Гидравлические системы водоснабжения
Определение и основные физические свойства жидкости. Абсолютное и избыточное давление. Пьезометрическая и вакуумметрическая высота. Классификация, типы и расчет гидроцилиндров. Относительный покой жидкости по закону Паскаля. Насосы и гидромоторы.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 13.11.2016 |
Размер файла | 486,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Определение жидкости, основные физические свойства
2. Основное уравнение гидростатики
3. Абсолютное и избыточное давление. Пьезометрическая и вакуумметрическая высота
4. Закон Паскаля. Относительный покой жидкости
5. Гидравлические линии, соединения, расчет гидролиний
6. Насосы и гидромоторы: термины, определения, основные типы (шестеренные, пластинчатые, радиально- и аксиально-поршневые)
7. Гидроцилиндры: классификация, типы и расчет гидроцилиндров
8. Гидрораспределители: общие сведения, типы
Список использованных источников
Введение
жидкость гидроцилиндр паскаль вакуумметрический
Первые гидравлические системы водоснабжения были известны человеку еще задолго до нашей эры. Уже в Древнем Египте, Индии и Китае, странах Ближнего Востока умели строить на реках плотины и водяные мельницы, оросительные системы на рисовых полях, в которых использовались водоподъемные машины. В Риме за шесть столетий до нашей эры был построен водопровод, что свидетельствует о высокой технической культуре того времени. В III веке до нашей эры Архимед изобрел машину для подъема воды, названную «архимедовым винтом» и являющуюся прообразом современных гидравлических насосов.
По мере развития науки и техники совершенствовались гидравлические и пневматические системы, и существенно расширялась сфера их практического применения. В настоящее время гидравлические машины, гидро- и пневмоприводы широко используют в водоснабжении и мелиорации, машиностроении и металлургии, на всех видах транспорта и в строительстве. Важную роль в развитии современной техники играют гидравлические и пневматические приводы как основное средство механизации и автоматизации технологических процессов и процессов управления различными объектами. В качестве исполнительных устройств такие приводы применяют в станках и автоматических линиях, роботах и манипуляторах, системах управления автомобилем, самолетом и т.п.
1. Определение жидкости, основные физические свойства
Жидкость -- одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.
В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.
Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным -- все газы.
Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости -- несжимаемой среды, не обладающей внутренним трением между отдельными частицами.
К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.
Плотность -- это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м3). Плотность воды составляет 1000 кг/м3.
Используются также укрупненные показатели: - килопаскаль -- 1 кПа= 103 Па; - мегапаскаль -- 1 МПа = 106 Па.
Сжимаемость жидкости -- это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.
Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.
Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 С.
В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается. При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.
Вязкость жидкости -- ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.
Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.
2. Основное уравнение гидростатики
Пусть на неподвижную жидкость действует только одна массовая сила - сила тяжести. Свободная поверхность жидкости представляет собой плоскость (размеры рассматриваемого объема жидкости не соизмеримы с размерами Земли). На свободную поверхность действует давление p0. Найдем давление в произвольной точке M, расположенной на глубине h (Рис. 1). Выделим около этой точки горизонтальную элементарную площадку dS и построим на ней вертикальный цилиндрический объем высотой h.
Рис. 1. Схема для вывода основного уравнения гидростатики
Рассмотрим уравнение равновесия этого объема в вертикальном направлении:
Сократив и перегруппировав слагаемые, получим основное уравнение гидростатики:
.
По этому уравнению можно вычислить давление в неподвижной жидкости на любой глубине. Мы видим, что давление в жидкости складывается из давления на внешнюю поверхность и давления, создаваемого весом вышележащих слоев жидкости.
Величина p0 одинакова для всех точек объема жидкости, поэтому, учитывая свойство гидростатического давления, можно сформулировать закон Паскаля: давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости и по всем направлениям одинаково.
Как мы видим, с увеличением глубины погружения давление возрастает по линейному закону и на данной глубине есть величина постоянная. Поверхность, во всех точках которой давление одинаково называется поверхностью уровня. Как мы видим, эта поверхность - плоскость, параллельная свободной поверхности.
Если от произвольного уровня отложить вертикальные координаты точки M (z) и свободной поверхности (z0) и заменить h = z0 - z, то получим другую форму записи основного уравнения гидростатики:
или
где z - геометрический напор (высота);
- пьезометрический напор (высота).
Сумма геометрического и пьезометрического напоров - это гидростатический напор. Таким образом, гидростатический напор для всего объема неподвижной жидкости есть величина постоянная.
3. Абсолютное и избыточное давление. Пьезометрическая и вакуумметрическая высота
Давление -- единица силы, действующая перпендикулярно на единицу площади.
Абсолютным называют давление, создаваемое на тело отдельно взятым газом без учета других атмосферных газов. Измеряют его Па (паскалях). Абсолютное давление представляет собой сумму атмосферного и избыточного давлений.
Избыточным давлением называют положительную разность между измеряемым и атмосферным давлением.
Рис. 2. Условие равновесия для открытого сосуда
Рассмотрим условия равновесия для открытого сосуда, заполненного жидкостью, к которому в точке А присоединена открытая сверху трубка (рис. 2). Под действием весового или избыточного давления сЧgЧh, жидкость поднимается в трубке на высоту hp. Указанная трубка называется пьезометром, а высота hp - пьезометрической высотой. Представим основное уравнение гидростатики относительно плоскости, проходящей через точку А. Давление в точке А со стороны сосуда определяется как:
со стороны пьезометра:
тогда:
или
то есть пьезометрическая высота показывает величину избыточного давления в точке, где присоединен пьезометр в линейных единицах размерности.
Рис. 3. Условие равновесия для закрытого сосуда
Рассмотрим условия равновесия теперь для закрытого сосуда, где давление на свободной поверхности Р0 больше атмосферного давления Ратм (Рис. 3.)
Под действием давления Р0 большего Ратм и весового давления сЧgЧh жидкость поднимается в пьезометре на высоту hp большую, чем в случае открытого сосуда.
Давление в точке А со стороны сосуда:
со стороны открытого пьезометра:
тогда:
из этого равенства получаем выражение для hp:
Анализируя полученное выражение, устанавливаем, что и в этом случае пьезометрическая высота соответствует величине избыточного давления в точке присоединения пьезометра. В данном случае избыточное давление состоит из двух слагаемых: внешнего избыточного давления на свободной поверхности Р'0 изб = Р0 - Ратм и весового давления сЧgЧh
Избыточное давление может быть и отрицательной величиной, называемой вакуумом. Так, во всасывающих патрубках центробежных насосов, в потоке жидкости при истечении из цилиндрических насадков, в вакуум - котлах в жидкости образуются области с давлением ниже атмосферного, т.е. области вакуума. В этом случае:
Рис. 4. Ваккумметрическая высота
Вакуум - это недостаток давления до атмосферного. Пусть в резервуаре 1 (рис. 4) абсолютное давление меньше атмосферного (например, откачана часть воздуха при помощи вакуум- насоса). В резервуаре 2 находится жидкость, и резервуары соединены изогнутой трубкой 3. На поверхности жидкости в резервуаре 2 действует атмосферное давление. Так как в резервуаре 1 давление меньше атмосферного то жидкость поднимается в трубке 3 на какую-то высоту, которая называется вакуумметрической высотой и обозначается. Величина может быть определена из условия равновесия:
Максимальное значение вакуумметрического давления составляет 98,1кПа или 10 м.в.ст., но практически давление в жидкости не может быть меньше давления паров насыщения и равно 7-8 м.в.ст.
4. Закон Паскаля. Относительный покой жидкости
Закон Паскаля описывается формулой давления:
p=F/S,
где p - это давление,
F - приложенная сила,
S - площадь сосуда.
Из формулы мы видим, что при увеличении силы воздействия при той же площади сосуда давление на его стенки будет увеличиваться. Измеряется давление в ньютонах на метр квадратный или в паскалях (Па), в честь ученого, открывшего закон Паскаля. Его применение лежит в основе многих устройств и довольно распространено в производстве. Это, в частности, гидравлические прессы, пневматические тормоза и инструменты и многое другое.
Под относительным покоем понимают неподвижное состояние жидкости относительно сосуда, который движется с постоянным ускорением. Например, в относительном покое может находиться жидкость в емкости, которая установлена на разгоняющейся транспортной машине (топливный бак автомобиля). В относительном покое будет также находиться жидкость в сосуде, вращающемся с постоянной скоростью.
Анализ относительного покоя удобно проводить для сил, действующих на условную частицу жидкости единичной массы (массой т = 1). При таком подходе сила всегда численно равна соответствующему ускорению. Например, на частицу единичной массы действует сила тяжести G = mg =1 g = g. Таким образом, математические зависимости существенно упрощаются.
Рассмотрим прямолинейное движение сосуда с постоянным ускорением (или замедлением) а. В этом случае на каждую частицу жидкости единичной массы действуют две силы: сила тяжести g сила инерции а (рисунок 5). Равнодействующая этих двух сил
определяет положение свободной поверхности жидкости, так как угол между этой поверхностью и силой всегда составляет 90°. Из геометрических соображений следует, что положение свободной поверхности может быть задано углом б, значение которого найдем из отношения tga = а/g.
Рис. 5. Схема действия сил при прямолинейном движении сосуда
Для определения давления в произвольно выбранной точке на расстоянии l от свободной поверхности используется математическая зависимость:
p = p0 + l с j.
Она получена тем же методом, что и основное уравнение гидростатики, но учитывает действие не только сил тяжести, но и сил инерции.
Рис. 6. Расположение жидкости в сосуде, вращающемся с высокой скоростью
Рис. 7. Схема действия сил при вращении сосуда
Другим случаем относительного покоя жидкости является вращение сосуда с постоянной угловой скоростью щ (рисунок 7). При вращении на каждую частицу жидкости единичной массы, расположенную на радиусе r, также действуют две силы: сила тяжести g и сила инерции, вызванная центробежным ускорением, а = щ2 r. Равнодействующая этих двух сил определяет положение свободной поверхности жидкости. Но в рассматриваемом случае центробежное ускорение является переменной величиной, так как зависит от радиуса расположения точки. Поэтому поверхность вращения принимает параболическую форму и описывается уравнением
,
где z0 -- высота расположения точки свободной поверхности относительно дна сосуда;
h0 -- высота жидкости на оси вращения.
Формула для определения давления р в любой точке жидкости может быть получена методом, использованным в подразделе 2.1. Тогда после математических преобразований найдем давление в точке, расположенной на радиусе r и высоте z относительно дна сосуда:
.
5. Гидравлические линии, соединения, расчет гидролиний
В гидросистемах машин отдельные элементы находятся на расстоянии друг от друга и соединяются между собой гидролиниями. Гидролинии должны обладать:
- достаточной прочностью;
- минимальными потерями давления на преодоление гидравлических сопротивлений;
- отсутствием утечек жидкости;
- отсутствием в трубах воздушных пузырей.
Трубопроводы в зависимости от своей конструкции делятся на жесткие и гибкие.
Жесткие трубопроводы изготавливают из стали, меди, алюминия и его сплавов. Стальные применяют при высоких давлениях (до 320 ат).
Гибкие трубопроводы (рукава) бывают двух видов: резиновые и металлические. Для изготовления резиновых рукавов применяют натуральную и синтетическую резину. Рукав состоит из эластичной внутренней резиновой трубки, упрочненной наружной оплеткой или внутренним текстильным каркасом (рис.8). Их применяют тогда, когда соединяемые трубопроводом гидроагрегаты должны перемещаться относительно друг друга.
Рис. 8. Схемы конструкции рукавов с оплеткой: 1 - внутренний резиновый слой; 2 - металлическая оплетка; 3 - промежуточный резиновый слой; 4 - наружный резиновый слой
Металлические рукава имеют гофрированную внутреннюю трубу, выполненную из бронзовой или стальной ленты, и наружную проволочную оплетку. Между витками ленты находится уплотнитель. Рукава с хлопчатобумажным уплотнением предназначены для работы с температурой рабочей жидкости до 110 С, а с асбестовым уплотнением - до 300 С. Металлические рукава применяют в специфических условиях эксплуатации гидросистем, в контакте с агрессивными рабочими жидкостями.
Рис. 9. Металлические рукава: 1 - профилированная лента; 2 - уплотнитель; 3 - проволочная оплетка
Соединениями отдельные трубы и гидроагрегаты монтируются в единую гидросистему. Кроме того, соединения применяют и тогда, когда в гидросистеме необходимо предусмотреть технологические разъемы. Соединения могут быть неразборными и разборными.
Неразборные соединения применяют в недемонтируемых гидросистемах. Для соединения труб применяют сварку и пайку встык.
Разборные соединения (неподвижные и подвижные) - это соединения при помощи фланцев, штуцеров, ниппелей и других соединительных элементов.
Неподвижное разборное соединение может быть выполнено по наружному и внутреннему конусу, с врезающимся кольцом и фланцевое.
Соединение по наружному конусу (рис.10) состоит из трубопровода 1 с развальцованным на конус концом, ниппеля 2, штуцера 3 и накидной гайки 4.
Неподвижное разборное соединение по внутреннему конусу (рис. 11) состоит из ниппеля 4, приваренного или припаянного к трубе 5, штуцера 2 и накидной гайки 1.
Рис. 10. Соединение по наружному конусу
Рис. 11. Соединение по внутреннему конусу
Соединение с врезающимся кольцом (рис. 12) состоит из штуцера 1 с внутренней конической поверхностью 2, накидной гайки 5 и врезающегося кольца 3. Кольцо изготовлено из стали с цементированной поверхностью, а его конец, обращенный к штуцеру, имеет режущую кромку. При затяжке соединения гайкой режущая кромка врезается в трубу 4, происходит деформация кольца, которое получает форму, соответствующую конической поверхности штуцера
К неподвижным разборным соединениям относится и фланцевое соединение (рис.13), которое применяют при монтаже гидросистем с трубами, имеющими диаметр условного прохода более 32 мм при рабочих давлениях до 32 МПа.
Рис. 12. Соединение с врезающимся кольцом
Рис. 13. Фланцевое соединение
Подвижное разборное соединение применяется в гидросистемах землеройных, строительных, лесных и других машин. Здесь нередко применяют гидроцилиндры, которые должны поворачиваться на небольшой угол относительно оси, проходящей через точку крепления гидроцилиндра. При монтаже таких гидросистем применяют подвижные соединения, имеющие одну, две и более степеней свободы.
Расчет гидролиний. Целью расчета гидролиний является определение внутреннего диаметра трубопроводов, потерь давления на преодоление гидравлических сопротивлений и толщины стенок труб.
Внутренний диаметр (условный проход) трубопровода d определяют по формуле
или
где Q - расход жидкости, м3/с для;
х - скорость движения жидкости, м/с;
d - внутренний диаметр трубопровода, м.
Скорость течения жидкости в трубопроводах зависит в основном от давления в гидросистеме (табл. 1).
Таблица 1. Рекомендуемые значения скорости рабочей жидкости
Потеря давления на преодоление гидравлических сопротивлений по длине каждого участка трубопровода определяется по формуле
где с- плотность рабочей жидкости, кг/м3;
л - коэффициент гидравлического трения;
l - длина трубопровода, м.
Если на пути движения рабочей жидкости встречаются местные сопротивления, то потеря давления в местных сопротивлениях определяется по формуле Вейсбаха:
где ж - коэффициент местных сопротивлений.
Значения коэффициентов ж для наиболее распространенных видов местных сопротивлений принимают следующими: для штуцеров и переходников для труб ж = 0,1…0,15; для угольников с поворотом под углом 90° ж = 1,5…2,0; для прямоугольных тройников для разделения и объединения потоков ж = 0,9…2,5; для плавных изгибов труб на угол 90° с радиусом изгиба, равным (3ч5) d ж = 0,12…0,15; для входа в трубу ж = 0,5; для выхода из трубы в бак или в цилиндр ж = 1.
6. Насосы и гидромоторы: термины, определения, основные типы (шестеренные, пластинчатые, радиально- и аксиально-поршневые)
Насос - гидравлическая машина, в которой механическая энергия, приложенная к выходному валу, преобразуется в гидравлическую энергию потока рабочей жидкости.
Гидродвигатель - машина, в которой энергия потока рабочей жидкости преобразуется в энергию движения выходного звена. Если выходное звено получает вращательное движение, то такой гидродвигатель называют гидромотором, если поступательное, то силовым цилиндром.
Гидромашина, которая может работать в режиме насоса или гидромотора, называется обратимой.
Рабочий объем гидромашины в насосе - это объем жидкости вытесняемый в систему за один оборот вала насоса; в гидромоторе - объем жидкости, необходимый для получения одного оборота вала гидромотора. Гидромашины изготавливаются с постоянным и переменным рабочим объемом. В соответствии с этим с постоянным рабочим объемом называются нерегулируемые, а с переменным - регулируемые.
Гидролиния (магистраль) - как уже говорилось в лекции 2, это трубопровод, по которому транспортируется рабочая жидкость. Различают магистрали всасывающие, напорные, сливные и дренажные.
Производительность насоса (подача) - это отношение объема подаваемой жидкости ко времени.
Теоретическая производительность насоса QТ - это расчетный объем жидкости, вытесняемый в единицу времени из его полости нагнетания.
Шестеренные машины в современной технике нашли широкое применение. Их основным преимуществом является конструкционная простота, компактность, надежность в работе и сравнительно высокий КПД. В этих машинах отсутствуют рабочие органы, подверженные действию центробежной силы, что позволяет эксплуатировать их при частоте вращения до 20 с-1. В машиностроении шестеренные гидромашины применятся в системах с дроссельным регулированием.
Шестеренные насосы. Основная группа шестеренных насосов состоит из двух прямозубых шестерен внешнего зацепления (рис. 14, а). Применяются также и другие конструктивные схемы, например, насосы с внутренним зацеплением (рис. 14, б), трех- и более шестерные насосы (рис. 14, в).
Рис. 14. Схемы шестеренных насосов: а - с внешним зацеплением; б - с внутренним зацеплением; в - трехшестеренный
Пластинчатые насосы и гидромоторы так же, как и шестеренные, просты по конструкции, компактны, надежны в эксплуатации и сравнительно долговечны. В таких машинах рабочие камеры образованы поверхностями статора, ротора, торцевых распределительных дисков и двумя соседними вытеснителями-платинами. Эти пластины также называют лопастями, лопатками, шиберами. Пластинчатые насосы могут быть одно-, двух- и многократного действия. В насосах однократного действия одному обороту вала соответствует одно всасывание и одно нагнетание, в насосах двукратного действия - два всасывания и два нагнетания.
Схема насоса однократного действия приведена на рис. 15. Насос состоит из ротора 1, установленного на приводном валу 2, опоры которого размещены в корпусе насоса. В роторе имеются радиальные или расположенные под углом к радиусу пазы, в которые вставлены пластины 3. Статор 4 по отношению к ротору расположен с эксцентриситетом е. К торцам статора и ротора с малым зазором (0,02…0,03 мм) прилегают торцевые распределительные диски 5 с серповидными окнами. Окно 6 каналами в корпусе насоса соединено с гидролинией всасывания 7, а окно 8 - с напорной гидролинией 9. Между окнами имеются уплотнительные перемычки 10, обеспечивающие герметизацию зон всасывания и нагнетания. Центральный угол , образованный этими перемычками, больше угла между двумя соседними пластинами.
Рис. 15. Схема пластинчатого насоса однократного действия: 1 - ротор; 2 - приводной вал; 3 - пластины; 4 - статор; 5 - распределительный диск; 6, 8 - окна; 7 - гидролиния всасывания; 9 - гидролиния нагнетания
Радиально-поршневые гидромашины применяют при сравнительно высоких давлениях (10 МПа и выше). По принципу действия радиально-поршневые гидромашины делятся на одно-, двух- и многократного действия. В машинах однократного действия за один оборот ротора поршни совершают одно возвратно-поступательное движение.
Схема радиально-поршневого насоса однократного действия приведена на рис. 16. Рабочими камерами в насосе являются радиально расположенные цилиндры, а вытеснителями - поршни. Ротор (блок цилиндров) 1 на скользящей посадке установлен на ось 2, которая имеет два канала 3 и 4 (один соединен с гидролинией всасывания, другой - с напорной гидролинией). Каналы имеют окна 5, которыми они могут соединяться с цилиндрами 6. Статор 7 по отношению к ротору располагается с эксцентриситетом.
Рис. 16. Схема радиально-поршневого насоса однократного действия
Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта.
Аксиально-поршневой насос состоит из блока цилиндров 8 (рис. 17) с поршнями (плунжерами) 4, шатунов 7, упорного диска 5, распределительного устройства 2 и ведущего вала 6.
Рис. 17. Принципиальные схемы аксиально-поршневых насосов: 1 и 3 - окна; 2 - распределительное устройство; 4 - поршни; 5 - упорный диск; 6 - ведущий вал; 7 - шатуны; 8 - блок цилиндров
7. Гидроцилиндры: классификация, типы и расчет гидроцилиндров
Гидроцилиндры являются объемными гидромашинами и предназначены для преобразования энергии потока рабочей жидкости механическую энергию выходного звена. Гидроцилиндры работают при высоких давлениях (до 32 МПа), их изготовляют одностороннего и двухстороннего действия, с односторонним и двухсторонним штоком и телескопические.
Классификация гидроцилиндров
Типы гидроцилиндров:
В зависимости от конструкции различают несколько видов гидравлических цилиндров:
По числу положений штока:
Двухпозиционные;
Многопозиционные.
По характеру хода:
Одноступенчатые;
Телескопические.
По направлению действия рабочей жидкости:
Одностороннего действия;
Двухстороннего действия.
По возможности торможения:
С торможением;
Без торможения.
По виду рабочего звена:
Плунжерные;
Мембранные;
Сильфонные;
Поршневые:
С односторонним штоком;
С двухсторонним штоком.
Расчет гидроцилиндров:
Основными параметрами поршневого гидроцилиндра являются: диаметры поршня D и штока d, рабочее давление P, и ход поршня S.
Рассмотрим поршневой гидроцилиндр с односторонним штоком (рис. 18). По основным параметрам можно определить следующие зависимости:
площадь поршня в поршневой полости 1 и в штоковой полости 2 соответственно
усилие, развиваемое штоком гидроцилиндра при его выдвижении и втягивании соответственно
где kтр = 0,9…0,98 - коэффициент, учитывающий потери на трение;
скорости перемещения поршня
Рис. 18. Основные и расчетные параметры гидроцилиндра
Расчеты на прочность. Прочностными расчетами определяют толщину стенок цилиндра, толщину крышек (головок) цилиндра, диаметр штока, диаметр шпилек или болтов для крепления крышек.
В зависимости от соотношения наружного DН и внутреннего D диаметров цилиндры подразделяют на толстостенные и тонкостенные. Толстостенными называют цилиндры, у которых DН / D > 1,2, а тонкостенными - цилиндры, у которых DН / D 1,2.
Толщину стенки однослойного толстостенного цилиндра определяют по формуле:
где Pу - условное давление, равное (1,2…1,3)P ; [у] - допускаемое напряжение на растяжение, Па (для чугуна 2,5 107, для высокопрочного чугуна 4 107, для стального литья (8…10) 107, для легированной стали (15…18) 107, для бронзы 4,2 10 7); м - коэффициент поперечной деформации (коэффициент Пуассона), равный для чугуна 0, для стали 0,29; для алюминиевых сплавов 0,26…0,33; для латуни 0,35.
Толщину стенки тонкостенного цилиндра определяют по формуле:
К определенной по формулам толщине стенки цилиндра прибавляется припуск на обработку материала. ДляD = 30…180 мм припуск принимают равным 0,5…1 мм.
Толщину крышки цилиндра определяют по формуле:
где dк - диаметр крышки.
Диаметр штока, работающего на растяжение и сжатие соответственно
где [ур] и [у с] - допускаемы напряжения на растяжение и сжатие штока;
Штоки, длина которых больше 10 диаметров ("длинные" штоки), работающие на сжатие, рассчитывают на продольный изгиб по формуле Эйлера
где укр - критическое напряжение при продольном изгибе; f - площадь поперечного сечения штока;
Диаметр болтов для крепления крышек цилиндров
где n - число болтов.
8. Гидрораспределители: общие сведения, типы
При эксплуатации гидросистем возникает необходимость изменения направления потока рабочей жидкости на отдельных ее участках с целью изменения направления движения исполнительных механизмов машины, требуется обеспечивать нужную последовательность включения в работу этих механизмов, производить разгрузку насоса и гидросистемы от давления и т.п.
Эти и некоторые другие функции могут выполняться специальными гидроаппаратами - направляющими гидрораспределителями.
При изготовлении гидрораспределителей в качестве конструктивных материалов применяют стальное литье, модифицированный чугун, высоко- и низкоуглеродистые марки сталей, бронзу. Для защиты отдельных элементов распределителей от абразивного износа, поверхности скольжения цементируют, азотируют и т.п.
Размеры и масса гидрораспределителей зависят от расхода жидкости через них, с увеличением которого они увеличиваются.
По способу присоединения к гидросистеме гидрораспре-делители выпускают в трех исполнениях: резьбового, фланцевого и стыкового присоединения. Выбор способа присоединения зависит от назначения гидрораспределителя и расхода через него рабочей жидкости.
По конструкции запорно-регулирующего элемента гидрораспределители подразделяются следующим образом:
Золотниковые (запорно-регулирующим элементом является золотник цилиндрической или плоской формы). В золотниковых гидрораспределителях изменение направления потока рабочей жидкости осуществляется путем осевого смещения запорно-регулирующего элемента.
Крановые (запорно-регулирующим элементом служит кран). В этих гидрораспределителях изменение направления потока рабочей жидкости достигается поворотом пробки крана, имеющей плоскую, цилиндрическую, коническую или сферическую форму.
Клапанные (запорно-регулирующим элементом является клапан). В клапанных распределителях изменение направления потока рабочей жидкости осуществляется путем последовательного открытия и закрытия рабочих проходных сечений клапанами (шариковыми, тарельчатыми, конусными и т.д.) различной конструкции.
По числу фиксированных положений золотника гидрораспределители подразделяются: на двухпозиционные, трехпозиционные и многопозиционные.
По управлению гидрораспределители подразделяются на гидроаппараты с ручным, электромагнитным, гидравлическим или электрогидравлическим управлением. Крановые гидрораспределители используются чаще всего в качестве вспомогательных в золотниковых распределителях с гидравлическим управлением.
Список использованных источников
1. Станочные гидроприводы: Справочник. - 2-е изд., - М.: Машиностроение /Свешников В.К., Усов А.А., 2010. - 512 с.
2. Гидравлика: учебник/А.П. Исаев, Н.Г. Кожевникова, А.В. Ещин - М.: НИЦ ИНФРА-М, 2015. - 420 с.
3. Практикум по гидравлике: учебное пособие / Н.Г. Кожевникова, Н.П. Тогунова, А.В. Ещин, Н.А. Шевкун. - М.: НИЦ ИНФРА-М, 2014. - 248 с.
4. Интернет.
Размещено на Allbest.ru
...Подобные документы
Физические свойства жидкости и уравнение гидростатики. Пьезометрическая высота и вакуум. Приборы для измерения давления. Давление жидкости на плоскую наклонную стенку и цилиндрическую поверхность. Уравнение Бернулли и гидравлические сопротивления.
курсовая работа [1,2 M], добавлен 30.11.2014Три случая относительного покоя жидкости в движущемся сосуде. Методы для определения давления в любой точке жидкости. Относительный покой жидкости в сосуде, движущемся вертикально с постоянным ускорением. Безнапорные, напорные и гидравлические струи.
презентация [443,4 K], добавлен 18.05.2019Определение силы гидростатического давления жидкости на плоские и криволинейные поверхности, в закрытом резервуаре. Специфические черты гидравлического расчета трубопроводов. Определение необходимого давления рабочей жидкости в цилиндре и ее подачу.
контрольная работа [11,4 M], добавлен 26.10.2011Физические свойства жидкости. Гидростатическое давление как скалярная величина, характеризующая напряжённое состояние жидкости, порядок ее определения. Основное уравнение гидростатики. Измерение вакуума. Приборы для измерения давления, снятие показаний.
реферат [132,1 K], добавлен 16.04.2011Основное уравнение гидростатики, его формирование и анализ. Давление жидкости на криволинейные поверхности. Закон Архимеда. Режимы движения жидкости и гидравлические сопротивления. Расчет длинных трубопроводов и порядок определения силы удара в трубах.
контрольная работа [137,3 K], добавлен 17.11.2014Абсолютное и избыточное давление в точке, построение эпюры избыточного давления. Определение силы избыточного давления на часть смоченной поверхности. Режим движения воды на каждом участке короткого трубопровода. Скорость в сжатом сечении насадки.
контрольная работа [416,8 K], добавлен 07.03.2011Физические свойства жидкости. Гидростатика и гидродинамика: движение жидкости по трубопроводам и в каналах; ее истечение через отверстия и насадки. Сельскохозяйственное водоснабжение и мелиорация. Сила давления на плоскую и криволинейную поверхности.
методичка [6,3 M], добавлен 08.04.2013Понятие гидростатического парадокса. Принцип действия гидравлических машин. Определение закона Паскаля. Принцип действие жидкостных приборов. Вещества, применяемые в качестве рабочей жидкости в жидкостных приборах. Измерение кровяного давления.
реферат [553,9 K], добавлен 09.02.2012Определение веса находящейся в баке жидкости. Расход жидкости, нагнетаемой гидравлическим насосом в бак. Вязкость жидкости, при которой начнется открытие клапана. Зависимость расхода жидкости и избыточного давления в начальном сечении трубы от напора.
контрольная работа [489,5 K], добавлен 01.12.2013Постоянство потока массы, вязкость жидкости и закон трения. Изменение давления жидкости в зависимости от скорости. Сопротивление, испытываемое телом при движении в жидкой среде. Падение давления в вязкой жидкости. Эффект Магнуса: вращение тела.
реферат [37,9 K], добавлен 03.05.2011Расчет характеристик установившегося прямолинейно-параллельного фильтрационного потока несжимаемой жидкости. Определение средневзвешенного пластового давления жидкости. Построение депрессионной кривой давления. Определение коэффициента продуктивности.
контрольная работа [548,3 K], добавлен 26.05.2015Технические характеристики телескопических гидроцилиндров: номинальное давление, диаметры поршня и штока. Определение диаметра штуцера и расчет расхода жидкости, требуемой для обеспечения скорости движения штока. Вычисление толщины стенки гидроцилиндра.
контрольная работа [121,9 K], добавлен 31.08.2013Материальный баланс колонны и рабочее флегмовое число. Расчет давления насыщенных паров толуола и ксилола. Определение объемов пара и жидкости, проходящих через колонну. Средние мольные массы жидкости. Определение числа тарелок, их гидравлический расчет.
курсовая работа [262,6 K], добавлен 27.01.2014Виды вещества. Реакция твердого тела, газа и жидкости на действие сил. Силы, действующие в жидкостях. Основное уравнение гидростатики. Дифференциальное уравнение равновесия жидкости. Определение силы давления столба жидкости на плоскую поверхность.
презентация [352,9 K], добавлен 28.12.2013Гидравлические машины как устройства, служащие для преобразования механической энергии двигателя в энергию перемещаемой жидкости или для преобразования гидравлической энергии потока жидкости в механическую энергию, методика расчета ее параметров.
курсовая работа [846,7 K], добавлен 09.05.2014Определение водородной связи. Поверхностное натяжение. Использование модели капли жидкости для описания ядра в ядерной физике. Процессы, происходящие в туче. Вода - квантовый объект. Датчик внутриглазного давления. Динамика идеальной несжимаемой жидкости.
презентация [299,5 K], добавлен 29.09.2013Вакуум как разность между атмосферным или барометрическим и абсолютным давлением. Расчет линейной потери напора по формуле Дарси-Вейсбаха. Свойства гидростатического давления. Особенности применения уравнения Бернулли. Давление жидкости на плоскую стенку.
реферат [466,0 K], добавлен 07.01.2012Основные функции рабочей жидкости в гидравлических системах. Выбор рабочей жидкости. Расчет гидравлического цилиндра, расхода жидкости при перемещениях рабочих органов. Способы обеспечения нормальной работы гидропривода, тепловой расчет гидросистемы.
курсовая работа [309,5 K], добавлен 21.10.2014Свойства звука и его высота, громкость и скорость. Расчет скорости в жидкости, газе и в твердых телах. Акустический резонанс и его применение, свойства отражения и поглощения, воздействие шума на человека и значение достижений науки в борьбе за тишину.
реферат [35,3 K], добавлен 18.05.2012Определение силы давления жидкости на плоскую и криволинейную стенку. Суть гидростатического парадокса. Тело давления. Выделение на криволинейной стенке цилиндрической формы элементарной площадки. Суммирование горизонтальных и вертикальных составляющих.
презентация [1,8 M], добавлен 24.10.2013