Оптические свойства гранатов
Соединения со структурой граната как самые применяемые в квантовой электронике. Кристаллическая структура гранатов, их рентгеноструктурные и кристаллохимические исследования. Изучение свойств полиэдров Вороного-Дирихле и метод пересекающихся сфер.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 02.06.2016 |
Размер файла | 67,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Структура граната
Из многочисленных диэлектрических материалов, используемых для возбуждения генерации СИ, соединения со структурой граната (пространственная группа О10h - Iad) занимают особое место - они являются самыми применяемыми в квантовой электронике [1, 2]. Спектрально-генерационные исследования этих кристаллов с общей формулой A3BI2BII3O12 были начаты в середине 60-х годов [1]. К настоящему времени перечень лазерных матриц с этой структурой уже насчитывает более тридцати наименований, генерирующими активаторами в которых служат как Ln3+ - ионы (Nd3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+), так и ионы группы железа (Cr3+, Ti3+, Ni2+).
Как известно [1], в элементарную ячейку соединений структурного типа граната входят восемь формульных единиц (всего 160 атомов). Для удобства формулу гранатов можно записать как {A3} [BI2] (BII3) O12, где фигурными, квадратными и круглыми скобками выделены катионы, занимающие с-, а- и d-кристаллографические позиции соответственно. BI-атомы занимают 16 октаэдрических а-положений (С3i), BII - атомы - 24 тетраэдрических d-положения (S4); а-узлы образуют объёмно-центрированную кубическую решётку, 24 А-иона находятся в додекаэдрических (D2) с-позициях. Структура иттрий-алюминиевого граната (ИАГ) приведена на рисунке 1. Наиболее компактными в ИАГ являются тетраэдрические позиции с расстоянием до анионов 1,75 Е, для октаэдра это расстояние - 1,94 Е, для додекаэдра - 2,37 Е. Ионы кислорода расположены в 96 общих h-кристаллографических позициях. Додекаэдр имеет общие рёбра (связь О-О) с двумя тетраэдрами, четырьмя октаэдрами и четырьмя другими додекаэдрами. Координационные полиэдры несколько искажены: октаэдры - вдоль оси 3, а тетраэдры - вдоль оси 4; 8 анионов в додекаэдре двумя группами по 4 аниона расположены от а-узла на разных расстояниях. В элементарной ячейке имеется 8 неэквивалентных октаэдрических, 6 тетраэдрических и 6 додекаэдрических позиций [3, 4].
Кристаллическая структура гранатов
Рентгеноструктурные и кристаллохимические исследования [5, 6] свидетельствуют о том, что возможно существование чрезвычайно обширного ряда соединений со структурой граната, в которых а-, с- и d - положения могут занимать ионы различной валентности большого числа элементов (практически всех групп таблицы Менделеева). Причём некоторые из них, проявляя исключительную избирательность, могут заполнять полностью эти кристаллографические позиции, т.е. образовывать в трёхподрешёточной структуре граната свою подрешётку, которая определённым образом может оказывать влияние на катионы (например, на орбитальные моменты их валентных электронов) двух других подрешёток.
Соединениям со структурой граната присущ такой специфический эффект как частичное упорядочение катионов в октаэдре, тетраэдре и додекаэдре [7], приводящее к симметризации данных позиций. Известно, что полное упорядочение твёрдого раствора наблюдается в системах, где разности между радиусами атомов имеют некоторое среднее значение, и мольное соотношение компонентов выражается приблизительно целыми числами.
Таким образом, знание структурных особенностей соединений гранатной структуры позволяет теоретически обосновать и предсказать свойства получаемых гранатов.
2. Свойства полиэдров Вороного-Дирихле и метод пересекающихся сфер
гранат квантовый электроника полиэдр
2.1 Свойства полиэдров Вороного-Дирихле
Полученные в последние десятилетия результаты анализа распределения электронной плотности вокруг атомов, опирающиеся как на современные квантово-механические расчеты, так и на данные прецизионного рентгеноструктурного анализа, показывают, что области пространства, отвечающие в структуре кристаллов отдельным атомам (атомные домены), имеют форму, которая, в общем случае, далека от сферической и напоминает многогранник. Как известно [8], сравнительно простым приближением, которое позволяет установить форму атомных доменов, является метод полиэдров Вороного-Дирихле. Полиэдром Вороного-Дирихле (или атомным доменом) некоторого атома А называется выпуклый многогранник, ограниченный плоскостями, которые проведены через середины отрезков, связывающих этот атом с его соседями, перпендикулярно этим отрезкам. Например, если атом А окружен в кристалле шестью атомами Х, образующими координационный полиэдр в виде правильного октаэдра, то полиэдр Вороного-Дирихле этого атома имеет форму куба. Таким образом, общее число атомов, окружающих некоторый атом А в структуре кристалла, равно числу граней его полиэдра Вороного-Дирихле, так как каждая грань этого полиэдра отвечает одному соседнему атому.
Систематический анализ характеристик атомных доменов с помощью полиэдров Вороного-Дирихле начал проводиться только в последние десятилетия и опирается на сведения о строении не десятков (как во времена Брэггов) или нескольких сотен кристаллов (как у Д. Слейтера), а на данные о структуре более 300 тысяч соединений, изученных к настоящему времени и содержащихся в постоянно пополняющихся базах кристаллоструктурных данных по неорганическим соединениям [9], по органическим или металлоорганическим соединениям [10] и Брукхэвенской - по белкам. В результате выполненных исследований выяснилось, что для атомов комплексообразователей А, находящихся в определенном валентном состоянии и окруженных в структуре кристаллов атомами Х одной и той же природы, объем полиэдров Вороного-Дирихле практически не зависит от их формы и числа образованных химических связей А-Х, то есть, координационного числа атома А. Примерное постоянство объема полиэдров Вороного-Дирихле (VПВД) позволяет моделировать атом в структуре кристалла мягкой (способной деформироваться) сферой фиксированного радиуса RСД (назовем его радиусом сферического атомного домена), который определяется соотношением
(1)
Полиэдр Вороного-Дирихле любого атома в структуре некоторого кристалла можно охарактеризовать следующими важнейшими параметрами: VПВД - объем полиэдра; RCД - радиус сферы, объем которой равен объему полиэдра Вороного-Дирихле; Nf - число граней полиэдра; DA - смещение ядра атома из геометрического центра тяжести его полиэдра Вороного-Дирихле; G3 - безразмерная величина второго момента полиэдра Вороного-Дирихле, характеризующая степень его сферичности.
Использование полиэдров Вороного-Дирихле позволяет охарактеризовать каждое межатомное взаимодействие А-Хi тремя новыми параметрами: величиной площади общей грани (Si) полиэдров Вороного-Дирихле соседних атомов А и Хi, значением телесного угла (i), под которым общая грань полиэдров Вороного-Дирихле атомов видна из точки, отвечающей положению ядра любого из них, а также объемом бипирамиды, в основании которой лежит общая грань полиэдров Вороного-Дирихле атомов А и Х, а ядра атомов находятся в апикальных позициях этой бипирамиды.
Итак, в отличие от общепринятой геометрической модели структуры кристалла (упаковки жестких сфер), в которой по существу единственной характеристикой химической связи А-Х является межъядерное расстояние, т.е. отрезок r (A-X), в стереоатомной модели трехмерным образом химической связи А-Х является бипирамида, в аксиальных позициях которой находятся сами атомы А и Х, а в экваториальной плоскости - общая грань полиэдров Вороного-Дирихле этих атомов [11-12]. Основными характеристиками этой бипирамиды являются ее высота, которая тождественна межатомному расстоянию r (А-Х), и телесный угол при вершине бипирамиды, занятой атомом А (или Х). Существенно, что постоянство r (A-Xi) в полиэдре AXn является лишь необходимым условием для вывода о равноценности связей А-Х, тогда как достаточным условием является только одновременное постоянство как r (A-Xi), так и (A-Xi) в структуре кристалла.
В стереоатомной модели структуры кристалла важнейшим параметром химической связи А-Х является величина телесного угла , под которым общая грань полиэдров Вороного-Дирихле двух атомов видна из точки, отвечающей положению ядра любого из них. В рамках этой модели критерием наличия межатомного взаимодействия А и Х в структуре кристалла является условие, что величина телесного угла соответствующей грани полиэдра Вороного-Дирихле имеет ненулевое значение. Атомы Х, удовлетворяющие требованию (A-X)>0, называются атомами окружения (или соседями) атома А. Отметим, что в общем случае атомы окружения Х подразделяются на два типа. Атомы Х, для которых центры отрезков А-Х лежат на поверхности полиэдра Вороного-Дирихле атома А считаем прямыми соседями атома А. Те же атомы Х, для которых центры отрезков А-Х не лежат на поверхности полиэдра Вороного-Дирихле атома А назовем непрямыми соседями и условимся далее отмечать все связанные с ними характеристики символом # (например, r (А - #X)), которым автоматически метятся непрямые соседи в процессе расчета характеристик полиэдра Вороного-Дирихле некоторого атома А с помощью комплекса программ TOPOS. Различие между прямыми и непрямыми соседями для двухмерного случая показано на рисунке 2.
Различие между прямыми (атомы Х) и непрямыми (атом #Z) соседями атома А в его координационной сфере.
Как известно, с квантовомеханической точки зрения атомы не имеют строго определенных границ, так как функции, описывающие строение электронных оболочек и распределение электронной плотности (r) атомов в целом, не имеют верхнего предела. Однако, поскольку эти функции фактически быстро затухают, то в качестве квантовомеханической характеристики размера атома можно принять орбитальный радиус ro его внешней электронной оболочки. Предположение, что образование сильной химической связи обусловлено совпадением положения внешних валентных орбиталей этих атомов, приводит к условию
(2)
Обнаруженное во многих случаях значительное отклонение экспериментальных значений r (A-X) от рассчитанных объясняют тем, что в кристаллах атомы находятся в возбужденных электронных состояниях, близких по энергии к основным, но с несколько отличающимися значениями ro. Эмпирической оценкой орбитальных радиусов атомов, отвечающих их реальным электронным состояниям в кристаллах, явились атомно-ионные радиусы, из которых наибольшую известность получили радиусы Слейтера (далее они обозначаются как rS). Как и в случае орбитальных радиусов ro, в слейтеровской системе радиусов атомам каждого элемента отвечает определенное и единственное значение rS, причем в большинстве случаев rS ro, где ro - орбитальные радиусы атомов по Уэберу-Кромеру.
В качестве параметра, характеризующего размер уже не изолированного (как rS), а химически связанного атома А в структуре некоторого вещества, принят упоминавшийся выше радиус сферического домена (RСД) этого атома. Значение RСД является переменным параметром, зависящим от валентного состояния атома А и природы атомов, окружающих его (химически взаимодействующих с атомом А) в структуре кристалла. Выбор именно RСД в качестве характеристики химически связанного атома обусловлен двумя существенными обстоятельствами. Во-первых, в структуре любого вещества каждому кристаллографическому сорту атомов А отвечает строго определенное значение RСД, не зависящее от каких-либо субъективных оценок, так как оно однозначно обусловлено природой и взаимным пространственным размещением ядер атомов А, Х и др. относительно друг друга. Во-вторых, по имеющимся данным объем полиэдров Вороного-Дирихле (а, значит, и эквивалентная одномерная характеристика RСД) атомов А, находящихся в определенном валентном состоянии в окружении атомов Х данной химической природы, в пределах погрешности структурного эксперимента практически не зависит от КЧ атома А. Согласно [11-12], постоянство объема полиэдров Вороного-Дирихле некоторого атома А при разных значениях его КЧ можно рассматривать как следствие образования однотипной электронной конфигурации валентной оболочки за счет химического взаимодействия с атомами окружения. К сказанному можно добавить, что в случае простых веществ как полиэдр Вороного-Дирихле, так и RСД атома имеют определенный физический смысл. C позиций стереоатомной модели структуры кристалла как плотнейшей упаковки мягких (деформируемых) сфер полиэдр Вороного-Дирихле представляет собой геометрический образ соответствующего атома в конкретном кристаллическом поле, а сферу радиуса RСД можно рассматривать как геометрический образ этого атома в поле сферической симметрии.
2.2 Основные принципы метода пересекающихся сфер
В рамках метода пересекающихся сфер любому базисному атому в кристалле присущи два радиуса: фиксированный rS, значение которого однозначно обусловлено химической природой этого атома, и переменный RСД, значение которого определяется как химическим составом, так и структурой соединения, т.е. как природой атомов окружения, так и их взаимным пространственным размещением.
С учетом постулированной двухсферной (с радиусами rS и RCД) модели квазиизолированных атомов А и Х обсудим возможные варианты парного межатомного взаимодействия (а именно: А-А, Х-Х и А-Х), с которыми в общем случае можно столкнуться в структуре любых кристаллов. Для общности примем, что в первых двух случаях взаимодействуют атомы разной химической природы, т.е. с разными наборами rS и RСД. Не вводя конкретных значений rS и RСД, а принимая только, что для атомов А RСД<rS, тогда как для Х, наоборот, RСД>rS, возможные варианты парного взаимодействия упрощенно можно описать схемой, представленной на рисунке 3. Чтобы не вводить дополнительных индексов, отмечающих природу атома (А, A, Х или X), условимся, что в записях типов пересечения (перекрывания) сфер, моделирующих соседние атомы, всегда на первом месте (т.е. слева) указана соответствующая характеристика первого (т.е. левого) атома. Например, перекрывание типа RСДrS для связи А-Х означает пересечение сферы радиуса RСД атома А со сферой радиуса rS атома Х. В качестве общего комментария к рисунку 3 остановимся на следующих моментах.
1. Два атома, находящиеся на расстояниях, превышающих суммы радиусов их внешних сфер (рисунки 3а1, 3а2, 3а3), считаются химически не связанными, так как в этом случае итоговое перекрывание их сфер (тип П0) равно нулю.
2. Химическое взаимодействие двух атомов начинается с момента пересечения внешних сфер этих атомов (рисунки 3б1, 3б2, 3б3). Чтобы далее не оговаривать разный тип перекрывающихся при этом сфер (rSrS, rSRСД или RСДRСД соответственно для контактов типа А-А, А-Х или Х-Х), назовем такое взаимодействие, при котором пересекаются (взаимопроникают) только внешние сферы, одинарным перекрыванием П1.
3. Представим, что взаимодействующая пара атомов (т.е. уже имеющая перекрывание типа П1) сближается. Тогда с некоторого межъядерного расстояния наружная сфера одного атома будет перекрываться сразу с обеими сферами соседнего атома. В зависимости от абсолютных значений rS и RСД атомов такое перекрывание может осуществляться наружной сферой либо правого (рисунки 3в1, 3в2, 3в3), либо левого (рис. 3г1, 3г2, 3г3) атома. Назовем такой тип взаимодействия двойным перекрыванием П2.
4. При сближении атомов, реализовавших перекрывание типа П2, наступит момент, начиная с которого обязательно возникнет качественно новый тип перекрывания (тройное перекрывание П3), при котором внутренние сферы обоих атомов будут перекрываться с внешней сферой соседнего (рисунки 3д1, 3д2, 3д3).
5. Сокращение межъядерного расстояния между двумя атомами, уже реализовавшими перекрывание типа П3, с некоторого момента приведет к перекрыванию также и их внутренних сфер (рисунки 3е1, 3е2, 3е3). Этот случай, при котором попарно перекрываются каждая из двух сфер одного атома с каждой из двух сфер соседнего атома, назовем четверным перекрыванием (тип П4,).
6. Таким образом, в рассмотренной модели межатомного взаимодействия сближение двух атомов в общем случае сопровождается закономерным изменением типа пересечения их сферических оболочек по ряду П0 П1 П2 П3 П4. Отметим, что если два атома идентичны не только химически (в этом случае совпадают только их значения rS), но и кристаллографически (при этом условии в общем случае равны также и их значения Rсд), то из-за требований симметрии перекрывания типа П2 для них в принципе невозможны и поэтому сразу реализуется переход П1 П3. По той же причине абсолютные значения перекрываний, отличающихся перестановкой радиусов (rSRСД и RСДrS), для таких атомов будут одинаковы, вследствие чего лишь связи А-А (или Х-Х) между кристаллографически идентичными атомами можно считать неполярными. Поэтому связи А-А (или Х-Х) между кристаллографически разными атомами из-за возможного различия Rсд атомов (позволяющего реализовать перекрывание типа П2) вопреки распространенному мнению в общем случае будут полярными.
7. Согласно сказанному, для некоторой пары атомов увеличение числа перекрываний по ряду П0 П1 П2 П3 П4 связано с уменьшением межатомного (межъядерного) расстояния. Движущей силой такого сближения является уменьшение энергии системы за счет перераспределения электронной плотности, которое можно интерпретировать либо как образование общих электронных пар (ковалентная модель), либо как переход электронов от одного атома к другому (ионная модель). В первом приближении количественной мерой такого перераспределения могут служить абсолютные значения величин перекрывания типа П1-П4. Учитывая общепринятое мнение об увеличении прочности связи при сокращении ее длины, постулируется, что наиболее сильные химические связи образуются в результате перекрываний типа П4, а самые слабые - в случае П0. Чтобы не вводить новых терминов, пересечения типа П0 рассматриваются как ван-дер-ваальсовы связи, а пересечения типа П1 считаются аналогом специфических или вторичных межатомных взаимодействий. Так как при определении КЧ атомов принято учитывать только сильные химические связи, то координационное число равно общему количеству соседних атомов, связанных с центральным только за счет пересечений типа П4, П3 и (или) П2, которые являются аналогами сильных химических взаимодействий.
Для каждого атома, ядро которого находится в общем центре двух сфер, сплошной линией обозначена сфера радиуса rS, а пунктирной - радиуса RСД. Принято, что для А (или А) RСД<rS, а для Х (или Х) RСД>rS. Штриховкой выделены области пересечения сфер соседних атомов, наличие которых является необходимым и достаточным условием реализации соответствующего типа перекрывания.
Таким образом, рассмотренный метод определения КЧ некоторого атома А (Х, Y и др.) в структуре кристалла включает следующие стадии:
а) Для анализируемой структуры проводится расчет характеристик полиэдров Вороного-Дирихле всех кристаллографически разных сортов атомов (Ai, Xi, Yi и др.), содержащихся в структуре соединения.
б) На основании полученных результатов для каждого базисного атома определяется реализующееся значение RСД, а также устанавливается природа и количество атомов, окружающих анализируемый атом в структуре кристалла. Атомами окружения считаются все атомы, полиэдры Вороного-Дирихле которых имеют общую грань с полиэдром Вороного-Дирихле анализируемого атома (для них >0). Отметим, что в общем случае контактам с непрямыми соседями #X отвечают аномально низкие значения (A - #X) и большие r (А - #X). Поэтому далее любые контакты типа А - #X (независимо от состава и строения соединений, природы атомов А и #Х, конкретных значений r (А-#X) и (A-#X), а также типа пересечений) в качестве химических связей не рассматриваются.
в) Для анализируемого атома и каждого из атомов его окружения (в том числе и непрямых соседей #X, если они имеются) рассчитываются численные значения парных перекрываний rSrS, rSRСД, RСДrS и RСДRСД соответствующих сфер.
г) Проводится классификация всех парных межатомных взаимодействий с участием анализируемого атома на сильные (пересечения типа П4, П3 и П2) и слабые (тип П1 или П0).
д) Значение КЧ атома принимается равным общему количеству образованных им сильных химических связей (или пересечений типа П4, П3 и П2), при этом любые пересечения с меткой #, т.е. отвечающие непрямым соседям, не учитываются.
Расчет КЧ атомов по вышеуказанному алгоритму, а также определение некоторых других параметров полиэдров Вороного-Дирихле в структуре кристаллов соединений любого состава и строения можно осуществить в настоящее время с помощью рубежом комплекса структурно-топологических программ TOPOS.
Размещено на Allbest.ru
...Подобные документы
Общее понятие о люминесценции. Лазерные кристаллы, активированные ионами Ln3+. Соединения cемейства шеелита. Редкоземельные оптические центры. Явление комбинационного рассеяния света. Метод полиэдров Вороного-Дирихле. Главные свойства молибдатов.
курсовая работа [2,8 M], добавлен 18.07.2014Описание структуры и параметров активированных кристаллов. Характеристики полиэдров Вороного-Дирихле. Исследование структуры и расчет параметров Джадда-Офельта для активированных кристаллов. Изучение структуры шеелитов методом пересекающихся сфер.
дипломная работа [1,1 M], добавлен 20.07.2015Магнитооптические и оптические свойства редкоземельных гранатов - галлатов и алюминатов. Спектр оптического поглощения параматнитного граната. Поведение полевых зависимостей зеемановского расщепления линий поглощения. Анализ результатов исследования.
статья [344,3 K], добавлен 22.06.2015Оптические свойства стекол (показатель преломления, молярная и ионная рефракция, дисперсия). Оптические свойства и строение боросиликатных стёкол, которые содержат на поверхности наноразмерные частицы серебра и меди. Методы исследования наноструктур.
дипломная работа [3,0 M], добавлен 18.09.2012Электрические методы исследования электрофизических и фотоэлектрических свойств полупроводников. Метод нестационарной спектроскопии глубоких уровней, фотопроводимость. Шумовые свойства фоторезисторов при совместном действии напряжения и фоновой засветки.
дипломная работа [1,1 M], добавлен 02.10.2015Устройство и назначение простейшего твердотельного лазера; их изготовление из рубинов, молибдатов, гранатов. Ознакомление с оптическими свойствами кристаллов и особенностями генерации света. Определение энергетических характеристик импульсного лазера.
реферат [1,5 M], добавлен 12.10.2011Структура изучения квантовой оптики в школе. Особенности методики. Изучение вопроса о световых квантах. Внешний фотоэффект. Эффект Комптона. Фотоны. Двойственность свойств света. Применение фотоэффекта. Роль и значение раздела "Квантовая оптика".
курсовая работа [61,0 K], добавлен 05.06.2008Основные оптические приборы, их применение. Зрительная система как приемник оптической информации, ее структура. Виды и устройство кинескопов черно-белого телевидения. Назначение электронного прожектора. Люминофоры, применяемые для экранов кинескопов.
реферат [1,3 M], добавлен 26.03.2010Классификация материалов по электропроводности. Сегнетоэлектрические материалы, их физические свойства и особенности применения в технике. Кристаллическая структура и физические свойства титаната бария. Зонная структура и электропроводность.
дипломная работа [6,6 M], добавлен 26.03.2012Начало развития квантовой механики. Формирование квантовых представлений. Проблемы интерпретации квантовой теории. Парадокс Эйнштейна-Подольского-Розена и его интерпретации. Неравенство Белла и открытие А.Аспекта. Физический вакуум и его свойства.
реферат [34,8 K], добавлен 06.01.2009Теневой метод и шлирен-метод визуализации Тёплера. Экспериментальная аэродинамическая сверхзвуковая установка для оптического исследования потока. Конструкция аэродинамической трубы. Создание кратковременного сверхзвукового или гиперзвукового потока газа.
лабораторная работа [1,3 M], добавлен 19.09.2014Метод неразрушающего послойного исследования внутренней структуры объекта посредством его многократного просвечивания в различных пересекающихся направлениях. Принцип работы рентгеновской компьютерной томографии (КТ). Изменение окна изображения КТ.
реферат [1,3 M], добавлен 02.06.2009"Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.
реферат [90,7 K], добавлен 21.11.2011Исследование диэлектрических свойств кристаллов со структурой перовскита методами дифференциальной диэлектрической спектроскопии. Спектры коэффициента отражения, восстановление диэлектрических функций феррита висмута. Диэлектрические и оптические функции.
курсовая работа [3,3 M], добавлен 26.03.2012Кристаллическая структура и магнитные свойства манганитов. Теплоемкость манганитов в области фазовых переходов. Основные результаты исследования температурной зависимости теплоемкости монокристаллов системы в различных магнитных полях и их обсуждение.
курсовая работа [795,4 K], добавлен 21.05.2019Изучение зеркальных оптических и атмосферных явлений. Полное внутреннее отражение света. Наблюдение на поверхности Земли происхождение миражей, радуги и полярного сияния. Исследование явлений, возникающих в результате квантовой и волновой природой света.
реферат [164,0 K], добавлен 11.06.2014Физический смысл волн де Бройля. Соотношение неопределенности Гейзенберга. Корпускулярно-волновая двойственность свойств частиц. Условие нормировки волновой функции. Уравнение Шредингера как основное уравнение нерелятивистской квантовой механики.
презентация [738,3 K], добавлен 14.03.2016Кристаллическая структура и полупроводниковые свойства карбида кремния и нитрида алюминия. Люминесцентные свойства SiC и твердых растворов (SiC)1-x(AlN)x. Технологическая установка для выращивания растворов. Электронный микроскоп-микроанализатор ЭММА-2.
дипломная работа [175,9 K], добавлен 09.09.2012Оптические свойства полупроводников. Механизмы поглощения света и его виды. Методы определения коэффициента поглощения. Пример расчета спектральной зависимости коэффициента поглощения селективно поглощающего покрытия в видимой и ИК части спектра.
реферат [1,2 M], добавлен 01.12.2010Основные характеристики и свойства металлических наноматериалов, изучение химических и физических способов их получения. Особенности применения нанотехнологий в электронике, строительстве, медицинской науке, растениеводстве, животноводстве и ветеринарии.
реферат [1,4 M], добавлен 06.02.2011