Принципы работы электрических установок и меры безопасности при их эксплуатации
Сущность и предназначение электромагнитной индукции, особенности первичных средств пожаротушения и трансформатора тока. Принцип работы магнитного пускателя, достоинства асинхронных электродвигателей. Конструктивная схема вакуумной дугогасительной камеры.
Рубрика | Физика и энергетика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 16.06.2016 |
Размер файла | 675,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Билет 6
Электрические кабели в шахтах вследствие их большой протяженности являются наиболее уязвимым элементом электрооборудования, поэтому в обеспечении безопасности значительную роль играет соответствие кабеля условиям его эксплуатации. Конструкция кабеля в значительной степени определяет безопасную работу кабельной сети. Для передачи и распределения электроэнергии в подземных выработках применяются бронированные и гибкие кабели.
Электроснабжение потребителей, установленных в подземных выработках, в соответствии с правилами безопасности осуществляется с помощью кабелей с негорючими или защитными покровами, не распространяющими горение. Для стационарной прокладки используются кабели с медными или алюминиевыми жилами в свинцовой или алюминиевой оболочке, бронированные специальными проволоками.
При наличии в выработках активной среды по отношению к алюминию кабели с алюминиевой оболочкой должны иметь усиленный антикоррозионный покров заводского исполнения. Применение кабелей в алюминиевой оболочке и с алюминиевыми жилами в шахтах, опасных по газу и пыли, не разрешается.
Для прокладки в вертикальных и наклонных выработках (уклон более 45°) применяют в основном бронированные кабели специального исполнения, так как при такой прокладке кабель испытывает значительные растягивающие усилия, что может привести к его разрыву. При прокладке кабелей в указанных выработках подвеска выполняется с использованием приспособлений, разгружающих кабель от действия собственной силы тяжести. Расстояние между точками крепления в наклонных выработках -- не более 3 м, в вертикальных выработках -- не более 6,5 м. По вертикальным стволам с деревянной крепью, по наклонным стволам, уклонам, подающим свежую струю и оборудованным рельсовым транспортом, прокладка силовых кабелей не разрешается.
Над почвой в горизонтальных и наклонных выработках (угол наклона до 45°), закрепленных металлической или деревянной крепью, бронированные кабели прокладываются нежестко -- с провесом. Расстояние между точками подвески должно быть не более 3 м, а между кабелями -- не менее 5 см. Кабель располагается на такой высоте, чтобы исключить возможность его повреждения транспортными средствами и чтобы в случае срыва с подвески он не мог упасть на рельсы, решетки и т. п. Жесткое крепление кабелей допускается только в выработках, закрепленных бетонной, кирпичной или подобной крепью, а также в выработках, не требующих крепления. Если в случае необходимости кабель прокладывается по почве, то он должен быть защищен от повреждений прочным ограждением из несгораемого материала.
Питание электрических машин и механизмов в очистных блоках может осуществляться с применением гибких кабелей. Гибкие кабели подвешиваются нежестко с выполнением требований, указанных ранее для подвески бронированных кабелей. Около машины гибкий кабель на протяжении не более 15 м может быть проложен по почве выработки, но таким образом, чтобы исключить возможность его повреждения машиной.
Гибкий кабель, находящийся под напряжением, не должен складываться в бухты или восьмерки, а должен быть в растянутом и подвешенном состоянии. При прокладке гибких кабелей запрещается их размещение на одной стороне выработки с вентиляционными резиновыми трубами. С машинами и электрическими аппаратами кабели соединяются только с помощью соединительных муфт.
После окончания работы передвижных машин и механизмов гибкий кабель отключается на ближайшем распределительном пункте. Для контроля изоляции кабелей применяют защиту с помощью реле утечки.
Однако установка реле утечки не освобождает обслуживающий персонал от периодического контроля за состоянием изоляции кабельной сети. При осмотре гибких кабелей проверяется, не имеет ли наружная оболочка кабеля порезов, проколов и других повреждений. Поврежденный кабель должен немедленно отключаться.
Средний срок службы до среднего ремонта -8лет. Срок службы до списания-25лет. Техническое обслуживание высоковольтных выключателей включает в себя следующие виды ремонтов: текущий, внеочередной и капитальный.
Текущий ремонт производится без демонтажа основных сборочных единиц и производится по мере необходимости, но не реже одного раза в год. При текущем ремонте производится внешний осмотр выключателя, проверяются все крепёжные соединения, проверяется работа всех механизмов в распределительном шкафу. Внеочередной ремонт производится после выработки коммутационного или механического ресурса, если при этом не вышел по времени срок на капитальный ремонт. При внеочередном ремонте проводятся осмотр и необходимый ремонт всех деталей модуля, при необходимости изношенные детали заменяются, производится замена всех резино-технических изделий. Капитальный ремонт выключателя с полным демонтажём сборочных единиц производится один раз в три года для устранения всех неисправностей, обнаруженных при эксплуатации. В процессе эксплуатации сжатый воздух, подаваемый на выключатель, должен иметь температуру не выше 40 єС при положительных температурах окружающего воздуха и не выше 50єС при отрицательных. Качество сжатого воздуха должно обеспечиваться установкой блока очистки. Контроль влажности сжатого воздуха осуществляется один раз в сутки. Запрещается нахождение выключателя без сжатого воздуха и действующей системы низкого давления, а также без работающих электронагревателей (при температуре окружающего воздуха ниже +5єС). При понижении температуры окружающего воздуха включаются подогреватели. При обнаружении течей масла из конденсаторов необходимо вывести выключатель из работы, сбросить давление и заменить конденсаторы. Модульный принцип построения высоковольтных выключателей позволяет при необходимости быстро заменить вышедший из строя модуль на новый. Длительность ремонта при этом заметно уменьшается, а это увеличивает надёжность работы электроустановки в целом.
Организационными мероприятиями, обеспечивающие безопасность работы в электроустановках
а) оформление работы нарядом-допуском (далее нарядом), распоряжением или перечнем работ, выполняемых в порядке текущей эксплуатации;
б) допуск к работе;
в) надзор во время работы;
г) оформление перерыва в работе, переводов на другое рабочее место, окончания работы
Минимальная защита осуществляет защиту двигателей от работы при пониженном напряжении. В качестве аппарата минимальной защиты применяются минимальные реле.
Защита, отключающая установку при снижении напряжения больше чем па 25% номинального, называется минимальной. Нулевая защита в отличие от минимальной отключает установку при полном исчезновении напряжении или же в том случае, когда напряжение будет меньше 15% номинального
Минимальные реле (рис. 17.6) представляют собой электромагнитные реле напряжения, которые могут быть первичными с мгновенным срабатыванием и с выдержкой времени при срабатывании.
При появлении номинального напряжения на фазах а, в, с катушка реле К втягивает сердечник Я и защелка з фиксирует включаемый контактор в положении «Включено»-- двигатель получает питание.
На шкале с помощью винта устанавливается предельное напряжение, при котором сила магнитного потока катушки К будет равна силе натяжения пружины 111 (на схеме -- 280 В). При снижении напряжения ниже установленного значения пружина Ш размыкает защелку з и контактор силой пружины П2 отключается. Отключение можно произвести и нажатием кнопки «Стоп».
В магнитных пускателях роль минимального реле выполняют катушки контакторов, которые рассчитываются таким образом, что при снижении напряжения не могут удерживать контакты во включенном положении и контактор отключается.
Нулевая защита предназначена для отключения потребителей при исчезновении напряжения или при снижении его до 15% UUOM и предотвращения само включения их при появлении напряжения в сети.
Эта защита нужна в первую очередь для обеспечения безопасности обслуживающего персонала. При отсутствии нулевой защиты самовключение машины может «быть причиной тяжелых травм человека.
При необходимости нулевое реле может быть поставлено в любой пускатель.
Устройство и техническое обслуживание магнитных пускателей
Магнитные пускатели переменного тока предназначены в основном для дистанционного управления асинхронными электродвигателями. Осуществляют также нулевую защиту, т. е. при исчезновении напряжения или его снижении на 40-60% от номинального магнитная система отпадает и силовые контакты размыкаются. В комплекте с тепловым реле пускатели выполняют также защиту электродвигателей от перегрузок и от токов, возникающих при обрыве одной из фаз.
Устройство. Внутри корпуса пускателя (рис. 1) размещена электромагнитная система, включающая в себя неподвижную Ш-образную часть сердечника 7 и обмотку 6, намотанную на катушку. Сердечник набран из изолированных друг от друга (для уменьшения потерь от вихревых токов) листов электротехнической стали. Подвижная часть сердечника 5 (якорь) соединена с пластмассовой траверсой 4, на которой смонтированы контактные мостики 2 с подвижными контактами. Плавность замыкания контактов и необходимое усилие нажатия обеспечиваются контактными пружинами 1. Неподвижные контакты припаяны к контактным пластинам 3, снабженным винтовыми зажимами для присоединения проводов внешней цепи. Кроме главных контактов, пускатели имеют дополнительные (блокировочные) контакты 8, расположенные на боковых поверхностях аппарата. Главные контакты закрыты крышкой, защищающей их от загрязнения, случайных прикосновений и междуфазных замыканий.
При проведении технического обслуживания (ремонта) магнитного пускателя необходимо:
1. Провести внешний осмотр магнитного пускателя для выявления механических повреждений корпуса; проверки наличия всех деталей магнитного пускателя. Отсутствующие детали могут прямым образом влиять на работоспособность магнитного пускателя.
2. Провести ревизию механической части магнитного пускателя, а именно: рабочей пружины и якоря электромагнита. При проверке якоря должны отсутствовать любые заклинивания и затруднения при его движении.
3. Произвести зачистку контактов. Зачистку контактов магнитного пускателя следует производить при наличии явных следов нагара или оплавления с применением надфиля. Применение наждачной бумаги для зачистки контактов категорически запрещено.
4. Проверить отсутствие замыканий между отдельными контактами магнитного пускателя и замыканий между контактом и металлическим корпусом магнитного пускателя.
5. Осмотреть катушку пускателя. На катушке магнитного пускателя не должны быть сколы, трещины, следы нагара или оплавления изоляции. Дефекты катушки магнитного пускателя могут привести к повышенному шуму при работе аппарата. Кроме того, повышенный шум может быть вызван недостаточным уровнем напряжения в сети или слишком большим усилием возвратной пружины.
6. Провести осмотр теплового реле (при его наличии). В первую очередь стоит обратить внимание на величину уставки теплового реле.
Электрический ток оказывает отрицательное воздействие на человека и является опасным производственным фактором. При этом возможны следующие виды электротравм:
- электрический ожог;
- электрические знаки - возникают в местах контакта человека с токоведущими частями;
- металлизация кожи - проникновение в кожу мельчайших частиц металла;
- электроофтальмия - воспаление наружных оболочек глаз;
- электрический удар - электротравма, вызванная реакцией нервной системы на раздражение электрическим током.
Основными причинами поражения электрическим током являются:
- нарушение правил технической эксплуатации электроустановок; прикосновение к токоведущим частям;
- прикосновение к металлическим нетоковедущим частям, оказавшимся под напряжением из-за неисправности изоляции или заземляющих устройств.
В сухих помещениях для жизни человека опасно напряжение свыше 42 В, в сырых и особо влажных помещениях, в котлах, стальных и железобетонных резервуарах, колодцах и на земле - свыше 12 В.
Если человек попадает под напряжение, то через его тело протекает электрический ток. Действие электрического тока на человека зависит от многих факторов: от рода тока (переменный или постоянный); при переменном токе - от его частоты; от величины тока (или напряжения); длительности протекания тока; от пути прохождения тока через тело человека; физического и психического состояния человека.
Наиболее опасным для человека является переменный ток с частотой 50 - 500 Гц. Способность самостоятельного освобождения от тока такой частоты у большинства людей сохраняется при очень малой величине тока (до 10 мА). Величина тока, проходящего через попавшего под напряжение человека, зависит от величины напряжения установки и сопротивления всех элементов цепи, по которым протекает ток.
Применяют различные средства и их сочетания, так как единственная мера не обеспечивает требуемый уровень защиты.
1 - Изоляция токоведущих частей (рабочая, дополнительная, двойная, усиленная).
Рабочая обеспечивает безопасность электроустановок в заданном режиме работы.
Дополнительная - как дополнительная к рабочей в случае поражения последней.
Двойная - рабочая и дополнительная (в виде пластмассовых корпусов).
Усиленная - улучшенная рабочая (в случае невозможного применения двойной).
2 - Компенсация емкостных составляющих
3 - Оградительные устройства
4 - Предупредительная сигнализация
5 - Знаки безопасности
6 - Использование малых напряжений
7 - Элементарные разделения сетей
8 - Средства индивидуальной электрозащиты
9 - Защитное заземление
10 - Выравнивание потенциалов
11 - Зануление
12 - УЗО
Билет 7
Асинхронный электродвигатель имеет две основные части - статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
Достоинства асинхронных электродвигателей
Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.
Устройство асинхронных электродвигателей с фазным ротором
Основными частями любого асинхронного двигателя является неподвижная часть - статор и вращающая часть, называемая ротором.
Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.
Фазы обмотки можно соединить по схеме ''звезда'' или "треугольник" в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют "звездой". Если же напряжение сети 220 В, то обмотки соединяют в "треугольник". В обоих случаях фазное напряжение двигателя равно 220 В.
Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.
В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.
Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).
Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.
Принцип работы асинхронных электродвигателей
Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. щ1=2рf/p
Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора щ2 не равна угловой скорости магнитного поля щ1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.
Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля щ1 и ротора щ2: s=(щ1-щ2)/щ1
Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: щ2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.
При вращении ротора со скоростью щ2>щ1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1ч0), генераторный (s=0ч-?) режимы и режим противовключення (s=1ч+?). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.
Бпокировочное реле утечки (БРУ) испопьзувтся в коммутационных аппаратах, применяемых преимущественно в пожароопасных и взрывоопасных средах, например в подземных выработках угопьных шахт дпя автома тическогО измерения сопротивления изопяции относительно земли и отключенных линиях и электроустановках, При испопьзовании ка белей с заземленными экранами ВРУ контролирует также сопротивление межфазной изопя- )0 ции, Известны БРУ с источником выпрямпецного оперативного тока, один полюс которого заземпяется, а к другому подключено репе, которое через блок — контакт ипи короткозамыкатепь коммутационного аппарата присоединяется к откп|оченной линии ипи электроустановке. Если сопротивпение изоляции линии уменьшается до предельной вепичипы, то БРУ срабатывает и своим размыкаюшим 2в контактом размыкает цепь вкшочения коммутационного аппарата
Однако в этих БРУ при потере цепи блокконтакта ипи короткозамыкателя, присоединяющих измерительный блок к линии ипи эпек- .25 троустановке, це предотвраинается включение эпектрооборудования с пониженным сопротивпением изспяццци относительно земля.
Наиболее бпизким к предлагаемому явпяется бпокировочное репе утечки содержащее измеритепьцый бпок, соединенный через источцик оперативного тока н блок-контакт коммутациойного аппарата с исполнительным блоком, выход которого соединен с цепью включения коммутационного аппарата (21 .
При испопьзовании указанного устройства не искпючается возможность включения эпектроустацовкп с цеудовпетворитепьцым сопротивлением изоляции относительно земли при потере указанного контакта коцсактора, так как в этом случае прерывас.тся цепь оперативного тока.
Белью изобретения является повышение надежности путем запрета на вкпючецие электрооборудования с пониженным сопротивлением м иаопяци и.
Эта цель достигается тем, что бпокнровочное реле утечки, содержащее измеритепьный бпок, соединенный через источник опе ративного тока и бпок-контакт коммутацион60407 4 ьпокировочное реле утечки, содержащее измерительный блок, соединенный через источник оперативного тока и блок-контакт. коммутационного аппарата с исполнитель,ным блоком, выход которого соединен с цепью включения коммутационного аппарата отличающееся тем,что,с целью повышения надежности путем запрета на включение электрооборудования с пони женным сопротивлением изоляции, оно до3 ного аппарата с исполнительным блоком, выход которого соединен с цепью вк почениа коммутационного аппарата, дополнено по
Билет9
Предназначен он для защиты электрических цепей от короткого замыкания, изменения напряжения, перегрузок и других нарушений режимов работы цепи, а также для ручного отключения и выключения линий и потребителей электроэнергии.
Время срабатывания нормального автомата колеблется от 0,02 до 0,1 с
Для защиты от короткого замыкания в АВ имеется электромагнитный расцепитель. Электрический ток протекает через катушку электромагнита. Если сила тока превышает установленное значение, электромагнит притягивает к себе контакт, который приводит в действие размыкающий механизм. Быстродействующие расцепители реагируют на ток большей силы при КЗ.
Для защиты от перегрузок предусмотрен термический расцепитель. Он представляет собой биметаллическую пластину, которая нагревается, когда по ней протекает ток. Если ток слишком велик, пластина перегревается и деформируется, тем самым размыкая электрическую цепь. Расцепители этого типа срабатывают не сразу, а с задержкой. Ток КЗ способен разрушить это устройство.
1. 1. Верхняя клемма для подключения;
2. 2. Неподвижный силовой контакт;
3. 3. Подвижный силовой контакт;
4. 4. Дугогасительная камера;
5. 5. Гибкий проводник;
6. 6. Электромагнитный расцепитель (катушка с сердечником);
7. 7. Ручка для управления;
8. 8. Тепловой расцепитель (биметаллическая пластина);
9. 9. Винт для регулировки теплового расцепителя;
10. 10. Нижняя клемма для подключения;
Отверстие для выхода газов (которые образовываются при горении дуги
Многоскоростные электродвигатели - асинхронные двигатели с несколькими ступенями частоты вращения, предназначены для привода механизмов, требующих ступенчатого регулирования частоты вращения.
Многоскоростные электродвигатели - электродвигатели специальной конструкции. Они имеют особую обмотку статора и нормальный короткозамкнутый ротор.
Наиболее простым способом получения двух разных чисел пар полюсов является устройство на статоре асинхронного двигателя двух независимых обмоток. Электротехнической промышленностью выпускаются такие двигатели с синхронными скоростями вращения 1000/1500 об/мин.
Существует, однако, ряд схем переключения проводников обмотки статора, при которых одна и та же обмотка может создать различные числа полюсов. Простое и широко распространенное переключение такого рода показано на рис. 1, а и б. Катушки статора, включенные последовательно, образуют две пары полюсов (рис. 1, а). Те же катушки, включенные в две параллельные цепи, как это показано на рис. 1, б, образуют одну пару полюсов.
Промышленность выпускает многоскоростные однообмоточные электродвигатели с последовательно-параллельным переключением и с отношением скоростей 1:2 с синхронными скоростями вращения 500/1000, 750/1500, 1500/3000 об/мин.
Описанный выше способ переключения не является единственным. На рис. 1, в приведена схема, образующая такое же число полюсов, как и схема, представленная на рис. 1, б.
Наибольшее распространение в промышленности получил, однако, первый способ последовательно-параллельного переключения, так как при таком переключении от обмотки статора может быть выведено меньше проводов, а следовательно, и переключатель может быть проще.
Три фазовые обмотки могут быть включены в трехфазную сеть звездой или треугольником. На рис. 2, а и б показано широко распространенное переключение, при котором электродвигатель для получения меньшей скорости включается треугольником с последовательным соединением катушек, а для получения большей скорости -- звездой с параллельным соединением катушек (так называемой двойной звездой).
Наряду с двухскоростными электропромышленность выпускает также трехскоростные асинхронные двигатели. В этом случае статор электродвигателя имеет две отдельные обмотки, одна из которых обеспечивает две скорости путем описанного выше переключения. Вторая обмотка, включаемая обычно в звезду, обеспечивает третью скорость.
При наличии на статоре электродвигателя двух независимых обмоток, каждая из которых допускает переключение полюсов, можно получить четырехскоростной электродвигатель. Числа полюсов подбирают при этом так, чтобы скорости вращения составили нужный ряд. Схема такого электродвигателя представлена на рис. 2, в.
Следует заметить, что вращающееся магнитное поле будет наводить в трех фазах неработающей обмотки три э. д. с, одинаковые по величине и сдвинутые по фазе на 120°. Геометрическая сумма этих электродвижущих сил, как известно из электротехники, равна нулю. Однако, вследствие неточной синусоидальности фазовых э. д. с. тока сети, сумма этих э. д. с. может быть отличной от нуля. В этом случае в замкнутой неработающей обмотке возникает ток, нагревающий эту обмотку.
В целях предотвращения этого явления схему переключения полюсов составляют таким образом, чтобы неработающая обмотка была разомкнута (рис. 12, в). Вследствие небольшой величины указанного выше тока у некоторых электродвигателей, разрыва замкнутого контура неработающей обмотки иногда не делают.
Выпускаются двухобмоточные трехскоростные двигатели, имеющие синхронные скорости вращения 1000/1500/3000 и 750/1500/3000 об/мин, и четырехскоростные двигатели, имеющие 500/750/1000/1500 об/мин. Двухскоростные двигатели имеют шесть, трехскоростные -- девять и четырехскоростные -- 12 выводов к переключателю полюсов.
Следует заметить, что существуют схемы двухскоростных двигателей, которые при одной обмотке позволяют получить скорости вращения, отношение которых не равно 1:2. Такие электродвигатели обеспечивают синхронные скорости вращения 750/3000, 1000/1500, 1000/3000 об/мин.
Путем использования специальных схем одной обмотки можно получить также три и четыре различных числа пар полюсов. Такие однообмоточные многоскоростные электродвигатели отличаются значительно меньшими габаритными размерами, чем двухобмоточные двигатели с теми же параметрами, что весьма важно для станкостроения.
Кроме того, у однообмоточных электродвигателей несколько выше энергетические показатели и меньше трудоемкость изготовления. Недостатком однообмоточных многоскоростных электродвигателей является наличие большего числа проводов, вводимых к переключателю.
Сложность переключателя определяется, однако, не столько числом выведенных наружу проводов, сколько числом одновременно осуществляемых переключений. В связи с этим были разработаны схемы, позволяющие при наличии одной обмотки получить три и четыре скорости при относительно простых переключателях.
Такие электродвигатели выпускаются станкостроительной промышленностью при синхронных скоростях 1000/1500/3000, 750/1500/3000, 150/1000/1500, 750/1000/1500/3000, 500/750/1000/1500 об/мин.
Рассмотрим эту формулу применительно к вопросам регулирования скорости асинхронного двигателя.
Наибольшая продолжительно допустимая сила тока в роторе определяется допустимым нагревом и, следовательно, является примерно постоянной величиной. Если регулирование скорости ведется с постоянным магнитным потоком, то при всех скоростях двигателя наибольший длительно допустимый момент будет также величиной постоянной. Такое регулирование скорости называется регулированием с постоянным моментом.
Регулирование скорости изменением сопротивления в цепи ротора является регулированием с постоянным предельно допустимым моментом, так как магнитный поток машины при регулировании не изменяется.
Предельно допустимая полезная мощность на валу электродвигателя при меньшей скорости вращения (и, следовательно, большем числе полюсов) определяется выражением
где Iф1 -- фазовый ток, предельно допустимый по условиям нагрева; Uф1 -- фазовое напряжение статора при большем числе полюсов.
Предельно допустимая полезная мощность на валу электродвигателя при большей скорости вращения (и меньшем числе полюсов) где Iф2 -- фазовый ток, предельно допустимый по условиям нагрева при второй схеме включения статора; Uф2-- фазовое напряжение в этом случае.
При переходе от соединения треугольником к соединению звездой фазовое напряжение уменьшается в v2 раза. Таким образом, при переключении со схемы а на схему б (рис. 2) получим отношение мощностей
Иначе говоря, мощность на меньшей скорости составляет 0,86 мощности на большей скорости вращения ротора. Имея в виду относительно небольшое изменение наибольшей длительно допустимой мощности на обеих скоростях, такое регулирование условно именуют регулированием при постоянной мощности.
Если при последовательном соединении половин каждой фазы воспользоваться соединением звездой, а затем переключить на соединение параллельной звездой (рис. 2, б), то получим Или
Таким образом, в данном случае имеет место регулирование скорости с постоянным моментом. У металлорежущих станков приводы главного движения требуют регулирования скорости с постоянной мощностью, а приводы подач -- регулирования скорости с постоянным моментом.
Приведенные выше выкладки соотношения мощностей при высшей и низшей скоростях носят приближенный характер. Не была, например, учтена возможность повышения нагрузки на высоких скоростях вследствие белее интенсивного охлаждения обмоток; принятое равенство также очень приближенно. Так, для двигателя 4А имеем
В результате соотношение мощностей для этого двигателя P1/P2 = 0,71. Такие же примерно соотношения имеют место и для других двухскоростных двигателей. Новые однообмоточные многоскоростные электродвигатели в зависимости от схемы переключения допускают регулирование скорости с постоянной мощностью и с постоянным моментом. Небольшое число ступеней регулирования, которое может быть получено у асинхронных двигателей с переключением полюсов, обычно позволяет использовать такие двигатели на станках только при наличии специально сконструированных коробок скоростей.
Билет 9
Принцип действия асинхронного двигателя
Принцип действия асинхронного двигателя. Трехфазные асинхронные двигатели являются самыми распространенными электрическими двигателями и применяются для привода различных станков, насосов, вентиляторов, компрессоров, грузоподъемных механизмов, а также на э. п. с. переменного тока в качестве двигателей вспомогательных машин..
Асинхронный двигатель состоит из неподвижной части статора 1 (рис. 248, а), на котором расположены обмотка 2 статора, и вращающейся части -- ротора 3 с обмоткой 4. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка 2 статора представляет собой трехфазную или в общем случае многофазную обмотку, катушки которой размещают равномерно вдоль окружности статора. Фазы этой обмотки А-Х, B-Y и C-Z размещены равномерно по окружности статора; они соединяются «звездой» (рис. 248,б) или «треугольником» и подключаются к сети трехфазного тока.
Рис. 248. Электромагнитная схема асинхронного двигателя (а), схема включения его обмоток (б) и пространственное распределение вращающего магнитного поля (в) в двухполюсной машине
При подключении обмотки статора к сети создается синусоидально распределенное вращающееся магнитное поле 5 (рис. 248, в). Оно индуцирует в обмотках статора и ротора э. д. с. e1 и е2. Под действием э. д.с. е2 по проводникам ротора будет проходить электрический ток i2. На рис. 248, а показано согласно правилу правой руки направление э. д. с. е2, индуцированной в проводниках ротора при вращении магнитного потока Ф, по часовой стрелке (при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки). Если ротор неподвижен или частота его вращения п меньше синхронной частоты n1, активная составляющая тока ротора совпадает по фазе с индуцированной э. д. с. е2, при этом условные обозначения (крестики и точки) показывают одновременно и направление активной составляющей тока i2.
На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарная сила Fрез, приложенная ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения соответствует равенству электромагнитного момента М тормозному, приложенному к валу от приводимого во вращение механизма и внутренних сил трения.
Э.д.с, индуцированная в проводниках обмотки ротора, зависит от частоты их пересечения вращающимся полем, т. е. от разности частот вращения магнитного поля n1 и ротора n. Чем больше разность n1-- n, тем больше э. д. с. е2. Следовательно, необходимым условием для возникновения в асинхронной машине электромагнитного вращающего момента является неравенство частот вращения n1 и n. Только при этом условии в обмотке ротора индуцируется э. д. с. и возникает ток i и электромагнитный момент М. По этой причине машина называется асинхронной (ротор ее вращается несинхронно с полем). Иногда ее называют индукционной ввиду того, что ток в роторе возникает индуктивным путем, а не подается от какого-либо внешнего источника.
Для характеристики отставания частоты вращения ротора двигателя от частоты вращения магнитного поля служит скольжение, его выражают в относительных единицах или процентах:
s = (n1-- n) /n1 или s = [(n1-- n) /n1] 100% (81)
Если, например, четырехполюсный двигатель имеет s = 4%, то частота вращения его ротора равна 1440 об/мин (частота вращения поля при частоте 50 Гц составляет 1500 об/мин, а отставание ротора от частоты поля равно 4 % от 1500 об/мин, т. е. 60 об/мин). В двухполюсном двигателе при s = 4% частота вращения ротора составляет 2880 об/мин (3000--0,04*3000 = 2880).
Частота вращения ротора, выраженная через скольжение,
n = n1(1 - s) (82)
По своей конструкции различают двигатели с фазным ротором (с контактными кольцами) и с короткозамкнутым ротором. Они имеют одинаковую конструкцию статора и отличаются выполнением ротора. Пусковые свойства этих двигателей различны.
Схема управления двигателем с помощью магнитного пускателя
Схема показана на рисунке.
При нажатии на кнопку SB2 "Пуск" на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем (N). Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке "Пуск". Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.
Билет 10
Синхронные двигатели. Конструкция, принцип действия
В отличие от асинхронного двигателя частота вращения синхронного двигателя постоянная при различных нагрузках. Синхронные двигатели находят применение для привода машин постоянной скорости (насосы, компрессоры, вентиляторы).
В статоре синхронного электродвигателя размещается обмотка, подключаемая к сети трехфазного тока и образующая вращающееся магнитное поле. Ротор двигателя состоит из сердечника с обмоткой возбуждения. Обмотка возбуждения через контактные кольца подключается к источнику постоянного тока. Ток обмотки возбуждения создает магнитное поле, намагничивающее ротор.
Роторы синхронных машин могут быть явнополюсными (с явновыраженными полюсами) и неявнополюсными (с неявновыраженными полюсами). На рис. 12.10а изображен сердечник 1 явнополюсного ротора с выступающими полюсами. На полюсах размещены катушки возбуждения 2. На рисунке 12.10б изображен неявнополюсной ротор, представляющий собой ферромагнитный цилиндр 1. На поверхности ротора в осевом направлении фрезеруют пазы, в которые укладывают обмотку возбуждения 2.
Рис. 12.10
Рассмотрим принцип работы синхронного двигателя на модели (рис. 12.11).
Рис. 12.11 |
Вращающееся магнитное поле статора представим в виде магнита 1. Намагниченный ротор изобразим в виде магнита 2. Повернем магнит 1 на угол б. Северный магнитный полюс магнита 1 притянет южный полюс магнита 2, а южный полюс магнита 1 - северный полюс магнита 2. Магнит 2 повернется на такой же угол б. Будем вращать магнит 1. Магнит 2 будет вращаться вместе с магнитом 1, причем частоты вращения обоих магнитов будут одинаковыми, синхронными, n2 = n1. |
Синхронный двигатель, на роторе которого отсутствует обмотка возбуждения, называется синхронным реактивным двигателем.
Ротор синхронного реактивного двигателя изготавливается из ферромагнитного материала и должен иметь явновыраженные полюсы. Вращающееся магнитное поле статора намагничивает ротор. Явнополюсный ротор имеет неодинаковые магнитные сопротивления по продольной и поперечной осям полюса. Силовые линии магнитного поля статора изгибаются, стремясь пройти по пути с меньшим магнитным сопротивлением. Деформация магнитного поля вызовет, вследствие упругих свойств силовых линий, реактивный момент, вращающий ротор синхронно с полем статора.
Если к вращающемуся ротору приложить тормозной момент, ось магнитного поля ротора повернется на угол и относительно оси магнитного поля статора.
С увеличением нагрузки этот угол возрастает. Если нагрузка превысит некоторое допустимое значение, двигатель остановится, выпадет из синхронизма.
У синхронных двигателей отсутствует пусковой момент. Это объясняется тем, что электромагнитный вращающий момент, воздействующий на неподвижный ротор, меняет свое направление два раза за период Т переменного тока. Из-за своей инерционности, ротор не успевает тронуться с места и развить необходимое число оборотов.
В настоящее время применяется асинхронный пуск синхронного двигателя. В пазах полюсов ротора укладывается дополнительная короткозамкнутая обмотка.
Вращающее магнитное поле статора индуктирует в короткозамкнутой пусковой обмотке вихревые токи. При взаимодействии этих токов с магнитным полем статора образуется асинхронный электромагнитный момент, приводящий ротор во вращение. Когда частота вращения ротора приближается к частоте вращения статорного поля, двигатель втягивается в синхронизм и вращается с синхронной скоростью. Короткозамкнутая обмотка не перемещается относительно поля, вихревые токи в ней не индуктируются, асинхронный пусковой момент становится равным нулю.
Синхронные двигатели
В синхронном двигателе (СД) ротор вращается со скоростью вращения магнитного поля, т.е. wд=wФ или S=0. Механическая характеристика СД горизонтальна (g=Ґ). СД практически не используются в САР, т. к. регулирование скорости возможно только частотным методом. Кроме того, многие СД не имеют собственного пускового момента.
Обмотки статора СД создают вращающееся магнитное поле и по конструкции принципиально не отличаются от таковых в АСД. В зависимости от конструкции ротора, устройство и материал которого в значительной мере определяют природу возникновения электромагнитного момента и рабочие характеристики, СД подразделяются на три типа: с активным ротором (постоянными магнитами); реактивные; гистерезисные. Особую группу составляют двигатели дискретного действия - шаговые двигатели, которые в силу слежения ротора за магнитным полем следует отнести к синхронным двигателям.
Синхронные двигатели с активным ротором
Ротор таких СД состоит из двух основных частей: а) постоянных магнитов, создающих магнитный поток возбуждения ротора и обеспечивающих возникновение электромагнитного момента в синхронном режиме; б) короткозамкнутой обмотки типа «беличья клетка», обеспечивающей возникновение электромагнитного момента в процессе асинхронного пуска.
Электромагнитный момент создается в результате взаимодействия вращающегося поля статора с полем возбуждения ротора, которые вращаются с одинаковой скоростью.
Электромагнитный момент СД в синхронном режиме в случае симметричной магнитной цепи и при незначительном активном сопротивлении обмотки статора определяется уравнением, известным из общей теории синхронных машин активного типа [2]:
(3.1)
где m - число фаз статора; U - фазное напряжение на обмотке статора; Eо - э.д.с., наводимая магнитным потоком ротора в обмотке фазы статора; wс - синхронная угловая скорость; Xс - индуктивное сопротивление обмотки статора; q - сдвиг по фазе между векторами U и Eо.
Угол q в синхронном режиме зависит от момента нагрузки на валу двигателя. Угловая характеристика, соответствующая уравнению (3.1), изображена на рис. 3.1. сплошной линией.
В реальных СД с постоянными магнитами магнитная система несимметрична. Активное сопротивление обмотки статора СД небольшой мощности, обычно используемых в САУ, соизмеримо с индуктивными сопротивлениями. Поэтому существенная часть потребляемой мощности теряется на активном сопротивлении обмотки статора.
Оба указанных фактора влияют на значение электромагнитного момента Mс и его зависимость от угла q. Эта зависимость приведена на рис. 3.1. пунктиром.
У СД с постоянными магнитами применяют асинхронный метод пуска. Вращающееся магнитное поле статора во взаимодействии с токами, наведенными в короткозамкнутой обмотке ротора, создает асинхронный момент Mа. Особенность пуска таких двигателей заключается в том., что поток от постоянных магнитов ротора при вращении ротора наводит в обмотках статора э.д.с., частота которой не равна частоте напряжения питания. Под действием э.д.с. в цепи обмоток статора проходят токи, которые во взаимодействии с вызвавшим их потоком ротора создают тормозной момент Mт. Для уменьшения тормозного момента Mт необходимо снижать поток постоянных магнитов ротора.
Оптимальной является такая степень возбуждения ротора, которая обеспечивает наилучшие характеристики в синхронном режиме при заданных пусковых характеристиках.
В мощных СД может использоваться электромагнитное возбуждение ротора. На обмотку ротора через коллектор подается постоянное напряжение, создающее магнитное поле возбуждения ротора. При пуске постоянное напряжение отключается от обмотки ротора, которая на время пуска подключается к сопротивлению. Пусковой момент создается обмоткой типа «беличья клетка».
Такие СД имеют наиболее оптимальные рабочие и пусковые характеристики. Однако они практически не применяются в САУ, где энергетические характеристики не являются решающими. Основные причины этого заключаются в следующем:
1) для работы двигателя необходимы два источника питания: переменного и постоянного тока;
2) скользящий контакт кольца-щетки снижает надежность двигателя и усложняет его конструкцию;
3) требуется специальная пусковая схема, отключающая на период разгона обмотку ротора от источника постоянного тока и подключающая ее к внешнему сопротивлению.
Блок реле утечки РУ-127/220 МК предназначен для защиты людей от поражения электрическим током и других опасных последствий утечек тока на землю в электрических сетях трехфазного переменного тока частотой 50 Гц напряжением 127 и 220 В с изолированной нейтралью трансформатора.
Блок защиты встраивается в распределительное устройство шахтных источников питания типа ИПШ, применяемых в подземных выработках и на поверхности угольных и горнорудных предприятий.
Основные - это те средства защиты, изоляция которых длительно выдерживает рабочее напряжение. Они позволяют прикасаться к токоведущим частям под напряжением. К ним относятся:
- изолирующие штанги;
- изолирующие и электроизмерительные клещи;
- диэлектрические перчатки;
- диэлектрическая обувь;
- слесарно-монтажный инструмент с изолирующими рукоятками;
- указатели напряжения.
Дополнительные изолирующие средства сами по себе не обеспечивают защиту от электрического тока, а применяются совместно с основными средствами. Это изолирующие подставки, коврики, боты.
Ограждающие защитные средства служат для временного ограждения токоведущих частей, а также для предупреждения ошибочных действий в работе с коммутационной аппаратурой. Это переносные ограждения, щиты, изолирующие накладки, переносные заземления.
Вспомогательные средства служат для защиты от падения с высоты, тепловых воздействий. К ним относятся предохранительные пояса, страхующие канаты, когти, очки, рукавицы и противогазы. Согласно ПУЭ все электрические устройства подвергаются испытаниям на механическую и электрическую прочность.
Персонал, обслуживающий электроустановки, снабжается всеми необходимыми защитными средствами, обеспечивающими безопасность работы.
Все находящиеся в эксплуатации электрозащитные средства должны быть пронумерованы. Номер наносится непосредственно на самом защитном средстве и может быть совмещен со штампом об испытании.
В цехах, на подстанции (при централизованном обслуживании - в службе, на участке), в лаборатории, на участках строительно - монтажных организаций и т.п. необходимо вести журналы учета и содержания средств защиты, в которых должны указываться: наименование, инвентарные номера, местонахождение, даты периодических испытаний и осмотров. Журналы один раз в 6 месяцев должны проверяться лицом, ответственным за состояние средств защиты.
Средства защиты, находящиеся в индивидуальном пользовании, также должны быть зарегистрированы в журнале учета и содержания средств защиты с указанием даты выдачи и с подписью лица, получившего их.
Билет 11
Назначение. Машины постоянного тока применяют в качестве электродвигателей и генераторов. Электродвигатели постоянного тока имеют хорошие регулировочные свойства, значительную перегрузочную способность и позволяют получать как жесткие, так и мягкие механические характеристики. Поэтому их широко используют для привода различных механизмов в черной металлургии (прокатные станы, кантователи, роликовые транспортеры), на транспорте (электровозы, тепловозы, электропоезда, электромобили), в грузоподъемных и землеройных устройствах (краны, шахтные подъемники, экскаваторы), на морских и речных судах, в металлообрабатывающей, бумажной, текстильной, полиграфической промышленности и др. Двигатели небольшой мощности применяют во многих системах автоматики.
Конструкция двигателей постоянного тока сложнее и их стоимость выше, чем асинхронных двигателей. Однако в связи с широким применением автоматизированного электропривода и тиристорных преобразователей, позволяющих питать электродвигатели постоянного тока регулируемым напряжением от сети переменного тока, эти электродвигатели широко используют в различных отраслях народного хозяйства.
Генераторы постоянного тока ранее широко использовались для питания электродвигателей постоянного тока в стационарных и передвижных установках, а также как источники Электрической энергии для заряда аккумуляторных батарей, питания электролизных и гальванических ванн, для электроснабжения различных электрических потребителей на автомобилях, самолетах, пассажирских вагонах, электровозах, тепловозах и др.
Недостатком машин постоянного тока является наличие щеточноколлекторного аппарата, который требует тщательного ухода в эксплуатации и снижает надежность работы машины. Поэтому в последнее время генераторы постоянного тока в стационарных установках вытесняются полупроводниковыми преобразователями, а на транспорте -- синхронными генераторами, работающими совместно с полупроводниковыми выпрямителями.
Предназначены для регулируемых электроприводов и рассчитаны на питание от полупроводниковых преобразователей. Кроме того, электропромышленность выпускает ряд двигателей постоянного тока специального исполнения -- для электротяги, экскаваторов, металлургического оборудования, шахтных подъемников, буровых установок, морских и речных судов и других приводов мощностью от нескольких сотен до нескольких тысяч кВт.
Рис. 8.1. Электромагнитная схема двухполюсной машины постоянного тока (а) и эквивалентная схема ее обмотки якоря (б): 1 -- обмотка возбуждения; 2 -- главные полюсы; 3 -- якорь; 4 -- обмотка якоря; 5 -- щетки; 6 -- корпус (станина)
Принцип действия. Машина постоянного тока (рис. 8.1, а) имеет обмотку возбуждения, расположенную на явно выраженных полюсах статора. По этой обмотке проходит постоянный ток Iв , который создает магнитное поле возбуждения Фв . На роторе расположена двухслойная обмотка, в которой при вращении ротора индуцируется ЭДС. Таким образом, ротор машины постоянного тока является якорем, а конструкция машины сходна с конструкцией обращенной синхронной машины.
При заданном направлении вращения якоря направление ЭДС, индуцируемой в его проводниках, зависит только от того, под каким полюсом находится проводник. Поэтому во всех проводниках, расположенных под одним полюсом, направление ЭДС одинаковое и сохраняется таким независимо от частоты вращения. Иными словами, характер, отображающий направление ЭДС на рис. 8.1, а, неподвижен во времени: в проводниках, расположенных выше горизонтальной оси симметрии, которая разделяет полюсы (геометрическая нейтраль), ЭДС всегда направлена в одну сторону; в проводниках, лежащих ниже геометрической нейтрали, ЭДС направлена в противоположную сторону.
...Подобные документы
Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.
лекция [322,3 K], добавлен 10.10.2011Исследование электромагнитной индукции и магнитного потока при помощи трансформатора. Определение коэффициента трансформации и передаваемой мощности (без учета потерь) и полезного действия (КПД) трансформатора. Формулы и вычисление погрешностей.
лабораторная работа [105,1 K], добавлен 21.02.2014Защита электродвигателей в процессе их эксплуатации. Аварийные режимы работы электродвигателей. Виды защиты асинхронных электродвигателей. Электрические аппараты, применяемые для защиты электродвигателей. Схема электроснабжения ГУП ППЗ "Благоварский".
отчет по практике [1,9 M], добавлен 13.08.2012Основные этапы и правила сборки схемы управления двигателя при помощи реверсивного магнитного пускателя. Исследование порядка и принципов работы схемы данного двигателя с короткозамкнутым ротором при использовании реверсивного магнитного пускателя.
лабораторная работа [29,5 K], добавлен 12.01.2010Принцип работы и электромагнитная схема трансформатора. Назначение трансформатора тока, схема его включения. Классификация трансформаторов, их активные элементы, первичная и вторичная обмотки. Режим работы, характерный для рассматриваемого прибора.
презентация [426,9 K], добавлен 18.05.2012История открытия явления электромагнитной индукции, лежащего в основе действия электрического трансформатора. Характеристика устройства и режимов работы трансформатора. Определение габаритной мощности и коэффициента полезного действия трансформатора.
презентация [421,9 K], добавлен 20.02.2015Принцип действия асинхронного двигателя. Устройство асинхронных электродвигателей с фазным ротором. Схемы присоединения односкоростных асинхронных электродвигателей с короткозамкнутым ротором. Режимы работы электродвигателей, их монтаж и центровка.
презентация [674,1 K], добавлен 29.04.2013Характеристика цеха ООО "Статор". Расчет электрических сетей напряжением 0,4 кВ. Технология ремонта электродвигателей. Установка для пропитки статоров асинхронных электродвигателей. Пожарная опасность технологических процессов и меры профилактики.
дипломная работа [3,4 M], добавлен 11.07.2012История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.
реферат [699,1 K], добавлен 15.11.2009Выбор контакторов и магнитного пускателя для управления и защиты асинхронного двигателя. Схема прямого и обратного пуска. Реализация реверсирования двигателя. Пускатели электромагнитные, тепловые реле. Принцип действия и конструкция, условия эксплуатации.
контрольная работа [876,6 K], добавлен 25.03.2011Эталоны и меры электрических величин. Назначение, устройство, режим работы и применение измерительного трансформатора тока. Образцовые катушки индуктивности. Измерение сопротивления изоляции электроустановок, находящихся под рабочим напряжением.
контрольная работа [2,1 M], добавлен 05.11.2010Что такое трансформатор. Явление электромагнитной индукции. Схема, устройство и принцип действия. Трансформатор тока и напряжения, силовой и разделительный трансформатор, автотрансформатор. Повышение и понижение напряжения с помощью трансформатора.
презентация [3,2 M], добавлен 27.05.2015Общие теоретические сведения об аппаратах до 1000 В. Принципы и особенности работы измерительных трансформаторов, реле времени и максимального тока, контактора, автоматического выключателя, устройства защитного отключения. Работа магнитного пускателя.
дипломная работа [3,1 M], добавлен 10.03.2011Исторический обзор путей развития электрического двигателя постоянного тока. Открытие явления электромагнитной индукции М. Фарадеем в 1831 году. Выявление основных направлений и идей, которые привели к созданию современной конструкции двигателя.
отчет по практике [5,0 M], добавлен 21.11.2016Принцип работы газотурбинных установок. Принципиальная схема газотурбинной установки типа ТА фирмы "Рустом и Хорнсби", ее компоновка, габаритный чертеж. Техническая характеристика установки, преимущества и недостатки. Конструктивная схема камеры сгорания.
контрольная работа [2,2 M], добавлен 19.12.2010Измерение сопротивления проводника при помощи мостика Уитстона. Расширение пределов измерения амперметра и вольтметра. Снятие температурной характеристики терморезистора. Расчет индукции магнитного поля постоянного магнита. Принцип работы трансформатора.
методичка [7,4 M], добавлен 04.01.2012Явление электромагнитной индукции, лежащее в основе работы трансформатора. Соединение обмоток по схеме звезды и треугольника. Векторная диаграмма напряжений при соединении обмотки по схеме зигзага. Основные детали силового трансформатора, его ремонт.
реферат [288,1 K], добавлен 11.07.2015Конструкция, принцип действия, технические данные и сфера применения малообъёмных масляных и вакуумных выключателей. Назначение рабочих и дугогасительных контактов. Принцип работы дугогасительной камеры при отключении масляным выключателем малых токов.
лабораторная работа [1,9 M], добавлен 29.05.2010Организация энергохозяйства, системы, способы и новые методы ремонта электрооборудования. Устройство и принцип работы трансформатора тока. Защита трансформаторов от замыкания на корпус. Выбор трансформатора тока для подключения расчетных счетчиков.
дипломная работа [4,3 M], добавлен 25.06.2019Принцип действия расходомеров, их внешний вид. Явление электромагнитной индукции. Структурная схема электромагнитного преобразователя индукционного расходомера. Принцип работы счетчика жидкости с овальными шестернями. Коммерческая модель вольтметра.
курсовая работа [3,2 M], добавлен 04.04.2013