Плазма - четвертое состояние
Плазма как наиболее распространенное состояние вещества в природе, история открытия плазмы. Характеристика плазмы и её свойства. Разница между плазмой и газом. Плотность плазмы и её использование. Способ создания плазмы. Существование плазмы в космосе.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 21.01.2017 |
Размер файла | 309,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат на тему
Плазма - четвертое состояние
План
1. Плазма
2. Использование плазмы
3. Получение плазмы
4. Плазма в космосе
5. Свойства плазмы
1. Плазма
Плазма - наиболее распространенное состояние вещества в природе.
В 1929 г. американские физики Ирвинг Лёнгмюр (1881--1957) и Леви Тонко (1897--1971) назвали плазмой ионизованный газ в газоразрядной трубке.
Английский физик Уильям Крукс (1832--1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».
В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 °С - в жидком, выше 100 °С--в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны -- ионизуются и газ превращается в плазму. При температурах более 1 000 000 °С плазма абсолютно ионизована -- она состоит только из электронов и положительных ионов. Плазма -- наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности -- это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.
Ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе шаровые, -- всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии -- планеты, астероиды и пылевые туманности.
Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде в газе, в процессах горения и взрыва. Термин “плазма” в физике был введен в 1929 американскими учеными И. Ленгмюром и Л. Тонксом. Вещество, разогретое до температуры в сотни тысяч и миллионы градусов, уже не может состоять из обычных нейтральных атомов. При столь высоких температурах атомы сталкиваются друг с другом с такой силой, что не могут сохраниться в целостности. При ударе атомы разделяются на более мелкие составляющие - атомные ядра и электроны. Эти частицы наделены электрическими зарядами: электроны - отрицательным, а ядра - положительным. Смесь этих частиц, называемая плазма представляет собой своеобразное состояние вещества, которое очень сильно отличается от относительно холодного газа по свойствам. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, то есть, выполнено условие квазинейтральности. Средние кинетические энергии различных типов частиц, составляющих плазму, могут быть разными. Поэтому в общем случае плазму характеризуют не одним значением температуры, а несколькими - различают электронную температуру Те, ионную температуру Тi и температуру нейтральных атомов Та. Плазму с ионной температурой Тi < 105 К называют низкотемпературной, а с Тi > 106 К - высокотемпературной. Высокотемпературная плазма является основным объектом исследования по УТС. Низкотемпературная плазма находит применение в газоразрядных источниках света, газовых лазерах.
Между газом и плазмой нет резкой границы. Любое вещество, находящееся первоначально в твердом состоянии, по мере возрастания температуры начинает плавиться, а при дальнейшем нагревании испаряется, т. е. превращается в газ. Если это молекулярный газ (например, водород или азот), то с последующим повышением температуры происходит распад молекул газа на отдельные атомы (диссоциация). При еще более высокой температуре газ ионизуется, в нем появляются положительные ионы и свободные электроны. Свободно движущиеся электроны и ионы могут переносить электрический ток, поэтому одно из определений плазмы гласит: плазма -- это проводящий газ. Нагревание вещества не является единственным способом получения плазмы.
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Слово плотность плазмы обычно обозначает плотность электронов, т.е. число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию -- не массу единицы объема, а число частиц в единице объема). Плотность ионов связана с ней посредством среднего зарядового числа ионов. Следующей важной величиной является плотность нейтральных атомов n0. В горячей плазме n0 мала, но может, тем не менее, быть важной для физики процессов в плазме.
2. Использование плазмы
Наиболее широко плазма применяется в светотехнике - в газоразрядных лампах, освещающих улицы. Гуляя вечером по улицам города, мы любуемся световыми рекламами, не думая о том, что в них светится неоновая или аргоновая плазма. Пользуемся лампами дневного света. Всякий, кто имел «удовольствие» устроить в электрической сети короткое замыкание, встречался с плазмой. Искра, которая проскакивает между проводами, состоит из плазмы электрического разряда в воздухе. Дуга электрической сварки тоже плазма. Любое вещество, нагретое до достаточно высокой температуры, переходит в состояние плазмы. Легче всего это происходит с парами щелочных металлов, таких, как натрий, калий, цезий. Обычное пламя обладает некоторой теплопроводностью; оно, хотя и в слабой степени, ионизировано, то есть является плазмой. Причина этой проводимости - ничтожная примесь натрия, который можно распознать по желтому свечению. Для полной ионизации газа нужна температура в десятки тысяч градусов. Кроме того, плазма применяется в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, жестко закрепленные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел. Газовую плазму принято разделять на низкотемпературную - до 100 тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов. Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития Т), протекающие при очень высоких температурах. В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.
3. Получение плазмы
Способ создания плазмы путем обычного нагрева вещества - не самый распространенный. Чтобы получить термическим путем полную ионизацию плазмы большинства газов, нужно нагреть их до температур в десятки и даже сотни тысяч градусов. Только в парах щелочных металлов (таких, например, как калий, натрий или цезий) электрическую проводимость газа можно заметить уже при 2000-3000°С, это связано с тем, что в атомах одновалентных щелочных металлов электрон внешней оболочки гораздо слабее связан с ядром, чем в атомах других элементов периодической системы элементов (т.е. обладает более низкой энергией ионизации). В таких газах при указанных выше температурах число частиц, энергия которых выше порога ионизации, оказывается достаточным для создания слабоионизованной плазмы.
Общепринятым способом получения плазмы в лабораторных условиях и технике является использование электрического газового разряда. Газовый разряд представляет собой газовый промежуток, к которому приложена разность потенциалов. В промежутке образуются заряженные частицы, которые движутся в электрическом поле, т.е. создают ток. Для поддержания тока в плазме нужно, чтобы отрицательный электрод (катод) испускал в плазму электроны. Эмиссию электронов с катода можно обеспечивать различными способами, например нагреванием катода до достаточно высоких температур (термоэмиссия), либо облучением катода каким-либо коротковолновым излучением (рентгеновские лучи, g-излучение), способным выбивать электроны из металла (фотоэффект). Такой разряд, создаваемый внешними источниками, называется несамостоятельным.
К самостоятельным разрядам относятся искровой, дуговой и тлеющий разряды, которые принципиально отличаются друг от друга по способам образования электронов у катода или в межэлектродном промежутке. Искровой разряд обычно оказывается прерывистым даже при постоянном напряжении на электродах. При его развитии возникают тонкие искровые каналы (стримеры), пронизывающие разрядный промежуток между электродами и заполненные плазмой. Пример одного из наиболее мощных искровых разрядов являет собой молния.
В обычном дуговом разряде, который реализуется в довольно плотном газе и при достаточно высоком напряжении на электродах, термоэмиссия с катода возникает чаще всего от того, что катод разогревается падающими на него газовыми ионами. Дуговой разряд, возникающий в воздухе между двумя накаленными угольными стержнями, к которым было подведено соответствующее электрическое напряжение, впервые наблюдал в начале 19 в. русский ученый В.В. Петров. Ярко светящийся канал разряда принимает форму дуги благодаря действию архимедовых сил на сильно нагретый газ. Дуговой разряд возможен и между тугоплавкими металлическими электродами, с этим связаны многочисленные практические применения плазмы дугового разряда в мощных источниках света, в электродуговых печах для плавки высококачественных сталей, при электросварке металлов, а также в генераторах непрерывной плазменной струи - так называемых плазмотронах. Температура плазменной струи может достигать при этом 7000-10 000 К.
Различные формы холодного или тлеющего разряда создаются в разрядной трубке при низких давлениях и не очень высоких напряжениях. В этом случае катод испускает электроны по механизму так называемой автоэлектронной эмиссии, когда электрическое поле у поверхности катода просто вытягивает электроны из металла. Газоразрядная плазма, простирающаяся от катодного до анодного участков, а некотором расстоянии от катода образует положительный столб, отличающийся от остальных участков разряда относительным постоянством по длине характеризующих его параметров (например, напряженности электрического поля). Светящиеся рекламные трубки, лампы дневного света, покрытые изнутри люминофорами сложного состава, представляют собой многочисленные применения плазмы тлеющего разряда. Тлеющий разряд в плазме молекулярных газов (например, СО и СО2) широко используется для создания активной среды газовых лазеров на колебательно-вращательных переходах в молекулах.
Сам процесс ионизации в плазме газового разряда неразрывно связан с прохождением тока и носит характер ионизационной лавины. Это означает, что появившиеся в газовом промежутке электроны за время свободного пробега ускоряются электрическим полем и перед столкновением с очередным атомом набирают энергию, достаточную для того, чтобы ионизовать атом, т.е. выбить еще один электрон). Таким способом происходит размножение электронов в разряде и установление стационарного тока.
В тлеющих газовых разрядах низкого давления степень ионизации плазмы (т.е. отношение плотности заряженных частиц к общей плотности составляющих плазму частиц), как правило, мала. Такая плазма называется слабоионизованной. В установках управляемого термоядерного синтеза (УТС) используется высокотемпературная полностью ионизованная плазма изотопов водорода: дейтерия и трития. На первом этапе исследований по УТС плазма нагревалась до высоких температур порядка миллионов градусов самим электрическим током в так называемых самосжимаемых проводящих плазменных шнурах (омический нагрев). В тороидальных установках магнитного удержания плазмы типа токамак удаетсянагреть плазму до температур порядка десятков и даже сотен миллионов градусов с помощью впрыскивания (инжекции) в плазму высокоэнергетических пучков нейтральных атомов. Другой способ состоит в использовании мощного микроволнового излучения, частота которого равна ионной циклотронной частоте (т.е. частоте вращения ионов в магнитном поле) - то нагрев плазмы методом так называемого циклотронного резонанса.
плазма состояние свойство плотность
4. Плазма в космосе
В земных условиях из-за сравнительно низкой температуры и высокой плотности земного вещества естественная плазма встречается редко. В нижних слоях атмосферы Земли исключение составляют разве что разряды молнии. В верхних слоях атмосферы на высотах порядка сотен километров существует протяженный слой частично ионизованной плазмы, называемый ионосферой, который создается благодаря ультрафиолетовому излучению Солнца. Наличие ионосферы обеспечивает возможность дальней радиосвязи на коротких волнах, поскольку электромагнитные волны отражаются на определенной высоте от слоев ионосферной плазмы. При этом радиосигналы благодаря многократным отражениям от ионосферы и от поверхности Земли оказываются способными огибать выпуклую поверхность нашей планеты.
Во Вселенной основная масса вещества (ок. 99,9%) находится в состоянии плазмы. Солнце и звезды образованы из плазмы, ионизация которой вызывается высокой температурой. Так, например, во внутренней области Солнца, где происходят реакции термоядерного синтеза, температура составляет около 16 млн. градусов. Тонкая область поверхности Солнца толщиной порядка 1000 км, называемая фотосферой, с которой излучается основная часть солнечной энергии, образует плазму при температуре порядка 6000 К. В разреженных туманностях и межзвездном газе ионизация возникает под действием ультрафиолетового излучения звезд.
Над поверхностью Солнца находится разреженная сильно нагретая область (при температуре около одного миллиона градусов), которая носит название солнечной короны. Стационарный поток ядер атомов водорода (протонов), испускаемый солнечной короной, называется солнечным ветром. Потоки плазмы с поверхности Солнца создают межпланетную плазму. Электроны этой плазмы захватываются магнитным полем Земли и образуют вокруг нее (на расстоянии в несколько тысяч километров от поверхности Земли) радиационные пояса. Потоки плазмы, возникающие в результате мощных солнечных вспышек, изменяют состояние ионосферы. Быстрые электроны и протоны, попадая в атмосферу Земли, вызывают в северных широтах появление полярных сияний.
5. Свойства плазмы
Квазинейтральность.
Одна из важных особенностей плазмы в том, что отрицательный заряд электронов в ней почти точно нейтрализует положительный заряд ионов. При любых воздействиях на нее плазма стремится сохранить свою квазинейтральность. Если в каком-то месте происходит случайное смещение (например, за счет флуктуации плотности) части электронов, создающее избыток электронов в одном месте и недостаток в другом, в плазме возникает сильное электрическое поле, которое препятствует разделению зарядов и быстро восстанавливает квазинейтральность. Порядок величины такого поля можно оценить следующим образом. Пусть в слое плазмы толщиной в x создается объемный заряд плотностью q. Согласно законам электростатики, на длине xон создает электрическое поле
E = 4pqx
(использована абсолютная система единиц СГСЭ. В практических единицах - вольтах на сантиметр - это поле в 300 раз больше). Пусть в 1 см3 есть ne лишних электронов сверх тех, которые точно нейтрализуют заряд ионов. Тогда плотность объемного заряда
q = ene,
где
e = 4,8·10-10 ед. СГС
Электрическое поле, возникающее от разделения зарядов, равно
E = 1,8·10-6 x в/см
В качестве конкретного примера можно рассмотреть плазму с такой же концентрацией частиц, как атмосферный воздух у поверхности Земли, - 2,7·1019молекул/см3 или 5,4·1019 атомов/см3. Пусть в результате ионизации все атомы стали однозарядными ионами. Соответствующая концентрация электронов плазмы в этом случае равна ne = 5,4·1019 электрон/cм3. Пусть на длине 1 см концентрация электронов изменилась на 1%. Тогда ne = 5,4·1017 электрон/см3,x = 1 см и в результате разделения зарядов возникает электрическое поле E 1012 в/см.
Для создания такого сильного электрического поля понадобилась бы огромная энергия. Это говорит о том, что для рассматриваемого примера достаточно плотной плазмы фактическое разделение заряда будет ничтожно малым. Для типичного случая термоядерной плазмы (ne ~ 1012 - 1014 см-3) поле, которое препятствует разделению зарядов для рассмотренного выше примера, остается еще очень большим (E ~ 107109 в/см).
Длина и радиус Дебая.
Пространственный масштаб разделения заряда или ту характерную длину, ниже которой (по порядку величины) разделение зарядов становится заметным, можно оценить, вычисляя работу по разделению зарядов на расстояние d, которая совершается силами возникающего на длине x электрического поля
E = 4pne ex.
С учетом того, что сила, действующая на электрон равна eE, работа этой силы равна
Эта работа не может превышать кинетическую энергию теплового движения частиц плазмы, которая для случая одномерного движения равна (1/2)kT, где k - постоянная Больцмана, T - температура, т.е.
Из этого условия следует оценка максимального масштаба разделения заряда
Эта величина называется длиной Дебая по имени ученого, который ввел ее впервые, исследуя явление электролиза в растворах, где встречается аналогичная ситуация. Для рассмотренного выше примера плазмы при атмосферных условиях (ne = 5,4·1019 см-3 Т = 273 К, k = 1,38·10-16 эрг/К) получаем d = 1,6 ·10-19 см, а для условий термоядерной плазмы (ne = 1014 см-3, T= 108K) величина d = 7·10-3 см.
Для существенно более разреженной плазмы длина Дебая может оказаться больше размеров самого плазменного объема. В этом случае условие квазинейтральности нарушается, и такую систему уже нет смысла называть плазмой.
Длина d является важнейшей характеристикой плазмы. В частности, электрическое поле, создаваемое каждой отдельной заряженной частицей в плазме, экранируется частицами противоположного знака и фактически исчезает на расстоянии порядка радиуса Дебая от самой частицы. С другой стороны, величина d определяет глубину проникновения внешнего электрического поля в плазму. Заметные отклонения от квазинейтральности могут происходить вблизи границ плазмы с твердой поверхностью как раз на расстояниях порядка длины Дебая.
Размещено на Allbest.ru
...Подобные документы
Агрегатные состояния вещества. Что такое плазма? Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение плазмы. Использование плазмы. Плазма как негативное явление. Возникновение плазменной дуги.
доклад [10,9 K], добавлен 09.11.2006Возникновение плазмы. Квазинейтральность плазмы. Движение частиц плазмы. Применение плазмы в науке и технике. Плазма - ещё мало изученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках.
реферат [43,8 K], добавлен 08.12.2003Механизм функционирования Солнца. Плазма: определение и свойства. Особенности возникновения плазмы. Условие квазинейтральности плазмы. Движение заряженных частиц плазмы. Применение плазмы в науке и технике. Сущность понятия "циклотронное вращение".
реферат [29,2 K], добавлен 19.05.2010Изменение свободной энергии, энтропии, плотности и других физических свойств вещества. Плазма - частично или полностью ионизированный газ. Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение и использование плазмы.
доклад [10,5 K], добавлен 28.11.2006Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.
реферат [855,2 K], добавлен 11.08.2014Электродинамические параметры плазмы как материальной среды, в которой распространение электромагнитных волн сопровождается частотной дисперсией. Характеристика взаимодействия частиц плазмы между собой кулоновскими силами притяжения и отталкивания.
курсовая работа [67,4 K], добавлен 28.10.2011Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.
курсовая работа [651,1 K], добавлен 20.12.2012Состав газоразрядной плазмы. Восстановление плазмой нейтральности. Энергетический спектр тяжелых частиц (атомов и молекул). Столкновения частиц в плазме. Диффузия и амбиполярная диффузия в плазме. Механизмы эмиссии электронов из катода в газовом разряде.
контрольная работа [66,6 K], добавлен 25.03.2016Уравнения для поперечных компонент смещения плазмы, минимизация функционал Крускала-Обермана потенциальной энергии МГД-возмущения. Невозмущенное состояние, потенциальная энергия возмущения. Преобразование кинетического слагаемого, условие устойчивости.
реферат [567,9 K], добавлен 22.07.2011Понятие плазмы тлеющего разряда. Определение концентрации и зависимости температуры электронов от давления газа и радиуса разрядной трубки. Баланс образования и рекомбинации зарядов. Сущность зондового метода определения зависимости параметров плазмы.
реферат [109,9 K], добавлен 30.11.2011Современные подходы к построению электрофизических методов для создания низкотемпературной атмосферной плазмы для обработки поверхностей. Технико-физические пределы возможностей датчиков атмосферного давления. Параметры низкотемпературной плазмы.
реферат [1,9 M], добавлен 23.01.2015Изучение понятия неоднородности плазмы. Определение напряженности поля, необходимой для поддержания стационарной плазмы. Кинетика распыления активных частиц ионной бомбардировкой. Взаимодействие ионов с поверхностью. Гетерогенные химические реакции.
презентация [723,6 K], добавлен 02.10.2013Применение косвенных методов рентгеновской диагностики плазмы индуцированных вакуумных разрядов при лазерном инициировании. Применение камеры-обскуры для исследования пространственных характеристик сильноточного вакуумного разряда на парах металла.
отчет по практике [1,6 M], добавлен 08.07.2015Физические основы диагностики плазмы. Методы излучения, поглощения и рассеяния для определения плотностей частиц в дискретных энергетических состояниях. Лазерный резонатор, спектроскопия поглощения с частотно-перестраиваемыми и широкополосными лазерами.
реферат [677,7 K], добавлен 22.12.2011Рассмотрение основных особенностей изменения поверхности зонда в химически активных газах. Знакомство с процессами образования и гибели активных частиц плазмы. Анализ кинетического уравнения Больцмана. Общая характеристика гетерогенной рекомбинации.
презентация [971,2 K], добавлен 02.10.2013Содержание молекулярно-кинетической теории газов. Химический состав жидкости. Особенности межмолекулярного взаимодействия в данном агрегатном состоянии. Механические и тепловые свойства твердых тел. Практическое применение плазмы - ионизованного газа.
контрольная работа [26,0 K], добавлен 27.10.2010Роль эффекта "накопления" в непрозрачном твердом теле под действием излучения лазера, с помощью регистрации ионизационного состава плазмы, эмитированных с поверхности твердых тел при многократном облучении. Использование метода масс-спектрометрии.
статья [13,3 K], добавлен 22.06.2015Анализ отрицательных и положительных свойств пылевой плазмы. Изучение процессов в пылевой плазме при повышенных давлениях. Механизмы самоорганизации и образования плазменно-пылевых кристаллов. Зарядка в газоразрядной плазме. Пылевые кластеры в плазме.
реферат [25,8 K], добавлен 26.09.2012Продольное удержание плазмы в Газодинамической ловушке, поперечные потери, удержание быстрых ионов и микронеустойчивости. Диагностики: двухсеточный зонд, пироэлектрический болометр, 45 анализатор энергий ионов. Результаты измерений и их интерпретация.
дипломная работа [2,5 M], добавлен 19.02.2013Исследование газообразного состояния вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия. Изучение плазмы, частично или полностью ионизированного газа, в котором плотности отрицательных и положительных зарядов одинаковы.
презентация [477,5 K], добавлен 19.12.2011