Синхронный компенсатор
Принцип действия, предназначение синхронного компенсатора. Мощность переменного тока, активная и реактивная мощность, их физический смысл. Практические задачи на определение мощности синхронного компенсатора. Охрана труда при работе с генераторами.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 31.05.2016 |
Размер файла | 219,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
компенсатор мощность реактивный
Введение
1. Теоретическая часть
1.1 Основные термины и понятия
1.2 Принцип действия и предназначения СК
2. Практическая часть
3. Графическая часть
4. Охрана труда
Заключение
Список литературы
Введение
Электримчество -- совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните -- Земле» (1600 год), в котором объясняется действие магнитного компаса, и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества.
Одним из первых электричество привлекло внимание греческого философа Фалеса в VII веке до н. э., который обнаружил, что потёртый о шерсть янтарь (др. - греч. ?лекфспн: электрон) приобретает свойства притягивать легкие предметы. Однако долгое время знание об электричестве не шло дальше этого представления. В 1600 году появился сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. В 1729 году англичанин Стивен Грей провел опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шелк и смолы о шерсть. В 1745 г. голландец Питер ван Мушенбрук создает первый электрический конденсатор -- Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные -- Г. В. Рихман и М. В. Ломоносов.
Первую теорию электричества создает американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году Закона Кулона.
Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока --гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделенных смоченной в подсоленной воде бумагой. В 1802 году Василий Петров обнаружил вольтову дугу.
В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).
Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создает на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привел Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы -- частицы материи. «Атомы материи каким-то образом одарены электрическими силами», -- утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель -- проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.
В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).
В 1897 году Джозеф Томсон открывает материальный носитель электричества -- электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.
В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединенную теорию электрослабых взаимодействий.
1. Теоретическая часть
1.1 Основные термины и понятия
Синхронный компенсатор (СК) представляет собой синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу. При работе в режиме перевозбуждения СК является генератором реактивной мощности. Наибольшая мощность СК в режиме перевозбуждения называется его номинальной мощностью. При работе в режиме недовозбуждения СК является потребителем реактивной мощности. По конструктивным условиям СК обычно не может потреблять из сети такую же реактивную мощность, которую он может генерировать. Изменение тока возбуждения СК обычно автоматизируется. При работе СК из сети потребляется активная мощность порядка 2--4% от номинальной реактивной мощности. Являются элементами «пассивной» компенсации реактивной мощности, иными словами, при использовании некоторого количества синхронных двигателей вместо асинхронных потребляемая из сети реактивная мощность уменьшается, что уменьшает и расходы на компенсацию, но с другой стороны, увеличивает расходы на содержание и обслуживание синхронных электродвигателей.
Мощность переменного тока.
В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для практических расчётов бесполезна. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность -- мнимой частью, полная мощность -- модулем, а угол (сдвиг фаз) -- аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность.
Единица измерения -- ватт (русское обозначение: Вт; международное: W).
Среднее за период значение мгновенной мощности называется активной мощностью:
.
В цепях однофазного синусоидального тока
,
где и -- среднеквадратичные значения напряжения и тока, -- угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи или её проводимость по формуле
.
В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью активная связана соотношением
.
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.
Реактивная мощность.
Единица измерения -- вольт-ампер реактивный (русское обозначение: вар; международное: var).
Реактивная мощность -- величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения и тока , умноженному на синус угла сдвига фаз между ними
(если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает -- отрицательным). Реактивная мощность связана с полной мощностью и активной мощностью соотношением:
.
Физический смысл реактивной мощности -- это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина для значений от 0 до плюс 90° является положительной величиной. Величина для значений от 0 до ?90° является отрицательной величиной. В соответствии с формулой
,
реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную -- то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут, как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Полная мощность.
Единица полной электрической мощности -- вольт-ампер (русское обозначение: В·А; международное: V·A).
Полная мощность -- величина, равная произведению действующих значений периодического электрического тока в цепи и напряжения на её зажимах:
;
связана с активной и реактивной мощностями соотношением:
где -- активная мощность, -- реактивная мощность (при индуктивной нагрузке , а при ёмкостной ).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность.
Мощность, аналогично импедансу, можно записать в комплексном виде:
где -- комплексное напряжение, -- комплексный ток, -- импеданс, * -- оператор комплексного сопряжения.
Модуль комплексной мощности равен полной мощности . Действительная часть равна активной мощности , а мнимая -- реактивной мощности с корректным знаком в зависимости от характера нагрузки.
Компенсация реактивной мощности -- целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии. Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций и реактивной мощности компенсирующих устройств, размещенных в электрической сети и в электроустановках потребителей электрической энергии.
Компенсация реактивной мощности особенно актуальна для промышленных предприятий, основными электроприёмниками которых являются асинхронные двигатели, в результате чего коэффициент мощности без принятия мер по компенсации составляет 0,7--?0,75. Мероприятия по компенсации реактивной мощности на предприятии позволяют:
· уменьшить нагрузку на трансформаторы, увеличить срок их службы,
· уменьшить нагрузку на провода, кабели, использовать их меньшего сечения,
· улучшить качество электроэнергии у электроприемников (за счёт уменьшения искажения формы напряжения),
· уменьшить нагрузку на коммутационную аппаратуру за счет снижения токов в цепях,
· избежать штрафов за снижение качества электроэнергии пониженным коэффициентом мощности,
· снизить расходы на электроэнергию.
1.2 Принцип действия и предназначения СК
Синхронный компенсатор - синхронный двигатель, не выполняющий механической работы. Его назначение -- компенсация реактивной мощности. Если нагрузить его механической работой, он не сможет компенсировать реактивную составляющую в нужном диапазоне.
У него два режима работы:
1)Перевозбужденный,
2)Недовозбужденный.
Не будем углубляться в теорию работы синхронных машин, а рассмотрим отдельно каждый из режимов работы синхронного компенсатора.
Перевозбужденный режим. Так как компенсатор работает на холостом ходу, то согласно теории ток идеального холостого хода должен быть равен нулю, хотя на самом деле это не так. Выполняется равенство
.
Если увеличить ток возбуждения (Iв) больше нуля Iв ? 0, то в двигателе образуется ЭДС и соответственно - машина выходит из электрического равновесия и возникает ток , который будет отставать от ? ,, на 900. Соответственно в сеть будет отдаваться реактивная составляющая. На рисунке а) приведена векторная диаграмма для данного случая.
Рис. а) векторная диаграмма работы в перевозбужденном режиме
Недовозбужденный режим. Если уменьшить Iв, в двигателе образуется ЭДС, соответственно - следствием , который будет отставать от ?на 900, но будет опережать ,на 900. Соответственно с сети будет забираться реактивная составляющая. На рисунке б) приведена векторная диаграмма для данного случая.
Рис. б) векторная диаграмма работы в недовозбужденном режиме
Можно сделать вывод, что синхронный компенсатор работает в двух режимах: компенсации и потребления реактивной составляющей. Это значит, что он может не только отдавать, но и потреблять, что позволяет поддерживать баланс мощности в цепи. Он снабжается автоматической системой управления возбуждением и в автоматическом режиме регулирует cosц цепи. Также обладает большой инерционностью, что не позволяет ему быстро реагировать на изменение параметров цепи. При установке его в сеть с резко-переменной нагрузкой нужно максимально оптимизировать настройки регуляторов САУ, чтоб машина не пошла в разнос, так как это чревато аварийными отключением подстанции из-за бросков тока в сеть. Строятся на мощность до Sн = 100 000 кВА. Имеют явнополюсную конструкцию с 2р= 6 или 8 -- тихоходные. Компенсаторы большой мощности делаются с водородным охлаждением.
Для асинхронного пуска снабжаются пусковыми обмотками в полюсных наконечниках или делают их с массивными полюсами. Пускаться они могут как прямым пуском, так и с помощью реакторов. Иногда используют гонный асинхронный двигатель для разгона машины до подсинхронной скорости. Наиболее часто имеют напряжение питания статора 6 кВ, 10 кВ и садятся на соответствующие линии ГПП.
Для возбуждения синхронного компенсатора чаще всего используют тиристорный преобразователь. Он прост в управлении, обладает малой инерционностью, дешев, по сравнению с другими устройствами, не требует постоянного обслуживания и быстро ремонтируем. Современные возбудители оборудованы микропроцессорной системой управления, которые могут в автоматическом режиме вычислять реактивную мощность и регулировать возбуждение машины, тем самым поддерживая баланс мощности. Ниже приведена функциональная схема системы автоматического регулирования (САУ):
Также ранее применялись, а кое-где и до сих пор используются, электромашинное возбуждение. Как правило, работает с очень малой чувствительностью и очень большой инерционностью по отношению к цепи. Дорог в обслуживании и эксплуатации. При выходе из строя долго находится в ремонте. Ниже показана самая примитивная схема электромашинного возбудителя: синхронный компенсатор является обратимым устройством. Он дорог, занимает много места, а также вызывает шум и иногда вибрации. Эксплуатация его не дешевая, а в случае выхода из строя вращающихся элементов требует длительного ремонта. В сравнении с современными средствами компенсации реактивной мощности является устаревшим.
2. Практическая часть
Пример №1.
Потребитель, включенный в сеть переменного тока напряжением Uc=6,3 кВ. потребляет мощность 1500 кВ•А, при коэффициенте мощности cos y=0,7. Определить мощность СК, необходимого для повышения коэффициента мощности в сети до cos y=0,95.
Решение.
До включения СК
реактивная мощность сети Q= S*sin y=1500•0,7=1050кВ•Ар,
ток нагрузки в Ic<S(v3•Uc) =1500(v3•6,3)=138A
активное составляющая этого тока
Iсв=Ic•cos=138•0,7=97А.
Qґ=S•sin ґ=1500•0, 31=450кВ•А.
Таким образом, для повышения коэффициента мощности от cos = 0,7 до cos ґ=0,95 требуется включения СК мощностью 450 кВ.
Qск=1050-450=600кВ•Ар.
При этом активная составляющая тока сети не изменится (Iсв=97А), а реактивная составляющая этого тока станет ровной:
Iс.р.=Qґ/(v3•Uc)=450/(v3•6.3)=42A.
Следовательно, ток в сети после включения СК:
Icґ=vIІсв+vIІср=v97І+v42І=104А.
3. Графическая часть
СГ - синхронный генератор,
Тр1 - повышающий трансформатор,
Тр2 - понижающий трансформатор,
ЛЭП - линия электропередач,
СК - синхронный компенсатор,
Z- потребитель.
Рисунки до (а) и после (б) подключения СК.
4. Охрана труда
Охрана труда при выполнении работ на генераторах и синхронных компенсаторах:
1) Вращающийся невозбужденный генератор с отключенным устройством автомата гашения поля (далее - Автоматическое гашение поля (АГП) должен рассматриваться как находящийся под напряжением (за исключением случая вращения от валоповоротного устройства).
2) При испытаниях генератора установка и снятие специальных закороток на участках его схемы или схемы блока должны выполняться после их заземления. Установку и снятие специальных закороток при рабочей частоте вращения разрешается выполнять с использованием средств защиты после снятия возбуждения генератора и отключения АГП.
3) На каждой электростанции должны быть утверждены схемы заземления генератора, учитывающие тип системы возбуждения генератора, схемы РУ генераторного напряжения, схему блока и схему нейтрали генератора. Должна быть исключена подача напряжения в обмотку ротора от схемы начального возбуждения.
4) В цепях статора вращающегося невозбужденного генератора с отключенным устройством АГП допускается измерять значение остаточного напряжения, определять порядок чередования фаз.
Эти работы должны выполнять работники электролабораторий, наладочных организаций с применением электрозащитных средств в соответствии с нарядом или распоряжением под наблюдением оперативного персонала.
5) Измерения напряжения на валу и сопротивления изоляции ротора работающего генератора разрешается выполнять по распоряжению двум работникам, имеющим группы IV и III.
6) Обточку и шлифовку контактных колец ротора, шлифовку коллектора возбудителя выведенного в ремонт генератора имеет право выполнять по распоряжению работник из числа неэлектротехнического персонала под наблюдением работника, имеющего группу III. При работе следует пользоваться средствами защиты лица и глаз от механических воздействий.
7) Обслуживать щеточный аппарат на работающем генераторе допускается единолично по распоряжению, обученному для этой цели работнику, имеющему группу III, если при этом исключена вероятность появления однополюсного замыкания на землю или междуполюсного короткого замыкания. При этом необходимо соблюдать следующие меры предосторожности:
работать в защитной каске с использованием средств защиты лица и глаз, застегнутой спецодежде, остерегаясь захвата ее вращающимися частями машины;
пользоваться диэлектрическими галошами, коврами или диэлектрическими перчатками, если есть вероятность случайного прикосновения участками тела к заземленным частям;
не касаться руками одновременно токоведущих частей двух полюсов или токоведущих и заземленных частей.
Заключение
Обычный коэффициент мощности увеличивают до 0,92-0,95 ,так как экономия, получаемая от повышения до 1 ,не оправдывает её затраты.
Если в примере 22.1 увеличивают коэффициент мощности до 1 ,то можно применить синхронный компенсатор мощностью 1050 кВ*А, то есть почти в 2 раза больше, чем при коэффициенте мощности равным 0,95.
Выполняют их обычно с горизонтальном положением вала (ротора) на U = 6,6 - 16 кВ и P = 10 - 160 000 кВ*А.
Список литературы
1. Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52, ББК 22.3 С72.
2. Электричество до Франклина.
3. Электростатическая машина Герике.
4. Первые опыты по передаче электричества на расстояние.
5. История электричества.
6. EIEnergi.ru (http://elenergi.ru/sinxronnyj-kompensator-reaktivnoj-moshhnosti.html)
7.Энергетику(http://energ2010.ru/Doc/Elektro/POTEE/25_potee.html)
Размещено на Allbest.ru
...Подобные документы
Пуск синхронного компенсатора, представляющей собой синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу. Защита от замыканий на землю в одной точке цепи возбуждения компенсатора. Схема защиты минимального напряжения.
реферат [309,0 K], добавлен 07.12.2016Параллельная работа синхронного генератора с сетью, регулирование его активной и реактивной мощности. Построение векторных диаграмм при различных режимах нагрузки. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа.
контрольная работа [92,0 K], добавлен 07.06.2012Векторные диаграммы работы синхронного компенсатора. Типы турбо-, гидрогенераторов. Характеристика систем охлаждения и возбуждения. Параметры охлаждающей среды. Автоматическое гашение магнитного поля генераторов. Расчет самозапуска электродвигателей.
реферат [502,2 K], добавлен 14.07.2016Разработка алгоритма управления режимом реактивной мощности при асимметрии системы электроснабжения промышленного предприятия. Источники реактивной мощности. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии.
дипломная работа [1,6 M], добавлен 20.05.2017Анализ влияния компенсации реактивной мощности на параметры системы электроснабжения промышленного предприятия. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии. Моделирование измерительной части установки.
дипломная работа [1,7 M], добавлен 02.06.2017Расчет токов, сопротивления и напряжений на элементах при отключенном компенсаторе, мощностей потребителей и общей мощности всей сети. Определение в фазе С трехфазной цепи закона изменения тока при переходном процессе при подключении компенсатора к сети.
курсовая работа [1,5 M], добавлен 04.09.2012Математические модели оптимизационных задач электроснабжения. Обзор способов повышения коэффициента мощности и качества электроэнергии. Выбор оптимальных параметров установки продольно-поперечной компенсации. Принцип работы тиристорного компенсатора.
дипломная работа [986,2 K], добавлен 30.07.2015Влияние величины нагрузки на значение тока ударного, периодического, апериодического. Действие токов короткого замыкания (КЗ), их величина в зависимости от удаленности точки КЗ от источника питания. Особенности влияния синхронного компенсатора на токи КЗ.
лабораторная работа [1,6 M], добавлен 30.05.2012Источники реактивной мощности. Преимущества использования статических тиристорных компенсаторов - устройств, предназначенных как для выдачи, так и для потребления реактивной мощности. Применение и типы синхронных двигателей, их располагаемая мощность.
презентация [2,4 M], добавлен 10.07.2015Мощность, поглощаемая активным сопротивлением. Мощность и энергия, поступающие в индуктивность и ёмкость. Скорость поступления электромагнитной энергии в цепь. Соотношение между максимальным, средним и эффективным токами в случае переменного тока.
реферат [243,3 K], добавлен 20.03.2016Принцип действия вертикального синхронного двигателя. Конструкция крестовин и вала. Расчет сердечника статора. Синтез и оптимизация электромагнитного ядра на персональном компьютере. Оценка резервов мощности серии вертикальных синхронных двигателей.
курсовая работа [2,5 M], добавлен 11.10.2012Общие понятия и определения в математическом моделировании. Основные допущения при составлении математической модели синхронного генератора. Математическая модель синхронного генератора в фазных координатах. Реализация модели синхронного генератора.
дипломная работа [339,2 K], добавлен 05.10.2008Задачи на расчет электрической цепи синусоидального тока с последовательным и смешанным соединением приемников. Определение токов в линейных и нейтральных проводах; полная, активная и реактивная мощность каждой фазы и всей цепи. Векторная диаграмма.
контрольная работа [152,2 K], добавлен 22.12.2010Способы компенсации реактивной мощности в электрических сетях. Применение батарей статических конденсаторов. Автоматические регуляторы знакопеременного возбуждения синхронных компенсаторов с поперечной обмоткой ротора. Программирование интерфейса СК.
дипломная работа [2,5 M], добавлен 09.03.2012Мощность в функции времени. Топографические и лучевые векторные диаграммы. Резонанс в линейных цепях при гармонических напряжениях и токах. Принцип действия синхронного генератора. Обмотки статора генератора, их обозначение. Явно- и неполюсной ротор.
презентация [1,4 M], добавлен 16.10.2013Однофазные и трехфазные цепи переменного тока. Индуктивное и полное сопротивление. Определение активная, реактивной и полной мощности цепи. Фазные и линейные токи, их равенство при соединении звездой. Определение величины тока в нейтральном проводе.
контрольная работа [30,8 K], добавлен 23.09.2011Эквивалентное сопротивление всей цепи. Закон Ома для участка цепи. Законы Кирхгофа для электрической цепи. Короткое замыкание резистора. Определение показаний измерительных приборов, включенных в цепь. Активная и реактивная мощность полной цепи.
контрольная работа [401,6 K], добавлен 31.05.2012Исследование процессов, происходящих в простейших электрических цепях переменного тока, содержащих последовательное соединение активных и индуктивных сопротивлений. Измерение общей силы тока, активной и реактивной мощности; векторная диаграмма напряжений.
лабораторная работа [79,2 K], добавлен 11.05.2013Оценка величины потребляемой реактивной мощности электроприемников. Анализ влияния напряжения на величину потребляемой реактивной мощности. Векторная диаграмма токов и напряжений синхронного генератора. Описания основных видов компенсирующих устройств.
презентация [1,9 M], добавлен 26.10.2013Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.
презентация [443,8 K], добавлен 12.01.2010