Стереохронодинамическая модель аксиоматической теории размерностей

Характеристика основных ступеней эволюции природы движения, исходя из иерархии миров по степени их развития. Определение особенностей субстанциональной основы всех категорий, имеющих размерность. Виды физической деформации тел в теории упругости.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 31.07.2016
Размер файла 30,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Естественные модели содержания категорий топологии

Привлекая знания не только топологии, но и естественных наук, здесь с учётом корневых смысловых значений слов приходится отметить всего ПЯТЬ уровней иерархии категорий:

I. Континуумы (множеств).

II. Множества (многообразий).

III.Многообразия (пространств).

IV.Пространства (миров конкретной природы).

V. Миры ( взаимодействий конкретной природы).

Особенности этапов эволюции самоорганизующихся систем позволяют нам обозначить эти этапы соответствующими названиями как этапы S - образного закона эволюции систем (ПЯТЬ этапов):

1. самозарождение системы.

2. самостановление.

3. самоутверждение.

4. самосовершенствование.

5. самовырождение.

Другими словами, более совершенная система является более сложной, включает в себя больше подсистем, или каждая надсистема является более развитой по отношению своих подсистем. Таким образом, отмечая иерархию миров по степени их развития можно отметить следующие ступени эволюции природы движения:

1.Физические миры.

2.Химические миры.

3.Биологические миры.

4.Психические миры.

5. Социальные миры.

2. Естественные модели размеров и размерностей в категориях топологии

С естественнонаучной точки зрения определения размерностей , и в сущности сводятся к следующим выражениям, придерживаясь терминологии и символики первоисточников:

1. Малая индуктивная размерность пространства Х равна n, если у каждой точки х есть сколь угодно малые окрестности, границы которых имеют размерность n-1 (в смысле ). Размерность пустого множества? = 0.

2. Большая индуктивная размерность пространства Х равна n, если для любых его двух не пересекающихся множеств найдётся n-1- мерное замкнутое множество, разделяющее их. Также ?=0.

3. Размерность пространства Х, определяемая с помощью покрытий пространства Х, равна n, если минимальная кратность сколь угодно малых покрытий пространства Х равна n+1. Таким образом, ни одно из этих утверждений, справедливых по существу нахождения величины размерности соответствующих пространств, не может являться определением размерности в логическом смысле, так как логически строгое определение категории, как это мы уже видели на примере определений категорий топологии континуума, множества, многообразия, пространства, требует подведения определяемой категории под более широкое понятие, такую категорию, которая является более общей по отношению к определяемой, отличающейся от боле общего своими частными особенностями. В приведенных выше топологических определениях размерности указывается на принадлежность этой категории к числу, но не указывается нигде на особенности этого числа от других чисел, не являющихся размерностью (числом линий, поверхностей, точек…).

3. Определение размерности

В качестве следствия из этого положения необходимо сделать вывод о субстанциональной природе всех категорий, имеющих размерность: точка расширяется (движется) по линии потому, что линия для точки как возможность двигаться есть (существует) изначально ПО ОПРЕДЕЛЕНИЮ, линия расширяется (движется) по поверхности потому, что поверхность для линии как возможность двигаться есть (существует) изначально ПО ОПРЕДЕЛЕНИЮ, поверхность расширяется (движется) в объём потому, что объём для поверхности как возможность двигаться есть (существует) изначально ПО ОПРЕДЕЛЕНИЮ в виде объективной субстанции. Этот атрибутивно - субстанциональный взгляд на категорию размерности позволяет нам сформулировать принципиально важные выводы:

. В качестве определения понятия размерности мира мы теперь вправе принять число независимых свойств данного мира, то есть число его атрибутов, присущих ему по определению.

. Сопоставляя этот наш атрибутивно - субстанциональный взгляд на категории размерности с известными эмпирическими положениями об объективности лишь двух видов материи (вещества и поля) и с отсутствием в природе «просто» движения в пустоте как смещения относительно «абсолютного» пространства, приходится признать, что для всех материальных объектов в виде полей или вещественных тел предполагается общая среда, в которой и локализованы все материальные объекты (тела и поля), взаимодействуя между собой по установленным законам.

Так как мы можем применять фрактальные размерности для процессов изменения размерности куба Лебега. При неизменном масштабе, так как при:

,

То

Другими словами, на основании фрактальности геометрии многочисленных процессов мы вправе распространить самый общий топологический принцип непрерывности и на размерность тех категорий топологии, для которых этот принцип является фундаментальным. Так как функциональные связи имеют одну, общую для всех миров, форму, то вследствие различного естественного содержания различных миров возможен «дефект размера» - суть дефект того «естественного содержания» при переходе от одного мира в другой! Мы ранее видели, что в этом случае такой «дефект размера» можно вычислить как определенный интеграл в пределах от до :

.

4. Естественные модели механизмов влияния природы процессов на размерности миров

Оставляя пока открытым вопрос о конкретном содержании «дополнительного свойства» и особенностях взаимодействия для каждого из миров. Особое внимание здесь на себя обращает обстоятельство, что все типы взаимодействий не оставляют места пустоте, предполагается общая среда…, то есть нет в природе «просто» движения в пустоте как смещения относительно «абсолютного» пространства…, фактически подтверждая наш атрибутивно-субстанциональный взгляд на категорию размерности. Представляется принципиально возможным понимание механизма не только классификации миров, но и механизма порождения более низким миром более высокого, то есть объективно неизбежное порождение мирами ФИЗИЧЕСКИМИ ХИМИЧЕСКИХ миров, возникновение в недрах ХИМИЧЕСКИХ миров БИОЛОГИЧЕСКИХ миров, образование в мирах БИОЛОГИЧЕСКИХ миров ПСИХИКИ и, наконец, создание мирами ПСИХИЧЕСКИМИ миров СОЦИАЛЬНЫХ!

В этом свете понятна необходимость и переходных этапов в эволюции миров, промежуточных звеньев в систематике, которые необходимо учитывать Таким образом, на приведенных наглядных примерах мы снова убеждаемся, что всякий раз увеличение размерности путём добавления нового направления- свойства создаёт новый мир с новыми величинами, объектами, имеющих свои единицы измерения.

5. Наглядные модели поведения локальных деформаций в среде как результат изменений размерностей физических миров под внешним влиянием

физический деформация субстанциональный

Теория упругости знает всего ПЯТЬ типов деформации тел: сжатие, растяжение, сдвиг, изгиб и кручение, которые известными преобразованиями не сводятся друг к другу. Вместе с этим, в механике известны многочисленные наглядные примеры тесной взаимосвязи, сопутствия друг другу сжатия и растяжения, сдвига и изгиба, сдвига и кручения и т. п. Из этих примеров самоочевидна своеобразная иерархия такого сопутствия:

1. Сжатию сопутствует растяжение.

2. Сдвигу сопутствуют сжатие и растяжение.

3. Изгибу сопутствуют сжатие, растяжение и сдвиг.

4. Кручению сопутствуют сжатие, растяжение, сдвиг и изгиб.

Действительно, обозначая компоненты нормальных напряжений в некоторой точке деформируемой среды через , а тангенциальных через , можно записать известное выражение для тензора напряжений из которого наглядно видно влияние всех компонент напряжений:

Как известно, уравнение поверхности нормальных напряжений в некоторой точке деформированной среды в прямоугольной системе координат можно выразить:

.

В частных случаях такая поверхность может принимать один из видов. Следовательно, мир деформаций мы вправе представить в качестве многомерного пространства, в котором «дополнительное» свойство представляет собой дополнительную способность данной деформации.

На основании изложенного представляется обоснованной своеобразная иерархия деформаций: 1. Сжатие. 2. Растяжение. 3. Сдвиг. 4. Изгиб. 5. Кручение.

Сопоставляя этот наш атрибутивно - субстанциональный взгляд на категории размерности с известными эмпирическими положениями об объективности лишь двух видов материи (вещества и поля) и с отсутствием в природе «просто» движения в пустоте как смещения относительно «абсолютного» пространства, приходится признать, что для всех материальных объектов в виде полей или вещественных тел предполагается общая среда, в которой и локализованы все материальные объекты (тела и поля), взаимодействуя между собой по установленным законам.

Назовём ДЕФОНОМ окрестность деформированной среды вокруг ЛОКАЛЬНОЙ ДЕФОРМАЦИИ в точке О с указанными компонентами нормальных и тангенциальных напряжений. Ясно, что субстанция в мире деформаций обладает физическими свойствами, на которые мы не имеем никаких оснований распространять традиционные в физике наши представления (о плотности, температуре, вязкости, упругости и т. п.), поэтому вынуждены здесь пока этот вопрос оставить открытым. При этом из отмеченного выше свойства совместности деформаций ясно, что плотность субстанции в таком ДЕФОНЕ сжатия больше плотности субстанции в его окрестности, что можно графически представить некоторой зависимостью:

,

где от точки О. Так как поведение таких ДЕФОНОВ определится направлениями указанных напряжений, то в этом вопросе должна быть полная определенность, обязывая нас рассмотреть его более подробно. Здесь уместно вспомнить, что понятие НАПРАВЛЕНИЯ в ГЕОМЕТРИИ определяется величиной УГЛА - величины, которая появляется лишь в двумерных мирах - поверхностях (радиан) и в трёхмерных мирах (стерадиан). При этом, если для если для однозначности величины плоского УГЛА необходимо указание его знака (правый - по часовой стрелке или левый - против часовой стрелки относительно заданного РЕПЕРА - линии), то для однозначности величины УГЛА пространственного ещё необходимо указание и его ориентации относительно поверхности (ВНУТРЕННИЙ или ВНЕШНИЙ), что непосредственно связано с радиусом кривизны соответствующей поверхности. Для иллюстрации отмеченного обстоятельства воспользуемся результатами топологических исследований векторных полей на поверхностях и др. Представим себе простейший такой сфероидный ДЕФОН сжатия в окрестности точки О тогда получим изображение векторных полей нормальных и тангенциальных(рис. 19-б) компонент напряжения в смежной со сфероидом окрестности, которые по определению ортогональны друг другу. Вместе с этим, два подобных ДЕФОНА, расположенные вблизи друг от друга, окажутся с противоположных сторон любой поверхности, которые всегда могут быть представлены замкнутыми в бесконечности по несобственной линии вокруг любого из ДЕФОНОВ, на котором - след пограничной поверхности между окрестностями ДЕФОНОВ и, имеющих характеристики и соответственно. Ясно, что радиус кривизны этой поверхности для ДЕФОНОВ и будет иметь противоположные знаки. Из отмеченных обстоятельств сразу следует необходимость сближения двух соседних таких ДЕФОНОВ - СФЕРОИДОВ сжатия, что равнозначно притяжению, оставляя пока открытым вопрос о величине такого тяготения. Разумеется, направления полей нормальных и тангенциальных компонент напряжения в смежных с другими нашими простейшими ДЕФОНАМИ окрестностями, имеющих поверхности тороида и скрученного тороида необходимо рассмотреть с этих позиций также подробно. Из одного того факта, что в отличие от односвязного сфероида тороид является двухсвязным, сразу следует вывод об отсутствии центральной симметрии векторного поля нормальных компонент напряжения, присущих сфероиду, приобретая в полярной плоскости, ортогональной экваториальной плоскости тороида, осевую симметрию, позволяя представить изменение векторного поля нормальных компонент напряжения, опуская математические преобразования, проделанные автором ранее, на котором обозначены штриховыми линиями n и - n предельные уровни значений векторного поля нормальных компонент напряжения. Из отмеченных обстоятельств снова следует вывод о необходимости сближения двух соседних таких ДЕФОНОВ-ТОРОИДОВ сжатия, что равнозначно притяжению, подобно притяжению ДЕФОНОВ-СФЕРОИДОВ, но величина такого тяготения ДЕФОНОВ-ТОРОИДОВ находится в зависимости не только от расстояния между ними, но и от относительной друг друга пространственной ориентации: в экваториальных плоскостях их взаимодействие подчиняется центральной симметрии, подобно взаимодействия ДЕФОНОВ - СФЕРОИДОВ, в полярной плоскости взаимодействие ДЕФОНОВ-ТОРОИДОВ сжатия подчиняется осевой симметрии, также здесь оставляя пока вопрос о величине такого тяготения открытым. При этом здесь важно отметить действие отмеченной особенности взаимодействия ДЕФОНОВ-ТОРОИДОВ в отличие взаимодействия ДЕФОНОВ - СФЕРОИДОВ лишь на расстояниях между ДЕФОНАМИ-ТОРОИДАМИ, сравнимыми с их собственными размерами. Представить строение, но не механизм образования ДЕФОНА- скрученного ТОРОИДА из ДЕФОНА-ТОРОИДА, ДЕФОНА - СКРУЧЕННОГО ТОРОИДА, на которых показаны ДЕФОН- ТОРОИД целый, ДЕФОН-ТОРОИД разрезан нормальной к его экватору плоскостью по А-В и торцы разреза развернуты относительно друг друга на 1800, так что точки А2 и В1 поверхности ДЕФОНА-ТОРОИДА поменялись положением, то есть А2 заняла положение В1, а В1 заняла положение А2, в результате образуя ДЕФОН-СКРУЧЕННЫЙ ТОРОИД. Как мы видели выше, деформации кручения сопутствуют все остальные виды деформации: и сжатие, и растяжение, и сдвиг, и изгиб. Поэтому особый практический интерес для нас представляет та зависимость:

,

плотности от расстояния внутри самого ДЕФОНА-СКРУЧЕННОГО ТОРОИДА и в его окрестностях, как это нами было установлено для ДЕФОНА - СФЕРОИДА, и также зависимость векторного поля нормальных компонент напряжения в его окрестности, как это мы выше обнаружили для ДЕФОНА-ТОРОИДА. В соответствии с отмеченными «УСЛОВИЯМИ СОВМЕСТНОСТИ ДЕФОРМАЦИЙ» Сен-Венана совершенно понятно, что при кручении ДЕФОНА-ТОРОИДА его поверхностный слой испытывает растяжение, которое при необходимости можно даже вычислить, сравнив длины винтовой линии от А1 до В2 или от А2 до В1 с длиной соответствующего экватора тороида. Данное обстоятельство приводит к необходимости деформации растяжения в ближайшей СКРУЧЕННОМУ ДЕФОНУ-ТОРОИДУ окрестности.

Размещено на Allbest.ru

...

Подобные документы

  • Основная идея использования метода анализа размерностей. Понятие о безразмерных величинах. Основные понятия теории подобия. Метод масштабных преобразований. Первая теорема Ньютона. Критерий Нуссельта, Фурье, Эйлера. Подобие нестационарных процессов.

    реферат [570,2 K], добавлен 23.12.2014

  • Предпосылки возникновения теории пластической деформации, этапы развития представлений. Наблюдение линий максимальных касательных напряжений. Пластические сдвиги в монокристаллах. Теория решеточных дислокаций. Модель Френкеля-Конторовой. Сила Пайерлса.

    реферат [1,1 M], добавлен 04.05.2010

  • Единица для измерения плоского угла. Основные еденицы системы СИ: килограмм, метр, секунда, ампер, кельвин, моль и кандела. Независимая размерность. Производные единицы и их получение из основных с помощью алгебраических действий. Зависимая размерность.

    контрольная работа [37,2 K], добавлен 14.11.2008

  • Свойства независимых комбинаций продольной и поперечной объемных волн. Закон Гука в линейной теории упругости при малых деформациях. Коэффициент Пуассона, тензоры напряжения и деформации. Второй закон Ньютона для элементов упругой деформированной среды.

    реферат [133,7 K], добавлен 15.10.2011

  • Особенности методов исследования технологических процессов: теоретические, экспериментальные, подобие. Общая характеристика теории подобия, его виды, расчет их некоторых параметров. Основные положения теории подобия. Специфика критериев подобия.

    реферат [2,8 M], добавлен 06.06.2011

  • Определение механики, ее место среди других наук, подразделения механики. Развитие методов механики с XVIII в. до нашего времени. Механика в России и СССР. Современные проблемы теории колебаний, динамики твердого тела и теории устойчивости движения.

    реферат [47,3 K], добавлен 19.06.2019

  • Детские годы, учеба. Научная и педагогическая карьера. Основные труды. Труды по математическому анализу, теории вероятностей, математической физике, теоретической и небесной механике, теории упругости, гидродинамике и др.

    биография [11,8 K], добавлен 06.02.2003

  • Теория напряженно-деформированного состояния в точке тела. Связь между напряженным и деформированным состоянием для упругих тел. Основные уравнения и типы задач теории упругости. Принцип возможных перемещений Лагранжа и возможных состояний Кастильяно.

    реферат [956,3 K], добавлен 13.11.2011

  • Математическая модель невозмущенного движения космических аппаратов. Уравнения, определяющие относительные движения тел-точек в барицентрической системе координат. Исследование системы уравнений с точки зрения теории невозмущенного кеплеровского движения.

    презентация [191,8 K], добавлен 07.12.2015

  • Анализ уравнения движения математического маятника. Постановка прямого вычислительного эксперимента. Применение теории размерностей для поиска аналитического вида функции. Разработка программы с целью нахождения периода колебаний математического маятника.

    реферат [125,4 K], добавлен 24.08.2015

  • Понятие о возможных перемещениях. Действительные работы внешних и внутренних сил. Потенциальная энергия стержневой системы. Теоремы Клапейрона и Бетти. Применение интеграла и формулы Мора, закона Гука. Определение перемещений методами теории упругости.

    презентация [219,6 K], добавлен 24.05.2014

  • Полевая концепция природы электричества как фундамент классической электродинамики. Доказательство, что уравнения полевой теории стационарных явлений электромагнетизма можно получить гипотетически, ориентируясь на основных эмпирических законах.

    реферат [75,9 K], добавлен 25.01.2008

  • История открытия жидких кристаллов, молекулярные аспекты их строения, виды и область применения. Получение жидкокристаллической фазы. Применение теории упругости и текучести для ЖК. Электрические свойства вещества. Сущность флексоэлектрического эффекта.

    реферат [84,9 K], добавлен 30.11.2010

  • Особенности и суть метода сопротивления материалов. Понятие растяжения и сжатия, сущность метода сечения. Испытания механических свойств материалов. Основы теории напряженного состояния. Теории прочности, определение и построение эпюр крутящих моментов.

    курс лекций [1,3 M], добавлен 23.05.2010

  • Гравитационные, электромагнитные и ядерные силы. Взаимодействие элементарных частиц. Понятие силы тяжести и тяготения. Определение силы упругости и основные виды деформации. Особенности сил трения и силы покоя. Проявления трения в природе и в технике.

    презентация [204,4 K], добавлен 24.01.2012

  • "Теория струн" или "теория всего" как одно из самых динамично развивающихся направлений современной физики. Сущность и специфика данной теории, ее экспериментальная проверка. Союз общей теории относительности и квантовой механики в "теории струн".

    практическая работа [13,4 K], добавлен 28.11.2014

  • Анализ основных научных и мировоззренческих идей физика-теоретика и крупного общественного деятеля Альберта Эйнштейна. Основополагающие принципы и постулаты специальной и общей теории относительности. Основы квантовой теории и релятивистской космологии.

    реферат [18,5 K], добавлен 14.12.2010

  • Основы теории подобия. Особенности физического моделирования. Сущность метода обобщенных переменных или теории подобия. Анализ единиц измерения. Основные виды подобия: геометрическое, временное, физических величин, начальных и граничных условий.

    презентация [81,3 K], добавлен 29.09.2013

  • Теоретические основы фрактального броуновского движения, вопросы его статистического моделирования на компьютере. Применение теории при статистическом моделировании процессов стохастической системы, описываемых линейным дифференциальным уравнением.

    дипломная работа [1,6 M], добавлен 14.03.2012

  • Законы и аксиомы динамики материальной точки, уравнения движения. Условие возникновения свободных и затухающих колебаний, их классификация. Динамика механической системы. Теорема об изменении количества движения. Элементы теории моментов инерции.

    презентация [1,9 M], добавлен 28.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.