находящимися под облаком скоплениями объемных зарядов. Направление разряда определяется максимальными напряженностями электрического поля. На больших высотах это направление устанавливается исключительно самим каналом лидера (рис. 12,а). При приближении лидерного канала молнии к земной поверхности на его электрическое поле начинают влиять поля земли и наземных сооружений. Максимальные напряженности на пути лидера молнии и, следовательно, его направление определяются не только его собственными зарядами, но и зарядами, скопившимися на земле и на наземных сооружениях (рис. 12,6).

Высота Н головки лидера над землей, при которой влияние на поле лидера электрического поля зарядов, скопившихся на земле и на наземных сооружениях, становится таким, что в направлении одного из наземных объектов происходит наибольшее усиление напряженности поля и ориентирование лидера в этом направлении, называется высотой ориентировки молнии. Эта высота тем больше, чем больше электрических зарядов содержит канал лидера.

Рис. 12. Направление, выбранное для развития грозового разряда:а -- лидер на большой высоте; б -- лидер на малой высоте

Постепенное продвижение лидера молнии по нанравлению к земле и главного разряда от земли к облаку в случае ровной поверхности земли показано на рис. 13.

При развитии грозового разряда в какое-либо наземное сооружение, например в опору линии электропередачи, навстречу лидеру, двигающемуся из облака к земле, развивается лидер от опоры, как показано на рис. 14. В этом случае главный разряд начинается от точки соприкосновения лидеров и распространяется как вверх, так и вниз.

Из процесса развития грозового разряда видно, что место удара молнии определяется лидерной стадией. Если под тучей окажется какое-либо наземное сооружение, то развивающийся из тучи лидер будет продвигаться к земле по наикратчайшему пути, т. е. навстречу лидеру, идущему от наземного сооружения вверх. Тем самым и будет определена точка, в которую произойдет разряд молнии.

Опыт показывает, что молния чаще поражает те объекты, которые хорошо заземлены и сами являются хорошими проводниками электричества. Если объекты имеют одинаковую высоту, то молния обычно ударяет в тот из них, который имеет лучшее заземление и большую проводимость. Если же объекты имеют разную высоту и грунт вокруг них имеет различное удельное сопротивление, то может быть разряд в объект с меньшей высотой, но с лучшей проводимостью грунта (рис. 15).

Рис. 14. Развитие лидера молнии (три верхних рисунка) и ее главного разряда (три нижних рисунка) при ударе молнии в металлическую опору

Это объясняется тем, что в лидерной стадии разряда токи проводимости, замыкающие токи смещения в почве, протекают преимущественно по путям с повышенной проводимостью и на ограниченных участках земной поверхности накапливается большая часть зарядов, индуктированных лидером. В результате этого на электрическое поле развивающегося лидера из облака большее влияние оказывает электрическое поле зарядов с большей плотностью, которые сосредоточиваются в местах с лучшей проводимостью.

Таким образом может быть объяснена избирательность грозового разряда. Избирательно поражаются участки поверхности земли и наземные сооружения с лучшей проводимостью. Наблюдениями установлено, что на линиях электропередачи высокого напряжения молнией поражаются 25--30 % опор и только на определенных участках трассы.

Рис. 15. К явлению избирательной поражаемости молнии: а -- грунт с хорошей проводимостью; б -- грунт с плохой проводимостью

Рис. 16. Электрическое поле между облаком и землей: а -- до разряда молнии; б -- при разряде молнии

Теория избирательной поражаемости поверхности земли была проверена в Энергетическом институте АН СССР в связи с разработкой грозозащиты нефтяных озер. При этом было установлено, что поражение молнией нефтяных озер маловероятно. Редкое поражение нефтяных озер объясняется малой проводимостью нефти. На рис. 16 показано электрическое поле между облаком и землей, содержащей включения нефти до разряда молнии и при разряде молнии. При медленном изменении электрического поля облака (до разряда) проводимость нефти обеспечивает подтекание необходимого количества зарядов в связи с изменением поля облака. В момент разряда происходит быстрое изменение поля, и перераспределение зарядов не успевает произойти из-за низкой проводимости нефти. Заряды сосредоточиваются на «берегах» нефтяных озер, что приводит к усилению электрического поля между облаком и «берегами» нефтяного озера, как показано на рис. 16,6, и разряд происходит не в поверхность озера, а в его «берега». Это подтверждает теорию избирательности ударов молнии, которая утверждает, что при прочих равных условиях разряды молнии всегда поражают места с повышенной проводимостью почвы.

Параметры молнии

Основными параметрами, характеризующими ток молнии, являются максимальное значение импульса тока, крутизна фронта тока молнии, длительность фронта импульса и длительность полного импульса, которая равна времени уменьшения тока до половины максимального значения. Длительность импульса тока молнии в основном определяется временем распространения обратного разряда от земли до облака и составляет от 20 до 80--100 мкс. Наиболее часто встречающиеся в разрядах молнии длительности фронта импульса тока составляют 1,5--10 мкс. Средняя длительность импульса тока молнии близка к 50 мкс, что и определило выбор стандартного полного грозового импульса напряжения, применяемого для испытания электрической прочности изоляции оборудования, который возникает на изоляции при ударе молнии и который она должна выдерживать без повреждения.

Рис. 17. Форма стандартного грозового импульса напряжения

Для проведения испытаний изоляции грозовыми импульсами напряжения в одинаковых условиях по международным нормам и ГОСТ 1516.2-76 принят стандартный грозовой импульс напряжения, показанный на рис. 17, у которого для удобства обработки лабораторных осциллограмм действительный фронт заменяется эквивалентным косоугольным.

Для этого на фронте импульса на уровне 0,3 и 0,9 Umax отмечаются точки, через которые проводится прямая линия. Пересечение этой прямой с осью абсцисс и с горизонтальной прямой, проведенной на уровне Umnx, определяет длительность фронта импульса Тф. Длительность импульса ти определяется, как показано на рис. 17.

Условно параметры стандартного полного грозового импульса напряжения обозначаются 1,2/50, это значит, что фронт импульса Тф=1,2 мкс, а длительность импульса ти= = 50 мкс. Длительности фронта и импульса измеряются в микросекундах 11мкс-- 10-6 с).

Скорость нарастания тока на фронте импульса называется крутизной фронта и измеряется числом ампер в одну микросекунду.

В табл. 1 приводятся некоторые параметры разрядов молнии для равнинной местности.

В горных местностях амплитудные значения токов молнии снижаются примерно в 2 раза по сравнению с амплитудными значениями в равнинных местностях. Это объясняется уменьшением расстояния от земли до облаков. При меньших расстояниях молнии возникают при меньших скоплениях зарядов на облаках, что ведет к снижению амплитудных значений токов молнии.

Как видно из табл. 1, токи молнии, протекающие по опорам линий электропередачи при их поражении, достигают колоссальных величин -- свыше 200 кА.

Таблица 1


Параметры разряда молнии

Наиболее часто встречающиеся значения

Зарегистрированное значение

наибольшее

наименьшее

Полярность

Отрицательная (до 80%)

--

--

Токи молнии (амплитудные значения), зарегистрированные в опорах, кА

До 20

200--300

0.5

Заряд, переносимый молнией, Кл

До 20

100

0,5

Длительность импульса тока молнии, мкс

10--30

100

Менее 10

Длительность фронта импульса тока молнии, мкс

1,5--10

80--90

Менее 1

Крутизна фронта импульса тока молнии, А/мкс

5000

50 000

--

Количество импульсов в разряде молнии

2--3

20

1

Продолжительность разряда молнии, с

0,2--0,6

1.33

 

Следует иметь в виду, что грозовые разряды, имеющие токи большого значения, возникают очень редко: токи 100 кА и более составляют всего 2 % общего количества грозовых разрядов, а токи 150 кА и более -- 0,5 %.

Вероятностное распределение амплитудных значений токов молнии показано на рис. 18, из которого видно, что 40 % всех разрядов имеют токи с амплитудными значениями меньше 20 кА.

Рис. 18. Кривая вероятностного распределения (в процентах) токов молнии

Рис. 19. Кривые вероятностного распределения (в процентах) крутизн фронта импульса тока молнии: 1 -- для равнинных районов; 2 -- для горных районов

Важным параметром является крутизна фронта импульса тока молнии, от значений которой зависят перенапряжения, возникающие в электроустановках. Крутизна изменяется в широких пределах и имеет слабую тенденцию возрастать при увеличении амплитудного значения тока молнии. На рис. 19 показано вероятностное распределение крутизн фронта импульса тока молнии.

Воздействие токов молнии

Токи молнии при прохождении через пораженные объекты оказывают на них электромагнитные, тепловые и механические воздействия. Проходя по проводникам, они выделяют количество тепла, которое способно расплавить проводник небольших сечений (телеграфные провода, плавкие предохранители). Ток молнии /м, кА, вызывающий нагревание проводника до температуры плавления или испарения, можно определить по формуле

где k -- коэффициент, значение которого составляет для меди 300--330, для алюминия 200--230, для железа 115-- 438; q -- сечение проводника, мм2; tm -- длительность импульса тока, мкс.

Минимальное сечение проводника (токоотвода), обеспечивающее его целостность при прохождении тока молнии, обычно принимается равным 28 мм2. Стальной проводник с таким сечением всего за десятки микросекунд нагревается до нескольких сотен градусов при наибольших значениях тока молнии, но не расправляется.

При соприкосновении канала молнии с металлом он может выплавляться на глубину 3--4 мм. Наблюдающиеся в эксплуатации случаи обрывов отдельных проволок у грозозащитных тросов на линиях электропередачи могут происходить от пережога их молнией в месте соприкосновения ее канала с тросом. Поэтому стальные молниеприемники, которые должны противостоять термическим воздействиям канала молнии, имеют большие, чем у токоотводов, сечения: 35 мм2 у грозозащитных тросов и не менее 100 мм2 у стержневых молниеотводов. При соприкосновении канала молнии с деревом, соломой, газообразной или жидкой горючей средой они могут воспламеняться и вызывать пожары.

Механические воздействия тока молнии проявляются в расщеплениях деревьев, в разрушении каменных и кирпичных строений и пр. Расщепление деревянных опор линий электропередачи происходит вследствие того, что ток молнии, проходя по волокнам древесины, вызывает в ней интенсивное паро- и газовыделение, которое создает высокое давление внутри древесины и разрывает ее.

При дожде расщепление древесины слабее, а без дождя сильнее. Это объясняется тем, что смоченная поверхность древесины имеет большую проводимость и ток молнии проходит преимущественно по поверхности и меньше повреждает древесину.

Расщепление древесины опор часто ограничивается вырыванием лент толщиной 2--3 см и шириной до 5 см, а иногда стойки и траверсы опор молния раскалывает пополам, при этом болты и крючья изоляторов выскакивают и падают на землю. Известен такой случай, когда молния, ударившая в старый тополь высотой 30 м и обхватом в 3 м, разбила его на мелкие куски. При прохождении через щели и узкие отверстия токи молнии также создают значительные разрушающие усилия. Примером этого могут служить случаи разрушения молнией трубчатых разрядников на линиях электропередачи. После прохождения токов молнии в диэлектриках (каменные, кирпичные постройки) между остающимися зарядами возникают электростатические силы, имеющие ударный характер, которые приведут к разрушению каменных и кирпичных построек. В стадии главного разряда ток молнии посредством возникшего электромагнитного поля индуцирует напряжение на проводах и проводящих конструкциях электроустановок вблизи места удара, а, проходя через заземленные объекты, создает падения напряжения, которые достигают сотен и даже тысяч киловольт.

Грозовые разряды происходят как между облаком и землей, так и между облаками. Разряды, происходящие между облаками, не представляют опасности для электроустановок. Разряды, поражающие землю, опасны для людей, животных, а также наземных сооружений.

Грозовая деятельность

Интенсивность грозовой деятельности в различных местах нашей планеты сильно различается. Наиболее слабая грозовая деятельность в северных районах нашей страны и постепенно увеличивается к югу.

Интенсивность грозовой деятельности в настоящее время характеризуется количеством дней с грозами в году. Средняя продолжительность гроз за один грозовой день для территории Советского Союза составляет 1,5--2 ч.

Интенсивность грозовой деятельности для любого района Советского Союза определяется по картам грозовой деятельности, составленным на основании многолетних наблюдений метеорологических станций (рис. 20). 

Рис. 20. Карта грозовой деятельности на территории Советского Союза (среднегодовая продолжительность гроз в часах)

Считается, что в районах с 30 грозовыми часами в год на 1 км2 земной поверхности в среднем происходит в два года один удар молнии.

В земную поверхность ежесекундно происходит приблизительно 100 ударов молнии. Размещено на Allbest.ru

...

Подобные документы

  • Расчет электронов в лавине, развивающейся в воздухе при различных атмосферных условиях. Понятие короны как вида разряда. Построение кривых относительного распределения напряжений трансформатора. Годовое число грозовых отключений по территории Молдовы.

    контрольная работа [1,2 M], добавлен 14.06.2010

  • Классификация перенапряжений в электроустановках. Распространение электромагнитных волн в линиях электропередач. Регулирование электрического поля с помощью конденсаторных обкладок. Меры повышения надежности изоляции в условиях интенсивных загрязнений.

    контрольная работа [799,9 K], добавлен 19.02.2012

  • Электромагнитное поле как особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электрическое поле покоящегося заряда. Преобразование Лоренца. Поле релятивистского и нерелятивистского заряда.

    контрольная работа [380,0 K], добавлен 23.12.2012

  • Изоляция электротехнических установок. Составляющие времени разряда при воздействии короткого импульса. Стандартный грозовой импульс и его параметры. Время запаздывания разряда. Измерения с помощью шаровых разрядников. Характеристики изоляции.

    лабораторная работа [1,1 M], добавлен 27.01.2009

  • Изучение основных форм самостоятельного разряда в газе, влияние на электрическую прочность и электрическое поле разрядного промежутка основных свойств газа и геометрических характеристик. Использование данных закономерностей в электроэнергетике.

    лабораторная работа [274,1 K], добавлен 22.04.2014

  • Измерение высоких напряжений шаровыми разрядниками, электростатическим киловольтметром. Омические делители для измерения импульсного напряжения. Порядок проведения калибровки киловольтметра. Измерение амплитудного значения переменного напряжения.

    реферат [1,1 M], добавлен 30.03.2015

  • Анализ основных форм самостоятельного разряда в газе. Исследование влияния относительной плотности воздуха на электрическую прочность разрядного промежутка. Определение значения расстояния между электродами, радиуса их кривизны для электрического поля.

    лабораторная работа [164,5 K], добавлен 07.02.2015

  • Ток и плотность тока проводимости. Закон Ома в дифференциальной форме. Стороннее электрическое поле. Законы Кирхгофа в дифференциальной форме. Уравнение Лапласа для электрического поля в проводящей среде. Дифференциальная форма закона Джоуля-Ленца.

    презентация [512,3 K], добавлен 13.08.2013

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

  • Задача на определение напряжения на конденсаторе. Принуждённая составляющая как значение напряжения спустя бесконечный промежуток времени после коммутации. Вид свободной составляющей напряжения. Законы изменения во времени напряжений и токов в линиях.

    контрольная работа [471,9 K], добавлен 28.10.2011

  • Гром — звуковое явление в атмосфере, сопровождающее разряд молнии. Общее понятие и механизм образования искрового разряда. Молния — гигантский электрический искровой разряд в атмосфере. Стадии формирования и виды молний. Поражение человека молнией.

    доклад [18,2 K], добавлен 18.11.2010

  • Расчет напряжения и токов в узлах в зависимости от времени. Графики напряжений, приходящих и уходящих волн. Метод бегущих волн и эквивалентного генератора. Перемещение и запись волн в массивы. Моделирование задачи в Matlab. Проектирование схемы в ATP.

    лабораторная работа [708,4 K], добавлен 02.12.2013

  • Измерение полного импульса замкнутой системы. Строение и свойства лазерного наноманипулятора. Направление момента силы относительно оси. Закон изменения и сохранения момента импульса. Уравнение движения центра масс. Системы отсчета, связанные с Землей.

    презентация [264,6 K], добавлен 29.09.2013

  • Электрический ток в полупроводниках. Образование электронно-дырочной пары. Законы электролиза Фарадея. Прохождение электрического тока через газ. Электрическая дуга (дуговой разряд). Молния - искровой разряд в атмосфере. Виды самостоятельного разряда.

    презентация [154,2 K], добавлен 15.10.2010

  • Кинематика материальной точки. Законы Ньютона и законы сохранения. Постоянное электрическое поле. Теорема Гаусса. Потенциал - энергетическая характеристика поля. Электроемкость уединенного проводника. Электрическое поле в диэлектрике. Закон Ома.

    курс лекций [1021,2 K], добавлен 09.02.2010

  • Характеристики тлеющего разряда, процессы, обеспечивающие его существование. Картина свечения. Объяснение явлений тлеющего разряда с точки зрения элементарных процессов. Вольт-амперная характеристика разряда между электродами. Процессы в атомарных газах.

    реферат [2,8 M], добавлен 03.02.2016

  • Вихревое электрическое поле. Интегральная форма уравнений Максвелла. Единая теория электрических и магнитных явлений. Понятие о токе смещения. Постулат Максвелла, выражающий закон создания электрических полей действием зарядов в произвольных средах.

    презентация [361,3 K], добавлен 24.09.2013

  • Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

    шпаргалка [619,6 K], добавлен 04.05.2015

  • Связь комплексных амплитуд тока и напряжения в пассивных элементах электрической цепи. Законы Кирхгофа для токов и напряжений, представленных комплексными амплитудами. Применение при расчёте трёхфазных цепей.

    реферат [48,4 K], добавлен 07.04.2007

  • Электрический пробой газов и диэлектриков. Вольт-секундные характеристики изоляции. Разработка импульсного генератора высоких напряжений. Моделирование и построение математической модели, позволяющей проводить расчет электрического разряда в жидкости.

    дипломная работа [3,4 M], добавлен 26.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.