Характеристика постоянного электрического тока как физического явления
Электродвижущая сила - физическая величина, равная работе, совершаемой сторонними силовыми источниками при перемещении по электрической цепи одного положительного заряда. Применение постоянного тока в промышленности. Сущность первого закона Кирхгофа.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.09.2016 |
Размер файла | 59,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Введение
Еще древнегреческий философ Фалес писал о свойствах янтаря, потертого шерстью, притягивать мелкие предметы. Но достаточно долгое время все знания об электричестве ограничивались этим любопытным опытом. Никто не связывал с этим явлением природные молнии, наблюдаемые во время гроз. Дальнейшее изучение электрического тока, пока без разделения на постоянный и переменный, продолжилось лишь в XVII веке. И за пару сотен лет ученые продвинулись очень далеко.
В 1600 году был введен термин "электричество", а более чем полвека спустя началось его активное изучение. Изначально разделения на постоянный и переменный ток не существовало, так что исследования были несистематичными. Первая теория, касающаяся природы электричества, была сформулирована в XVIII веке Бенджамином Франклиным, который, впрочем, остался в истории в первую очередь как политический деятель. Чуть позднее был сконструирован первый конденсатор - так называемая Лейденская банка. Тем не менее, считается, что всерьез история исследования постоянного тока началась с опытов Гальвани, касающихся, как ни странно, в первую очередь биологии, а не физики. Знаменитый итальянец буквально перевернул науку.
1. История изучения электрического тока
Луиджи Гальвани (1737-1798) был по специальности биолог, но работал в лаборатории, где проводились опыты с электричеством. Гальвани наблюдал явление, которое было известно многим еще до него; оно заключалось в том, что если ножной нерв мертвой лягушки возбудить искрой от электрической машины, то начинала сокращаться вся лапка. Но однажды Гальвани заметил, что лапка пришла в движение, когда с нервом лапки соприкасался только стальной скальпель. Удивительнее всего было то, что между электрической машиной и скальпелем не было никакого контакта. Это поразительное открытие заставило Гальвани поставить ряд опытов для обнаружения при-чины электрического тока. Один из экспериментов был поставлен Гальвани с целью выяснить, вызывает ли такие же движения в лапке электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько лягушачьих лапок в окне, закрытом железной решеткой. И он нашел, в противоположность своим ожиданиям, что сокращения лапок происходят в любое время, вне всякой зависимости от состояния погоды. Присутствие рядом электрической машины или другого источника электричества оказалось не нужным. Гальвани установил далее, что вместо железа и латуни можно использовать любые два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали никакого эффекта. Таким образом, возникновение тока все еще оставалось тайной. Где же появляется ток - только в тканях тела лягушки, только разнородных металлах или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к заключению, что ток возникает исключительно в тканях тела лягушки. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричества какого-либо другого происхождения.
Но вскоре другой итальянский ученый, Алессандро Вольта, дал иное объяснение этим опытам. Отвергая идею «животного» электричества, Вольта утверждал, что лягушка в опытах Гальвани «есть чувствительнейший электрометр», а источником электричества является контакт двух разнородных металлов.
Эти соображения и были положены Вольта в основу его теории «контактного электричества». Однако многочисленные эксперименты убедили Вольта в том, что простого контакта металлов недостаточно для получения сколько-нибудь заметного тока; выяснилось, что непрерывный электрический ток может возникнуть лишь в замкнутой цепи, составленной из различных проводников: металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).
Эта теория, разработанная А. Вольтой в 1794 году, позволила создать первый в мире источник электрического тока в виде так называемого Вольтова столба. Это устройство представляло собой простейшую батарею гальванических элементов с одной жидкостью: между парами цинковых и медных пластин (дисков) прокладывались суконные кружки, смоченные щелочью или кислотой. Вольта не удалось понять того факта, что электрический ток возникает в результате химических процессов между металлами и жидкостями.
Он по-своему объяснял необходимость применения наряду с твердыми проводниками -- металлами -- жидких проводников. По его мнению, при соприкосновении двух различных металлов возникает «электровозбудительная» или «электродвижущая» сила, под действием которой электричество одного знака сосредоточивается на одном из металлов, а электричество противоположного знака -- на другом.
Если составить столб из нескольких пар различных металлов, например цинка и серебра (без прокладок), то каждая цинковая пластина, заряженная электричеством одного знака, будет находиться в соприкосновении с двумя одинаковыми серебряными пластинами, заряженными электричеством противоположного знака, и их общее действие будет взаимно уничтожаться.
Для того чтобы действие отдельных пар суммировалось, необходимо обеспечить соприкосновение каждой цинковой пластины только с одной серебряной, т. е. исключить встречный металлический контакт. Это осуществляется с помощью проводников второго класса (влажных суконных кружков); такие кружки разделяют пары металлов и в то же время не препятствуют движению электричества.
Таким образом, Вольта, не поняв действительной причины возникновения тока, практически пришел к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую. Создание первого источника электрического тока сыграло громадную роль как в развитии науки об электричестве и магнетизме, так и в расширении их практических приложений.
Первые же опыты с электрическим током не могли не привести к открытию некоторых присущих ему свойств. Поэтому рассматриваемый период в истории электричества характеризуем главным образом обнаружением и изучением различных действий электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в., привели к открытию химических, тепловых, световых и магнитных действий.
В 1800 г. вскоре после получения известия об изобретении вольтова столба члены Лондонского королевского общества Антони Карлейль и Вильям Никольсон произвели ряд опытов с вольтовым столбом, которые привели их к открытию нового явления: при прохождении тока через воду имело место выделение газовых пузырьков; исследовав выделявшиеся газы, они правильно установили, что это кислород и водород. Таким образом, впервые был осуществлен электролиз воды.
Вскоре после опубликования работ А. Карлейля и В. Никольсона (июль 1800 г.) появилась в немецком научном журнале «Annalen der Physik» статья немецкого физика Иоганна В. Риттера, также осуществившего разложение воды током. После открытия действия тока на воду ряд ученых заинтересовался вопросом о том, к каким результатам приведет пропускание тока через другие жидкости. В том же 1800 г. голландский химик Вильям Крейкшенк, пропуская ток через раствор поваренной соли, получил на отрицательном полюсе едкий натр, не подозревая, что здесь имела место вторичная реакция: поваренная соль разлагалась на Na и С1 причем натрий, жадно соединяясь с водой, образовывал едкий натр.
Указанные эксперименты положили начало исследованию химических действий гальванического тока, получивших впоследствии важное практическое применение.
Тепловые действия тока были обнаружены в накаливании тонких металлических проводников и воспламенении посредством искр легко воспламеняющихся веществ. Световые явления наблюдались в виде искр различной длины и яркости.
В 1802 г. итальянский физик Джованни Д. Романьози обнаружил, что электрический ток, протекающий по проводнику, вызывает отклонение свободно вращающейся магнитной стрелки, сходящейся вблизи этого проводника. Однако тогда, в первые годы изучения электрического тока, явление, открытое Романьози, имеющее, как впоследствии выяснилось, громадное значение, не получило должной оценки. Только позднее, в 1820 г., когда наука об электричестве достигла более высокого уровня, магнитное действие тока, описанное датским физиком Гансом Христианом Эретедом (1777--1851 гг.), стало предметом глубокого и всестороннего изучения.
Среди многочисленных исследований явлений электрическое тока, произведенных в первые годы посте построения вольтову столба, наиболее выдающимися были труды первого русского электротехника, профессора физики Петербургской Медико-хирургической академии, академика Василия Владимировича Петрова (1761 -- 1834 гг.), так как в них впервые была показана в доказана возможность практических применений электричества.
Будучи хорошо знакомым с опытами, производящимися с вольтовым столбом как в России, так и за границей, Петров пришел к правильному выводу о том, что наиболее полное и всестороннее изучение гальванических явлений возможно только при условии создания большой батареи, т.е. по современной терминологии -- источника тока высокого напряжения. Поэтому он добивается перед руководством Медико-хирургической академии выделения средств для постройки «такой огромной величины батареи, чтобы оною можно было надежнее производить такие новые опыты», каких не производил никто из физиков.
В апреле 1802 г. батарея В.В. Петрова, состоявшая из 4200 медных в цинковых кружков или 2100 медно-цинковых элементов (Петров называл ее «огромная наипаче батарея»), была готова. Она располагалась в большом деревянном ящике, разделенном по длине на четыре отделения. Стенки ящика и разделяющих перегородок были покрыты сургучным лаком. Общая длина гальванической батареи Петрова составляла 12 м -- это был крупнейший в мире источник электрического тока.
Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги. В.В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники.
2. Основные теоретические сведения
Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил. За направление тока выбрано направление движения положительно заряженных частиц. Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.
Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:
- наличие в среде свободных электрических зарядов
- создание в среде электрического поля.
В разных средах носителями электрического тока являются разные заряженные частицы.
Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,
Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.
Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).
Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.
Электрической цепью называют совокупность устройств и объектов, соединенных определенным образом и образующих путь для протекания электрического тока. Электромагнитные процессы в электрических цепях описывают с помощью понятий об ЭДС, токе, напряжении и сопротивлении.
Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.
Основные характеристики:
1. Сила тока - I, единица измерения - 1 А (Ампер).
Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.
I = q/t (1)
Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем.
2. Плотность тока - j, единица измерения - 1 А/м2.
Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:
j = I/S. (2)
3. Электродвижущая сила источника тока - э.д.с., единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
ЭДС = Аст./q (3)
4. Сопротивление проводника - R, единица измерения - 1 Ом.
Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.
Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что
R = *l/S, (4)
где
l - длина проводника,
S - площадь поперечного сечения,
коэффициент пропорциональности, названный удельным сопротивлением материала.
5. Напряжение - U , единица измерения - 1 В.
Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.
U = (Aст.+ Аэл.)/q. (4)
3. Законы постоянного тока
Законы Ома.
Закон Ома устанавливает связь между током, напряжением и параметрами элементов в неразветвленной электрической цепи и позволяет рассчитывать в них токи. В электротехнике рассматривают три формулировки закона Ома.
Закон Ома для участка цепи не содержащего источников ЭДС.
Немецкий физик Г. Ом (1787-1854) экспериментально установил, что ток на пассивном участке цепи с полным сопротивлением R определяется соотношением:
I=(ца-цв)/R=Uав/R, (5)
где: ца и цв потенциалы на выводах участка цепи в узлах а и в, Uав = (ца - цв) - падение напряжения на этом участке цепи.
За положительное направление напряжения принимается направление в сторону меньшего потенциала. На пассивном участке положительное направление тока и напряжения совпадают.
Рис. 1. К определению законов Ома
Например, для нахождения тока (рис. 1) на пассивном участка цепи dc с сопротивлением R4, необходимо найти цd и цc, а затем рассчитать ток:
I3= (цd - цc)/R= Udc /R4.
Законы Кирхгофа.
Первый закон Кирхгофа устанавливает связь между токами, сходящимися в узле электрической цепи: алгебраическая сумма токов, сходящихся в узле, равна нулю. При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут с одним знаком, обычно со знаком «плюс», а токи, направленные от узла, - со знаком "минус" или наоборот.
Рис. 2. Участки схем, поясняющие применение а) первого б) второго законов Кирхгофа
Второй закон Кирхгофа устанавливает связь между напряжениями на элементах контура электрической цепи. Он имеет две формулировки.
Формулировка 1: алгебраическая сумма ЭДС в любом замкнутом контуре электрической цепи равна алгебраической сумме падений напряжения на всех участках контура.
Формулировка 2: алгебраическая сумма напряжений на всех элементах контура, включая источники ЭДС, равна нулю.
При записи уравнений по второму закону Кирхгофа необходимо:
1) задать условные положительные направления ЭДС, токов и напряжений;
2) выбрать положительное направление обхода контура, для которого записывается уравнение, обычно по часовой стрелки, его показывают дугой в контуре;
3) записать уравнение, пользуясь одной из формулировок, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с направлением обхода контура, и со знаком «минус», если они противоположны.
4. Электрическая энергия, мощность и баланс мощностей
Источник электрической энергии отдает свою энергию приемнику, или приемникам, которые преобразуют ее в другие виды энергии: тепловую, химическую, электромагнитную, и т.п. Количество энергии отдаваемой или потребляемой в единицу времени, называется мощностью, соответственно отдаваемой или потребляемой. Вовсе не обязательно, что бы источник отдавал энергию. Например, аккумулятор, в режиме зарядки потребляет энергию. В этом случае ток аккумулятора направлен навстречу его напряжению.
Если направление тока источника совпадает с направлением напряжения, то говорят, что источник электрической энергии работает в режиме источника. Если направление тока противоположно направлению напряжения, то источник электрической энергии работает в режиме приемника.
Закон Джоуля-Ленца: количество теплоты, выделяемой в элементе электрической цепи, обладающем сопротивлением R, за время t равно:
Q = PI2t = GU2t = UIt = Pt,
где G = 1 / R - электрическая проводимость, Р = UI - электрическая мощность.
Мощность любого элемента электрической цепи, будь то источник или приемник, определяется как произведение тока элемента и напряжения на нем: P=UI. Мощность измеряется в Ваттах [Вт], хотя существуют более мелкие единицы - мили- и микро-Ватты, соответственно [мВт] и [мкВт], и более крупные единицы киловатты [кВт] и мегаватты [МВт].
Чрезвычайно важную роль для проверки правильности расчетов любых электрических цепей играет условие баланса мощностей, которое следует из закона сохранения энергии и может быть сформулировано следующим образом.
Алгебраическая сумма мгновенных мощностей всех источников энергии в электрической цепи равна алгебраической сумме всех мгновенных мощностей всех приемников цепи.
5. Применение постоянного тока в промышленности и быту
Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток. Переменный ток используется преимущественно для более удобной передачи от генератора до потребителя. Иногда в некоторых устройствах постоянный ток преобразуют в переменный ток преобразователями (инверторами).
Постоянный ток широко используется в электрических двигателях общественного транспорта ( троллейбус, метро, и.т.д). Простые и удобные электрические двигатели переменного тока не позволяют в широких пределах плавно менять скорость своего вращения. С такой задачей хорошо справляется только двигатель постоянного тока. Питание этих двигателей осуществляется с тяговых выпрямительных подстанций. Приходящий на них с электростанций переменный ток при помощи ртутных выпрямителей преобразуется в постоянный, а затем подается в контактную сеть -- в провода и рельсы.
Применение тяговых двигателей постоянного тока на транспортных машинах оказалось настолько выгодным, что их можно встретить на тепловозах и теплоходах. Их основными двигателями служат дизели, которые приводят в движение генераторы, вырабатывающие постоянный ток. А он в свою очередь заставляет работать электрические двигатели, вращающие колеса или гребные винты.
Хорошие регулировочные способности электродвигателей постоянного тока позволили с успехом применить их также на подъемно-транспортных механизмах. На обычных кранах, используемых в строительстве, работают двигатели переменного тока. Но на мощных подъемных кранах больших металлургических заводов устанавливают двигатели постоянного тока. Ведь здесь надо плавно поднимать и переносить огромные ковши с расплавленным металлом, разливать его в изложницы или подавать раскаленные болванки на прокатные станы.
Эти двигатели приводят в движение и механизмы гигантских шагающих экскаваторов.
Двигатели постоянного тока могут развивать очень большие скорости вращения -- до 25 тыс. об/мин. Это позволяет получать большую мощность при очень небольших размерах двигателя. Поэтому они незаменимы в качестве моторов управления, применяемых на самолетах для поворотов рулей, элеронов и закрылков, для подъема и опускания шасси и других механизмов.
Неизменное направление движения электронов в цепи постоянного тока определило большую и важную область его применения, в которой переменный ток с ним соперничать не может. Речь идет об электролизе -- процессе, связанном с прохождением тока через жидкие растворы -- электролиты. Под воздействием постоянного тока, проходящего через электролит, он разлагается на отдельные элементы, которые осаждаются на определенных электродах -- на аноде или катоде. Это свойство широко используется в цветной металлургии -- для получения алюминия, магния, цинка, меди, марганца. В химической промышленности при помощи электролиза получают фтор, хлор, водород и другие вещества.
В гальванотехнике электролиз применяют для осаждения металла на поверхность различных изделий. Таким образом наносят защитные покрытия на металлические изделия (никелирование, хромирование), изготавливают металлические монументы, печатные формы и т. д. Гальванизацию применяют в медицине для лечения некоторых болезней.
Постоянное направление движения электронов помогает постоянному току соперничать с переменным в сварочном деле и некоторых видах освещения. При сварке постоянным током частички металла переносятся с электрода на изделие более правильно, и шов получается качественнее, чем при сварке переменным током.
Постоянный ток, так же нашел широкое применение в быту. К примеру, большинство приборов, которыми человек пользуется каждый день, таких как модем или зарядное устройство для мобильного, работают на постоянном токе. Генератор автомобиля, вырабатывает и преобразует постоянный ток, для зарядки аккумулятора. Любое портативное устройство питается от источника постоянного тока.
Заключение
Постоянный электрический ток - это один из важнейших разделов физики. Постоянный электрический ток нашёл применение практически во всех отраслях, так как подавляющее большинство электронных схем в качестве питания используют постоянный ток.
За последние несколько столетий была проделана большая работа в исследовании электрического тока: исследование электрических токов в металлах, вакууме и газах. Над этим работали великие учёные такие, как Х. Лоренц, П. Друде, К. Рикке, Д. Томсон, С.Л. Мандельштам, Б. Стюарт и другие. Их вклад в науку не измеримо велик.
Литература
кирхгоф физический электродвижущий заряд
1. Т.И. Трофимова - «Курс физики: учебное издание для вузов».М: издательский центр «Академия», 2007 г.
2. Б.М. Яворский, Ю.А. Селезнёв «Справочное руководство по физике». Издательство «Наука», 1989 г.
3. И.В. Савельев - «Курс Физики том II», М: «Наука», 1989 г.
4. Д.В. Сивухин - «Общий курс физики», М: «Наука», 1974 г.
5. А.К. Кикоин - Постоянный и переменный электрический ток, 1984 г.
Размещено на Allbest.ru
...Подобные документы
Характеристика электрического поля как вида материи. Исследование особенностей проводников, полупроводников и диэлектриков. Движение тока в электрической цепи. Изучение законов Ома, Джоуля-Ленца и Кирхгофа. Изоляционные материалы. Электродвижущая сила.
презентация [4,5 M], добавлен 19.02.2014Упорядоченное движение электронов в металлическом проводнике. Цепь постоянного тока. Зависимость силы тока от напряжения. Перемещение единичного положительного заряда по цепи постоянного тока. Применение закона Ома для неоднородного участка цепи.
реферат [168,3 K], добавлен 02.12.2010Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009Расчет значений тока во всех ветвях сложной цепи постоянного тока при помощи непосредственного применения законов Кирхгофа и метода контурных токов. Составление баланса мощности. Моделирование заданной электрической цепи с помощью Electronics Workbench.
контрольная работа [32,6 K], добавлен 27.04.2013Экспериментальное исследование электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. Составление баланса мощностей.
лабораторная работа [44,5 K], добавлен 23.11.2014Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.
реферат [122,8 K], добавлен 27.07.2013Закон Ома для участков цепи и закон Ома для полной цепи. Применения правил Кирхгофа для расчета цепей постоянного тока. Постановка задачи о расчете цепи постоянного тока.
лабораторная работа [22,7 K], добавлен 18.07.2007Анализ электрической схемы постоянного тока. Особенности первого и второго законов Кирхгофа для узлов и ветвей цепи. Знакомство с типами электрических цепей: двухполюсные, четырёхполюсные. Рассмотрение способов постройки векторных диаграмм напряжений.
контрольная работа [651,6 K], добавлен 04.04.2013Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.
лабораторная работа [27,5 K], добавлен 12.01.2010Электрический ток как направленное движение электронов. Сущность понятия "сила тока". Метод измерения сопротивления проводника при помощи амперметра и вольтметра. Содержание первого закона Кирхгофа. Общий вид мостика Уитстона. Электронная теория.
лабораторная работа [60,8 K], добавлен 25.06.2015Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.
реферат [66,6 K], добавлен 27.03.2009Составление электрической схемы для цепи постоянного тока, заданной в виде графа. Замена источников тока эквивалентными источниками ЭДС. Уравнения узловых потенциалов. Законы Кирхгофа. Построение векторно-топографической диаграммы токов и напряжений.
контрольная работа [2,1 M], добавлен 31.08.2012Расчет параметров цепи постоянного тока методом уравнений Кирхгофа, и узловых напряжений. Расчет баланса мощностей. Построение потенциальной диаграммы. Сравнение результатов вычислений. Расчет параметров цепи переменного тока методом комплексных амплитуд.
курсовая работа [682,1 K], добавлен 14.04.2015Расчет сложной электрической цепи постоянного тока. Определение тока в ветвях по законам Кирхгофа. Суть метода расчета напряжения эквивалентного генератора. Проверка выполнения баланса мощностей. Расчет однофазной электрической цепи переменного тока.
контрольная работа [542,1 K], добавлен 25.04.2012Однофазные цепи синусоидального тока. Двигатели постоянного тока параллельного возбуждения. Расчет линейной цепи постоянного тока методом двух законов Кирхгофа. Расчет характеристик асинхронного трехфазного двигателя с короткозамкнутым ротором.
методичка [1,4 M], добавлен 03.10.2012Расчет линейной электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, узловых. Расчет баланса мощностей цепи. Определение параметров однофазной линейной электрической цепи переменного тока и их значений.
курсовая работа [148,1 K], добавлен 27.03.2016Расчёт параметров цепи постоянного тока методом уравнений Кирхгофа, контурных токов и методом узловых напряжений. Расчёт баланса мощностей. Расчёт параметров цепи переменного тока методом комплексных амплитуд. Преобразование соединения сопротивлений.
курсовая работа [1,3 M], добавлен 14.04.2015Особенности измерения силы тока в цепи с помощью амперметра. Методика расчета силы тока в неразветвленной части электрической цепи по первому закону Кирхгофа, проверка его правильности. Анализ абсолютной и относительной погрешностей параметров цепи.
лабораторная работа [155,4 K], добавлен 12.01.2010Основные методы расчета сложной цепи постоянного тока. Составление уравнений для контуров по второму закону Кирхгофа, определение значений контурных токов. Использование метода эквивалентного генератора для определения тока, проходящего через резистор.
контрольная работа [364,0 K], добавлен 09.10.2011Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.
курсовая работа [777,7 K], добавлен 15.04.2010