Курс физики

Физика и ее связь с другими науками. Физические основы механики. Закон сохранения энергии. Элементы теории поля и законы Кеплера. Методы определения вязкости. Основы молекулярной физики и термодинамики. Механические и электромагнитные колебания.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 28.11.2016
Размер файла 13,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В консервативных системах полная механическая энергия остается постоянной. Могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах так, что полная энергия остается неизменной. Этот закон не есть просто закон количественного сохранения энергии, а закон сохранения и превращения энергии, выражающий и качественную сторону взаимного превращения различных форм движения друг в друга. Закон сохранения и превращения энергии -- фундаментальный закон природы, он справедлив как для систем макроскопических тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, в этих случаях закон сохранения механической энергии несправедлив. Однако при "исчезновении" механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии -- сущность неуничтожимости материи и ее движения.

1.14 Графическом представление энергии

Во многих задачах рассматривается одномерное движение тела, потенциальная энергия которого является функцией лишь одной переменной (например, координаты х), т. е. П=П (х). График зависимости потенциальной энергии от некоторого аргумента называется потенциальной кривой. Анализ потенциальных кривых позволяет определить характер движения тела.

Будем рассматривать только консервативные системы, т. е. системы, в которых взаимные превращения механической энергии в другие виды отсутствуют. Тогда справедлив закон сохранения энергии в форме (13.3). Рассмотрим графическое представление потенциальной энергии для тела в однородном поле тяжести и для упругодеформированного тела.

Потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, согласно (12.7), П(h)=mgh. График данной зависимости П = П(h) -- прямая линия, проходящая через начало координат (рис. 15), угол наклона которой к оси h тем больше, чем больше масса тела (так как tg=mg).

Пусть полная энергия тела равна Е (ее график -- прямая, параллельная оси h). На высоте h тело обладает потенциальной энергией П, которая определяется отрезком вертикали, заключенным между точкой h на оси абсцисс и графиком П(h). Естественно, что кинетическая энергия Т задается ординатой между графиком П(h) и горизонтальной прямой ЕЕ. Из рис. 15 следует, что если h=hmax, то Т=0 и П=E=mghmax, т. е. потенциальная энергия становится максимальной и равной полной энергии.

Из приведенного графика можно найти скорость тела на высоте h:

откуда

Зависимость потенциальной энергии упругой деформации

П=кх2/2

от деформации х имеет вид параболы (рис. 16), где график заданной полной энергии тела Е -- прямая, параллельная оси абсцисс х, а значения Т и П определяются так же, как на рис. 15. Из рис. 16 следует, что с возрастанием деформации х потенциальная энергия тела возрастает, а кинетическая -- уменьшается. Абсцисса xmax определяет максимально возможную деформацию растяжения тела, a -хmax -- максимально возможную деформацию сжатия тела. Если х = ±хmax, то T=0 и П=E=k/2, т. е. потенциальная энергия становится максимальной и равной полной энергии.

Из анализа графика на рис. 16 вытекает, что при полной энергии тела, равной Е, тело не может сместиться правее хmax и левее -хmax, так как кинетическая энергия не может быть отрицательной и, следовательно, потенциальная энергия не может быть больше полной энергии. В таком случае говорят, что тело находится в потенциальной яме с координатами - хmax x хmax.

В общем случае потенциальная кривая может иметь довольно сложный вид, например с несколькими чередующимися максимумами и минимумами (рис. 17). Проанализируем эту потенциальную кривую. Если Е -- заданная полная энергия частицы, то частица может находиться только там, где П(х) Е, т. е. в областях I и III. Переходить из области I в III и обратно частица не может, так как ей препятствует потенциальный барьер CDG, ширина которого равна интервалу значений х, при которых E < П, а его высота определяется разностью Пmах-E. Для того чтобы частица смогла преодолеть потенциальный барьер, ей необходимо сообщить дополнительную энергию, равную высоте барьера или превышающую ее. В области I частица с полной энергией Е оказывается "запертой" в потенциальной яме AВС и совершает колебания между точками с координатами хA и хC.

В точке В с координатой х0 (рис. 17) потенциальная энергия частицы минимальна. Так как действующая на частицу сила (см. § 12)

(П -- функция только одной координаты), а условие минимума потенциальной энергии , то в точке В --Fx = 0. При смещении частицы из положения х0 (и влево и вправо) она испытывает действие возвращающей силы, поэтому положение х0 является положением устойчивого равновесия. Указанные условия выполняются и для точки (для Пmax). Однако эта точка соответствует положению неустойчивого равновесия, так как при смещении частицы из положения появляется сила, стремящаяся удалить ее от этого положения.

1.15 Удар абсолютно упругих и неупругих тел

Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение)--это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Помимо ударов в прямом смысле этого слова (столкновения атомов или биллиардных шаров) сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. Силы взаимодействия между сталкивающимися телами (ударные или мгновенные силы) столь велики, что внешними силами, действующими на них, можно пренебречь. Это позволяет систему тел в процессе их соударения приближенно рассматривать как замкнутую систему и применять к ней законы сохранения.

Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения показывают, что относительная скорость тел после удара не достигает своего прежнего значения. Это объясняется тем, что нет идеально упругих тел и идеально гладких поверхностей. Отношение нормальных составляющих относительной скорости тел после и да удара называется коэффициентом восстановления :

Если для сталкивающихся тел =0, то такие тела называются абсолютно неупругими, если =1 -- абсолютно упругими. На практике для всех тел 0 < < 1 (например, для стальных шаров 0,56, для шаров из слоновой кости 0,89, для свинца 0). Однако в некоторых случаях тела можно с большой степенью точности рассматривать либо как абсолютно упругие, либо как абсолютно неупругие.

Прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения, называется линией удара. Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсолютно неупругие удары.

Абсолютно упругий удар -- столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию (подчеркнем, что это идеализированный случай).

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии.

Обозначим скорости шаров массами т1 и m2 до удара через v1 и v2, после удара--через и (рис. 18). В случае прямого центрального удара векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицатель-нос -- движению влево.

При указанных допущениях законы сохранения имеют вид

(15.1)

(15.2)

Произведя соответствующие преобразования в выражениях (15.1) и (15.2), получим

(15.3)

(15.4)

откуда

(15.5)

Решая уравнения (15.3) и (15.5), находим

(15.6)

(15.7)

Разберем несколько примеров.

1. При v2=0

(15.8)

(15.9)

Проанализируем выражения (15.8) в (15.9) для двух шаров различных масс:

а) т1=т2. Если второй шар до удара висел неподвижно (v2=0) (рис. 19), то после удара остановится первый шар (=0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара ();

б) т1>т2. Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью (<v1). Скорость второго шара после удара больше, чем скорость первого после удара (>) (рис. 20);

в) т1<т2. Направление движения первого шара при ударе изменяется--шар отскакивает обратно. Второй шар движется в ту же сторону, в которую двигался первый шар до удара, но с меньшей скоростью, т. е. <v1 (рис. 21);

г) т2>>т1 (например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что = -v1, 2m1v1/m20.

2. При т1=т2 выражения (15.6) и (15.7) будут иметь вид

т. е. шары равной массы "обмениваются" скоростями.

Абсолютно неупругий удар -- столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстречу друг другу (рис. 22).

Если массы шаров т1 и т2, их скорости до удара v1 и v2, то, используя закон сохранения импульса, можно записать

где v -- скорость движения шаров после удара. Тогда

(15.10)

Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае, если массы шаров равны (т1=т2), то

Выясним, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит "потеря" кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту "потерю" можно определить по разности кинетической энергии тел до и после удара:

Используя (15.10), получаем

Если ударяемое тело было первоначально неподвижно (v2=0), то

Когда m2>>m1 (масса неподвижного тела очень большая), то v<<v1 и почти вся кинетическая энергия тела при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка. Наоборот, при забивании гвоздей в стену масса молотка должна быть гораздо большей (m1>>m2), тогда vv1 и практически вся энергия затрачивается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.

Абсолютно неупругий удар -- пример того, как происходит "потеря" механической энергии под действием диссипативных сил.

1.16 Момент инерции

При изучении вращения твердых тел будем пользоваться понятием момента инерции. Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс л материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с координатами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним r+dr. Момент инерции каждого полого цилиндра

dJ=r2dm

(так как dr<<r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm -- масса всего элементарного цилиндра; его объем

2rhdr

Если --плотность материала, то

dm=2rhdr и dJ=2hrзdr.

Тогда момент инерции сплошного цилиндра

но так как R2h -- объем цилиндра, то его масса m=R2h, а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

(16.1)

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т -- масса тела).

Таблица 1

1.17 Кинетическая энергия вращения

Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвижной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными массами т1, т2,..., тn, находящиеся на расстоянии r1, r2,..., rn от оси.

При вращении твердого тела относительно неподвижной оси отдельные его элементарные объемы массами mi опишут окружности различных радиусов ri, и имеют различные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:

(17.1)

Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов:

или

Используя выражение (17.1), получаем

где Jz -- момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела

(17.2)

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела движущегося поступательно

T=mv2/2,

следует, что момент инерции -- мера инертности тела при вращательном движении. Формула (17.2) справедлива для тела вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

где m -- масса катящегося тела; vc -- скорость центра масс тела; Jc -- момент инерции тела относительно оси, проходящей через его центр масс; -- угловая скорость тела.

1.18 Момент силы. Уравнение динамики вращательного движения твердого тела

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точки О в точку А приложения силы, на силу F

Здесь М -- псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы

(18.1)

где -- угол между r и F; r sin = l -- кратчайшее расстояние между линией действия силы и точкой О -- плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина Mz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Найдем выражение для работы при вращении тела (рис. 27). Пусть сила F приложена в точке В, находящейся от оси z на расстоянии r, -- угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол d точка приложения В проходит путь ds=rd и работа равна произведению проекции силы на направление смещения на величину смещения:

(18.2)

Учитывая (18.1), можем записать

где Frsin = Fl =Mz -- момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота. Работа при вращении тела идет на увеличение его кинетической энергии: dA=dT, но

поэтому

Mzd = Jzd, или

Учитывая, что

получаем

(18.3)

Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Можно показать, что если ось z совпадает с главной осью инерции (см. § 20), проходящей через центр масс, то имеет место векторное равенство

(18.4)

где J -- главный момент инерции тела (момент инерции относительно главной оси).

1.19 Момент импульса и закон то сохранения

При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы "выступает" ее момент, роль массы "играет" момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r -- радиус-вектор, проведенный из точки О в точку A, p=mv -- импульс материальной точки (рис. 28); L -- псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где -- угол между векторами r и р, l -- плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса ri с некоторой скоростью vi. Скорость vi и импульс mivi перпендикулярны этому радиусу, т. с. радиус является плечом вектора mivi. Поэтому можем записать, что момент импульса отдельной частицы равен

(19.1)

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу (17.1) vi = ri, получим

(19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость. Продифференцируем уравнение (19.2) по времени:

Это выражение -- еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

(19.3)

В замкнутой системе момент внешних сил

откуда (19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента импульса -- фундаментальный закон природы. Он связан со свойством симметрии пространства -- его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Продемонстрировать закон сохранения момента импульса можно с помощью скамьи Жуковского. Пусть человек, сидящий на скамье, которая без трения вращается вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 29), приведен во вращение с угловой скоростью 1. Если человек прижмет гантели к себе, то момент инерции системы уменьшится. Поскольку момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения 2 возрастает. Аналогично, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, чтобы уменьшить свой момент инерции и увеличить тем самым угловую скорость вращения.

Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (табл. 2).

Таблица 2

1.20 Свободные оси. Гироскоп

Для того чтобы сохранить положение оси вращения твердого тела с течением времени неизменным, используют подшипники, в которых она удерживается. Однако существуют такие оси вращения тел, которые не изменяют своей ориентации в пространстве без действия на нее внешних сил. Эти оси называются свободными осями (или осями свободного вращения). Можно доказать, что в любом теле существуют три взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями (они называются главными осями инерции тела). Например, главные оси инерции однородного прямоугольного параллелепипеда проходят через центры противоположных граней (рис. 30). Для однородного цилиндра одной из главных осей инерции является его геометрическая ось, а в качестве остальных осей могут быть две любые взаимно перпендикулярные оси, проведенные через центр масс в плоскости, перпендикулярной геометрической оси цилиндра. Главными осями инерции шара являются любые три взаимно перпендикулярные оси, проходящие через центр масс.

Для устойчивости вращения большое значение имеет, какая именно из свободных осей служит осью вращения тела.

Можно показать, что вращение вокруг главных осей с наибольшим и наименьшим моментами инерции оказывается устойчивым, а вращение около оси со средним моментом -- неустойчивым. Так, если подбросить тело, имеющее форму параллелепипеда, приведя его одновременно во вращение, то оно, падая, будет устойчиво вращаться вокруг осей 1 и 2 (рис. 30).

Если, например, палочку подвесить за один конец нити, а другой конец, закрепленный к шпинделю центробежной машины, привести в быстрое вращение, то палочка будет вращаться в горизонтальной плоскости около вертикальной оси, перпендикулярной оси палочки и проходящей через ее середину (рис. 31). Это и есть ось свободного вращения (момент инерции при этом положении палочки максимальный). Если теперь палочку, вращающуюся вокруг свободной оси, освободить от внешних связей (аккуратно снять верхний конец нити с крючка шпинделя), то положение оси вращения в пространстве в течение некоторого времени сохраняется. Свойство свободных осей сохранять свое положение в пространстве широко применяется в технике. Наиболее интересны в этом плане гироскопы -- массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси симметрии, являющейся свободной осью.

Рассмотрим одну из разновидностей гироскопов -- гироскоп на кардановом подвесе (рис. 32). Дискообразное тело -- гироскоп -- закреплено на оси АА, которая может вращаться вокруг перпендикулярной ей горизонтальной оси ВВ, которая, в свою очередь, может поворачиваться вокруг вертикальной оси DD. Все три оси пересекаются в одной точке С, являющейся центром масс гироскопа и остающейся неподвижной, а ось гироскопа может принять любое направление в пространстве. Силами трения в подшипниках всех трех осей и моментом импульса колец пренебрегаем.

Так как трение в подшипниках мало, то, пока гироскоп неподвижен, его оси можно придать любое направление. Если начать гироскоп быстро вращать (например, с помощью намотанной на ось веревочки) и поворачивать его подставку, то ось гироскопа сохраняет свое положение в пространстве неизменной. Это можно объяснить с помощью основного закона динамики вращательного движения. Для свободно вращающегося гироскопа сила тяжести не может изменить ориентацию его свободной оси, так как эта сила приложена к центру масс (центр вращения С совпадает с центром масс), а момент силы тяжести относительно закрепленного центра масс равен нулю. Моментом сил трения мы также пренебрегаем. Поэтому если момент внешних сил относительно его закрепленного центра масс равен нулю, то, как следует из уравнения (19.3), L = const. т. е. момент импульса гироскопа сохраняет свою величину и направление в пространстве. Следовательно, вместе с ним сохраняет свое положение в пространстве и ось гироскопа.

Чтобы ось гироскопа изменила свое направление в пространстве, необходимо, согласно (19.3), отличие от нуля момента внешних сил. Если момент внешних сил, приложенных к вращающемуся гироскопу, относительно его центра масс отличен от нуля, то наблюдается явление, получившее название гироскопического эффекта. Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось гироскопа (рис. 33) поворачивается вокруг прямой О3О3, а не вокруг прямой O2O2, как это казалось бы естественным на первый взгляд (O1O1 и O2O2 лежат в плоскости чертежа, а О3О3 и силы F перпендикулярны ей).

Гироскопический эффект объясняется следующим образом. Момент М пары сил F направлен вдоль прямой О2О2. За время dt момент импульса L гироскопа получит приращение

dL=Mdt

(направление dL совпадает с направлением М) и станет равным

L'=L+dL.

Направление вектора L' совпадает с новым направлением оси вращения гироскопа. Таким образом, ось вращения гироскопа повернется вокруг прямой О3О3. Если время действия силы мало, то, хотя момент сил М и велик, изменение момента импульса dL гироскопа будет также весьма малым. Поэтому кратковременное действие сил практически не приводит к изменению ориентации оси вращения гироскопа в пространстве. Для ее изменения следует прикладывать силы в течение длительного времени.

Если ось гироскопа закреплена подшипниками, то вследствие гироскопического эффекта возникают так называемые гироскопические силы, действующие на опоры, в которых вращается ось гироскопа. Их действие необходимо учитывать при конструировании устройств, содержащих быстровращающиеся массивные составные части. Гироскопические силы имеют смысл только во вращающейся системе отсчета и являются частным случаем кориолисовой силы инерции (см. § 27).

Гироскопы применяются в различных гироскопических навигационных приборах (гирокомпас, гирогоризонт и т. д.). Другое важное применение гироскопов -- поддержание заданного направления движения транспортных средств, например судна (авторулевой) и самолета (автопилот) и т. д. При всяком отклонении от курса вследствие каких-то воздействий (волны, порыва ветра и т. д.) положение оси гироскопа в пространстве сохраняется. Следовательно, ось гироскопа вместе с рамами карданова подвеса поворачивается относительно движущегося устройства. Поворот рам карданова подвеса с помощью определенных приспособлений включает рули управления, которые возвращают движение к заданному курсу.

Впервые гироскоп применен французским физиком Ж. Фуко (1819--1868) для доказательства вращения Земли.

1.21 Деформации твердого тела

Рассматривая механику твердого тела, мы пользовались понятием абсолютно твердого тела. Однако в природе абсолютно твердых тел нет, так как все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются.

Деформация называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации, которые сохраняются в теле после прекращения действия внешних сил, называются пластическими (или остаточными). Деформации реального тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают. Однако если остаточные деформации малы, то ими можно пренебречь и рассматривать упругие деформации, что мы и будем делать.

В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходящим деформациям растяжения или сжатия и сдвига.

Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 34), к концам которого приложены направленные вдоль его оси силы F1 и F2 (F1=F2=F), в результате чего длина стержня меняется на величину l. Естественно, что при растяжении l положительно, а при сжатии отрицательно.

Сила, действующая на единицу площади поперечного сечения, называется напряжением:

(21.1)

Если сила направлена по нормали к поверхности, напряжение называется нормальным, если же по касательной к поверхности -- тангенциальным.

Количественной мерой, характеризующей степень деформации, испытываемой телом, является его относительная деформация. Так, относительное изменение длины стержня (продольная деформация)

(21.2)

относительное поперечное растяжение (сжатие)

где d -- диаметр стержня.

Деформации и ' всегда имеют разные знаки (при растяжении l положительно, a d отрицательно, при сжатии l отрицательно, a d положительно). Из опыта вытекает взаимосвязь и ':

где -- положительный коэффициент, зависящий от свойств материала и называемый коэффициентом Пуассона*.

Английский физик Р. Гук (1635--1703) экспериментально установил, что для малых деформаций относительное удлинение и напряжение прямо пропорциональны друг другу:

(21.3)

где коэффициент пропорциональности Е называется модулем Юнга**. Из выражения (21.3) видно, что модуль Юнга определяется напряжением, вызывающим относительное удлинение, равное единице.

Из формул (21.2), (21.3) и (21.1) вытекает, что

или

(21.4)

где k--коэффициент упругости. Выражение (21.4) также задает закон Гука, согласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением представляется в виде диаграммы напряжений, качественный ход которой мы рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость (), установленная Гуком, выполняется лишь в очень узких пределах до так называемого предела пропорциональности (п). При дальнейшем увеличении напряжения деформация еще упругая (хотя зависимость () уже нелинейна) и до предела упругости (у) остаточные деформации не возникают.

За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекращения действия силы, изобразится не кривой ВО, а параллельной ей -- CF. Напряжение, при котором появляется заметная остаточная деформация (0,2%), называется пределом текучести (т) -- точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы "течет". Эта область называется областью текучести (или областью пластических деформаций). Материалы, для которых область текучести значительна, называются вязкими, для которых же она практически отсутствует -- хрупкими. При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется пределом прочности (р).

Диаграмма напряжений для реальных твердых тел зависит от различных факторов. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при длительных, но слабых силах является текучим.

Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, которая равна работе, совершаемой внешними силами при деформации:

где х -- абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до l. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому

т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадрату деформации (l)2.

Деформацию сдвига проще всего осуществить, если взять брусок, имеющий форму прямоугольного параллелепипеда, и приложить к нему силу F, (рис. 36), касательную к его поверхности (нижняя часть бруска закреплена неподвижно). Относительная деформация сдвига определяется из формулы

где s -- абсолютный сдвиг параллельных слоев тела относительнодруг друга; h -- расстояние между слоями (для малых углов tg).

1.22 Тяготение. Элементы теории поля. Законы Кеплера. Закон всемирного тяготения

Еще в глубокой древности было замечено, что в отличие от звезд, которые неизменно сохраняют свое взаимное расположение в пространстве в течение столетий, планеты описывают среди звезд сложнейшие траектории. Для объяснения петлеобразного движения планет древнегреческий ученый К. Птоломей (II в. н. э.), считая Землю расположенной в центре Вселенной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого находится Земля. Эта концепция получила название птоломеевой геоцентрической системы мира.

В начале XVI в. польским астрономом Н. Коперником (1473--1543) обоснована гелиоцентрическая система (см. § 5), согласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория и наблюдения Коперника воспринимались как занимательная фантазия.

К началу XVII столетия большинство ученых убедилось, однако, в справедливости гелиоцентрической системы мира. И. Кеплер (1571--1630), обработав и уточнив результаты многочисленных наблюдений датского астронома Т. Браге (1546--1601), изложил законы движения планет:

1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Впоследствии И. Ньютон, изучая движение небесных тел, на основании законов Кеплера и основных законов динамики открыл всеобщий закон всемирного тяготения: между любыми двумя материальными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m1 и т2) и обратно пропорциональная квадрату расстояния между ними (r2):

(22.1)

Эта сила называется гравитационной (или силой всемирного тяготения). Силы тяготения всегда являются силами притяжения и направлены вдоль прямой, проходящей через взаимодействующие тела. Коэффициент пропорциональности G называется гравитационной постоянной.

Закон всемирного тяготения установлен для тел, принимаемых за материальные точки, т. е. для таких тел, размеры которых малы по сравнению с расстоянием между ними. Если же размеры взаимодействующих тел сравнимы с расстоянием между ними, то эти тела надо разбить на точечные элементы, подсчитать по формуле (22.1) силы притяжения между всеми попарно взятыми элементами, а затем геометрически их сложить (проинтегрировать), что является довольно сложной математической задачей.

Впервые экспериментальное доказательство закона всемирного тяготения для земных тел, а также числовое определение гравитационной постоянной G проведено английским физиком Г. Кавендишем (1731--1810). Принципиальная схема опыта Кавендиша, применившего крутильные весы, представлена на рис. 37. Легкое коромысло А с двумя одинаковыми шариками массой m=729 г подвешено на упругой нити В. На коромысле С укреплены на той же высоте массивные шары массой M=158 кг. Поворачивая коромысло С вокруг вертикальной оси, можно изменять расстояние между шарами с массами т и М. Под действием пары сил, приложенных к шарам т со стороны шаров М, коромысло А поворачивается в горизонтальной плоскости, закручивая нить В до тех пор, пока момент сил упругости не уравновесит момента сил тяготения. Зная упругие свойства нити, по измеренному углу поворота можно найти возникающие силы притяжения, а так как массы шаров известны, то и вычислить значение G.

Значение G, приводимое в таблицах фундаментальных физических постоянных, принимается равным 6,672010-11 Нм/кг2, т. е. два точечных тела массой по 1 кг каждое, находящиеся на расстоянии 1 м друг от друга, притягиваются с силой 6,672010-11 H. Очень малая величина G показывает, что сила гравитационного взаимодействия может быть значительной только в случае больших масс.

1.23 Сила тяжести и вес. Невесомость

На любое тело, расположенное вблизи поверхности Земли, действует сила тяготения F, под влиянием которой и в согласии со вторым законом Ньютона тело начнет двигаться с ускорением свободного падения g. Таким образом, в системе отсчета, связанной с Землей, на всякое тело массой т действует сила

называемая силой тяжести.

Согласно фундаментальному физическому закону -- обобщенному закону Галилея, все тела в одном и том же поле тяготения падают с одинаковым ускорением. Следовательно, в данном месте Земли ускорение свободного падения одинаково для всех тел. Оно изменяется вблизи поверхности Земли с широтой в пределах от 9,780 м/с2 на экваторе до 9,832 м/с2 на полюсах. Это обусловлено суточным вращением Земли вокруг своей оси, с одной стороны, и сплюснутостью Земли -- с другой (экваториальный и полярный радиусы Земли равны соответственно 6378 и 6357 км). Так как различие значений g невелико, ускорение свободного падения, которое используется при решении практических задач, принимается равным 9,81 м/с2.

Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести и сила гравитационного тяготения равны между собой:

где М -- масса Земли; R -- расстояние между телом и центром Земли. Эта формула дана для случая, когда тело находится на поверхности Земли.

Пусть тело расположено на высоте h от поверхности Земли, R0 -- радиус Земли, тогда

т. е. сила тяжести с удалением от поверхности Земли уменьшается.

В физике применяется также понятие веса тела. Весом тела называют силу, с которой тело вследствие тяготения к Земле действует на опору (или подвес), удерживающую тело от свободного падения. Вес тела проявляется только в том случае, если тело движется с ускорением, отличным от g, т. е. когда на тело кроме силы тяжести действуют другие силы. Состояние тела, при котором оно движется только под действием силы тяжести, называется состоянием невесомости.

Таким образом, сила тяжести действует всегда, а вес проявляется только в том случае, когда на тело кроме силы тяжести действуют еще другие силы, вследствие чего тело движется с ускорением а, отличным от g. Если тело движется в поле тяготения Земли с ускорением ag, то к этому телу приложена дополнительная сила N, удовлетворяющая условию

Тогда вес тела

т. е. если тело покоится или движется прямолинейно и равномерно, то а=0 и P'=mg. Если тело свободно движется в поле тяготения по любой траектории и в любом направлении, то a=g и Р'=0, т. е. тело будет невесомым. Например, невесомыми являются тела, находящиеся в космических кораблях, свободно движущихся в космосе.

1.24 Поле тяготения и то напряженность

Закон тяготения Ньютона определяет зависимость силы тяготения от масс взаимодействующих тел и расстояния между ними, но не показывает, как осуществляется это взаимодействие. Тяготение принадлежит к особой группе взаимодействий. Силы тяготения, например, не зависят от того, в какой среде взаимодействующие тела находятся. Тяготение существует и в вакууме.

Гравитационное взаимодействие между телами осуществляется с помощью поля тяготения, или гравитационного поля. Это поле порождается телами и является формой существования материи. Основное свойство поля тяготения заключается в том, что на всякое тело массой т, внесенное в это поле, действует сила тяготения, т. е.

(24.1)

Вектор g не зависит от m и называется напряженностью поля тяготения. Напряженность поля тяготения определяется силой, действующей со стороны поля на материальную точку единичной массы, и совпадает по направлению с действующей силой. Напряженность есть силовая характеристика поля тяготения.

Поле тяготения называется однородным, если его напряженность в точках одинакова, и центральным, если в точках поля векторы напряженности направлены вдоль прямых, которые пересекаются в одной точке, неподвижной по отношению к какой-либо инерциальной системе

Для графического изображения силового поля используются силовые линии (линии напряженности). Силовые линии выбираются так, что вектор напряженности поля направлен по касательной к силовой линии.

1.25 Работа в поле тяготения. Потенциал поля тяготения

Определим работу, совершаемую силами поля тяготения при перемещении в нем материальной точки массой т. Вычислим, например, какую надо затратить работу для удаления тела массой т от Земли. На расстоянии R (рис. 39) на данное тело действует сила

При перемещении этого тела на расстояние dR совершается работа

(25.1)

Знак минус появляется потому, что сила и перемещение вданном случае противоположны по направлению (рис. 39).

Если тело перемещать с расстояния R1 до R2, то работа

(25.2)

Из формулы (25.2) вытекает, что затраченная работа в поле тяготения не зависит от траектории перемещения, а определяется лишь начальным и конечным положениями тела, т.е. силы тяготения действительно консервативны, а поле тяготения является потенциальным (см. § 12).

Согласно формуле (12.2), работа, совершаемая консервативными силами, равна изменению потенциальной энергии системы, взятому со знаком минус, т. е.

Из формулы (25.2) получаем

(25.3)

Так как в формулы входит только разность потенциальных энергий в двух состояниях, то для удобства принимают потенциальную энергию при R2 равной нулю (П2=0). Тогда (25.3) запишется в виде П1= -GmM/R1. Так как первая точка была выбрана произвольно, то

Величина

является энергетической характеристикой поля тяготения и называется потенциалом. Потенциал поля тяготения -- скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Таким образом, потенциал поля тяготения, создаваемого телом массой М, равен

(25.4)

где R -- расстояние от этого тела до рассматриваемой точки.

Из формулы (25.4) вытекает, что геометрическое место точек с одинаковым потенциалом образует сферическую поверхность (R=const). Такие поверхности, для которых потенциал постоянен, называются эквипотенциальными.

Рассмотрим взаимосвязь между потенциалом () поля тяготения и его напряженностью (g). Из выражений (25.1) и (25.4) следует, что элементарная работа dA, совершаемая силами поля при малом перемещении тела массой т, равна

С другой стороны,

dA=Fdl

(dl -- элементарное перемещение). Учитывая (24.1), получаем, что dA=mgdl, т. е. mg0l= --md, или

Величина d/dl характеризует изменение потенциала на единицу длины в направлении перемещения в поле тяготения. Можно показать, что

(25.5)

где

-- градиент скаляра (см. (12.5)). Знак минус в формуле (25.5) показывает, что вектор напряженности g направлен в сторону убывания потенциала.

В качестве частного примера, исходя из представлений теории тяготения, рассмотрим потенциальную энергию тела, находящегося на высоте h относительно Земли:

где R0 -- радиус Земли. Так как

(25.6)

то, учитывая условие h<<R0, получаем

Таким образом, мы вывели формулу, совпадающую с (12.7), которая постулировалась раньше.

1.26 Космические скорости

Для запуска ракет в космическое пространство надо в зависимости от поставленных целей сообщать им определенные начальные скорости, называемые космическими.

Первой космической (или круговой) скоростью v1 называют такую минимальную скорость, которую надо сообщить телу, чтобы оно могло двигаться вокруг Земли по круговой орбите, т. е. превратиться в искусственный спутник Земли. На спутник, движущийся по круговой орбите радиусом r, действует сила тяготения Земли, сообщающая ему нормальное ускорение v/r. По второму закону Ньютона,

Если спутник движется вблизи поверхности Земли, тогда rR0 (радиус Земли) и g=GM/R (см. (25.6)), поэтому у поверхности Земли

Первой космической скорости недостаточно для того, чтобы тело могло выйти из сферы земного притяжения. Необходимая для этого скорость называется второй космической. Второй космической (или параболической) скоростью v2 называют ту наименьшую скорость, которую надо сообщить телу, чтобы оно могло преодолеть притяжение Земли и превратиться в спутник Солнца, т. е. чтобы его орбита в поле тяготения Земли стала параболической.

Для того чтобы тело (при отсутствии сопротивления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобы его кинетическая энергия была равна работе, совершаемой против сил тяготения:

откуда

Третьей космической скоростью v3 называют скорость, которую необходимо сообщить телу на Земле, чтобы оно покинуло пределы Солнечной системы, преодолев притяжение Солнца. Третья космическая скорость v3=16,7 км/с. Сообщение телам таких больших начальных скоростей является сложной технической задачей. Ее первое теоретическое осмысление начато К.Э. Циолковским, им была выведена уже рассмотренная нами формула (10.3), позволяющая рассчитывать скорость ракет.

Впервые космические скорости были достигнуты в СССР: первая -- при запуске первого искусственного спутника Земли в 1957 г., вторая -- при запуске ракеты в 1959 г. После исторического полета Ю. А. Гагарина в 1961 г. начинается бурное развитие космонавтики.

1.27 Неинерциальные системы отсчета. Силы инерции

Как уже отмечалось (см. § 5, 6), законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода -- так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции).

Силы инерции Fин при этом должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т.е.

(27.1)

Так как

F=ma

(a -- ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движении системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т (рис. 40).

Пока тележка покоится или движется равномерно и прямолинейно, нить, удерживающая шарик, занимает вертикальное положение и сила тяжести Р уравновешивается силой реакции нити Т.

Если тележку привести в поступательное движение с ускорением а0, то нить начнет отклоняться от вертикали назад до такого угла , пока результирующая сила

F=P+T

не обеспечит ускорение шарика, равное а0.

Таким образом, результирующая сила F направлена в сторону ускорения тележки а0 и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением а0) равна F=mgtg=ma0, откуда

т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fи, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(27.2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью (=const) вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой m). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол (рис. 41).

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, равная F=m2R и направленная перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы натяжения нити Т:

F=P+T.

Когда движение шарика установится, то

F=mgtg=m2R,

откуда

т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения .

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fц, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила Fц, называемая центробежной силой инерции, направлена по горизонтали от оси вращения диска и равна

(27.3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания центробежных сил инерции.

Из формулы (27.3) вытекает, что центробежная сила инерции, действующая на тела во вращающихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения системы отсчета и радиуса R, но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массой m движется с постоянной скоростью v' вдоль радиуса равномерно вращающегося диска (v'= coast, =const, v'). Если диск не вращается, то шарик, направленный вдоль радиуса, движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривой OВ (рис. 42, а), причем его скорость v' относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скорости v'.

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равномерно и прямолинейно со скоростью v' (рис. 42, б). При отклонении шарика стержень действует на него с некоторой силой F. Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила F уравновешивается приложенной к шарику силой инерции Fк, перпендикулярной скорости v'. Эта сила называется кориолисовой силой инерции.

...

Подобные документы

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.

    шпаргалка [7,1 M], добавлен 30.10.2010

  • Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.

    учебное пособие [10,2 M], добавлен 10.05.2010

  • Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.

    реферат [751,3 K], добавлен 14.01.2010

  • Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие [686,6 K], добавлен 26.02.2008

  • Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.

    реферат [18,6 K], добавлен 27.05.2003

  • Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.

    статья [77,4 K], добавлен 07.05.2002

  • Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.

    шпаргалка [243,2 K], добавлен 14.05.2011

  • Определения молекулярной физики и термодинамики. Понятие давления, основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Уравнение состояния идеального газа (Менделеева - Клапейрона).

    презентация [972,4 K], добавлен 06.12.2013

  • Закон сохранения импульса. Ускорение свободного падения. Объяснение устройства и принципа действия динамометра. Закон сохранения механической энергии. Основные модели строения газов, жидкостей и твердых тел. Примеры теплопередачи в природе и технике.

    шпаргалка [168,0 K], добавлен 15.12.2009

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.

    презентация [12,0 M], добавлен 28.06.2015

  • Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.

    контрольная работа [29,8 K], добавлен 16.08.2009

  • Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.

    реферат [1,7 M], добавлен 01.11.2013

  • Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.

    шпаргалка [250,6 K], добавлен 29.11.2009

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.