Роль ТЭЦ в производстве энергии

Комбинированное производство тепла и электроэнергии. История использования промышленных теплоэлектроцентралей. Централизованное теплоснабжение как часть когенерации. Изучение опыта энергетической политики Финляндии. ТЭЦ с процессом газификации.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.01.2017
Размер файла 729,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ТЭЦ - надежный источник производства энергии

Комбинированное производство тепла и электроэнергии

Комбинированное производство тепла и электроэнергии (ТЭЦ), также называемое когенерацией, является процессом одновременного производства электрической и тепловой энергии. Это означает, что тепло, вырабатываемое для производства электроэнергии, регенерируется и используется. Процесс производства на ТЭЦ может базироваться на использовании паровых или газовых турбин, или двигателей внутреннего сгорания. Первичным источником для производства энергии может быть широкий диапазон топлив, включая биомассу, отходы и ископаемые виды топлива, а также, геотермальная или солнечная энергия.

Финляндия - ведущая страна в области использования когенерации

Количество энергии, которую Финляндия экономит ежегодно, используя источники комбинированного производства энергии, равно более чем 10 процентам всей первичной энергии, используемой в стране, или 20 процентам потребления ископаемого топлива в Финляндии. Приблизительно одна треть электричества, используемого в Финляндии, получена на ТЭЦ. Промышленные ТЭЦ и ТЭЦ централизованного теплоснабжения, соответственно составляют 45 и 55 процентов в системе комбинированного производства. Промышленность использует более половины всей электроэнергии, потребляемой в Финляндии, и почти 40 процентов этого количества, произведена ТЭЦ. В зависимости от годового изменения климата, почти 75 - 80 процентов теплоэнергии для централизованного теплоснабжения производится на ТЭЦ.

Широко используется в течение многих десятилетий

Потребление энергии на душу населения в Финляндии, наиболее высокое среди стран Организации Экономического Сотрудничества и Развития. Это объясняется большой долей энергоемких отраслей промышленности, таких как, целлюлозная и бумажная промышленность, в финской экономике. В результате этого, экономичному использованию и надежному распределению энергии всегда уделялось особенное внимание в Финляндии. Географические и климатические особенности страны обеспечили основу для развития ТЭЦ в централизованном теплоснабжении. Эффективность производства энергии является существенным фактором, так как, ежегодная потребность в тепле и количество часов использования энергии высоки.

История использования промышленных ТЭЦ

Комбинированное производство энергии в промышленности, является результатом потребности в производстве тепла для собственных нужд.

Первые промышленные ТЭЦ в Финляндии были построены, уже в начале 20-х и 30-х годов. ТЭЦ были выбраны потому, что это был наиболее надежный и экономичный способ производства электроэнергии. Местные источники энергии часто использовались как отправная точка.

Индустриальные ТЭЦ противодавления, в качестве топлива, главным образом используют жидкие щелочные отходы, образующиеся при производстве целлюлозы. Черный щелочной раствор является подходящим для сжигания, из-за наличия органических деревянных остатков, которые он содержит. Целлюлозная и бумажная промышленность, не единственные отрасли, которые используют свои отходы для сжигания на ТЭЦ. Металлургическая и химическая промышленности, также производят отходы, которые могут быть превращены в тепло и электричество в процессе когенерации.

Централизованное теплоснабжение, как часть когенерации

Из-за северного местоположения страны, централизованное теплоснабжение - естественный выбор для Финляндии. Планы относительно организации централизованной системы теплоснабжения были осуществлены после II Мировой войны. Когенерация тепловой и электрической энергии производилась при использовании отходов древесины, производимых деревообрабатывающей промышленностью, это оказалось эффективной концепцией производства энергии, при сохранении окружающей среды. Таким образом, финская централизованная система теплоснабжения базировалась на принципе ТЭЦ с самого начала.

Приблизительно половина зданий в Финляндии подключена к централизованной системе теплоснабжения. В самых крупных городах, эта цифра превышает 90 процентов. Большинство офисных и общественных зданий в стране, также, подключены к централизованной системе теплоснабжения. ТЭЦ обеспечивают примерно три четверти тепла, потребляемого ежегодно. Если сравнивать раздельное производство электрической и тепловой энергии, когенерация позволяет сэкономить, приблизительно треть топлива. Большинство теплопроизводящих компаний, принадлежит муниципалитетам, но доля частных предприятий постоянно увеличивается.

Централизованное теплоснабжение обеспечивает необходимую тепловую нагрузку для ТЭЦ, и это дает большой потенциал для использования возобновляемых источников энергии, типа биотоплива и отходов. Цель Европейского союза, удвоение доли когенерации в производстве энергии, не может быть достигнута без дальнейшего развития этой сферы. Таким образом, централизованное теплоснабжение, должно быть признано важной темой в повестке дня европейской энергетической политики.

ТЭЦ для централизованной системы охлаждения

Если говорить о централизованном теплоснабжении, охлаждение зданий, может также происходить, при помощи тепловой энергии. В течение зимних месяцев высокая температура используется для нагрева помещений, но в летнее время, тепла требуется немного. Это избыточное тепло, может использоваться для производства холода в системе кондиционирования помещений.

Централизованная система охлаждения существует сегодня, только в трех финских городах, но перспективы многообещающие. На сегодняшний день, централизованная система охлаждения в Хельсинки, самая крупная в Финляндии. Тридцать процентов холода получается за счет холодной морской воды, посредством простых теплообменников.

Использование ТЭЦ позволяет производить энергию наиболее экономически выгодным путем

Основная задача ТЭЦ - производить энергию наиболее экономически выгодным путем. Поэтому, комбинированное производство тепла и электроэнергии должно быть дешевле альтернативных способов. Доходность различных вариантов производства должна быть предварительно оценена для полного периода эксплуатации электростанции. ТЭЦ обычно требует больших инвестиций, чем обычные технологии производства энергии, но она потребляет меньше топлива.

В результате, ТЭЦ более дешевы в эксплуатации, чем электростанции схожей мощности. Тепло, производимое ТЭЦ, может использоваться как для централизованного теплоснабжения жилых районов, так и для промышленных нужд. Передача тепла на длинные расстояния является дорогостоящей. Поэтому лучше строить ТЭЦ близко к населенным пунктам и промышленным объектам, где тепловая энергия будет использоваться.

Высокая эффективность

ТЭЦ максимально используют энергию сгорающего топлива, производя электричество и тепло с минимальными потерями. Их КПД достигает 80 - 90 процентов. В то время, как обычные конденсационные электростанции достигают КПД 35 - 40 процентов.

Высокая отказоустойчивость

ТЭЦ имеют высокий уровень отказоустойчивости, позволяя не прерывать процесс производства энергии. В то же самое время, ТЭЦ высоко автоматизированы, таким образом, минимизируя число требуемого персонала и сокращая затраты на эксплуатацию и обслуживание.

Производство электричества и тепла могут быть легко приведены в соответствие с уровнем потребления, который может изменяться очень быстро. Надежность системы централизованного теплоснабжения в Финляндии в течение отопительного сезона, составляет 99,98 процента.

В среднем, теплоснабжение для отдельно взятого клиента, в течение отопительного периода, прерывается только один раз в шесть

Широкий спектр используемого топлива

В комбинированном производстве тепловой и электрической энергии может использоваться широкий спектр видов топлива, включая низкокалорийное и влажное, например индустриальные отходы и биотопливо. Оптимальная комбинация различных видов топлива определяется для каждой ТЭЦ в отдельности, в зависимости от местной ситуации с топливом. Обычно используются следующие виды топлива: природный газ, уголь, промышленные газы, торф и другие виды возобновляемых ресурсов (например, отходы деловой древесины, муниципальные отходы и древесная щепа). Мазут используется в небольших количествах, обычно в качестве подсветки для других топлив.

Традиционно, использование биотоплива при когенерации, связано с технологическими процессами лесной промышленности. По многим причинам, ТЭЦ - идеально подходит для использования биотоплива. Поскольку их теплотворная способность низка, а транспортировка дорогостояща, они имеют тенденцию быть местными видами топлива.

Эффективное производство энергии наносит меньший вред природе

Высокая эффективность и низкий уровень выбросов в процессе когенерации, самый приемлемый, с точки зрения окружающей среды, способ производства энергии. Современные ТЭЦ используют эффективные методы сжигания топлива, чтобы снизить выбросы окислов азота.

Снижение количества сжигаемого для производства энергии топлива, уменьшает негативное влияние на окружающую среду. Например, количество выбрасываемого углекислого газа, при сжигании ископаемого топлива, снижается в зависимости от количества используемого топлива. То же самое происходит и с такими загрязняющими веществами, как сера и окислы азота.

Изучение качества воздуха в крупнейших городах Финляндии показывает, что выбросы серы серьезно снизились и это является прямым результатом использования технологии когенерации и централизованной системы теплоснабжения.

Все преимущества использования ТЭЦ, с точки зрения воздействия на окружающую среду, были осознаны в течение нескольких последних лет. Не смотря на это, экономическая сторона дела, играет решающую роль при принятии решения о постройке того или иного типа источника энергии. Поэтому стоимость энергии произведенной в процессе когенерации, должна быть конкурентоспособной по сравнению с другими источниками энергии.

ТЭЦ и централизованная система теплоснабжения поддерживаются властями, потому что являются мощными инструментами для снижения выбросов углекислого газа. Целью энергетической стратегии Финляндии, является приведение выбросов углекислого газа в соответствие с Киотским Протоколом, в котором говорится, что к 2010 году, уровень выбросов должен быть снижен до показателей 1990 года. Благодаря централизованной системе теплоснабжения и ТЭЦ, в 2004 году Финляндия снизила выбросы углекислого газа в атмосферу на 8 миллионов тонн. Что равно, примерно, трем четвертям планового годового снижения выбросов в соответствии с Киотским Протоколом.

Широкий спектр применения ТЭЦ

Эволюция технологии ТЭЦ, в данный момент, идет в сторону уменьшения мощности. Небольшие источники позволяют в больших количествах использовать местные виды топлива, такие как: древесина и другие возобновляемые виды, и отказаться от вторичных энергоносителей природных горючих ископаемых.

Технологии предварительной подсушки топлива могут увеличить теплопроизводительность процесса когенерации. Другие современные технологии сжигания, например, газификация или сжигание при избыточном давлении, повышающие производство электроэнергии на ТЭЦ, находятся сейчас на стадии развития. Все это делается для того, чтобы малые ТЭЦ могли быть конкурентоспособными.

Улучшение технологии производства электроэнергии, приведет к увеличению производства тепла. Технология комбинированного цикла, основанная на газификации твердого топлива, может привести к интересным результатам. В этом случае, газ может быть использован в газовой турбине, а выработанное тепло, будет работать в паровой турбине. В этом случае, соотношение производимого электричества и тепла может быть 1:1, сейчас оно составляет 0.5.

Огромный рыночный потенциал существует для использования когенерации для выработки энергии из различных отходов.

Энергетическая политика Финляндии и ТЭЦ

Энергетическая политика Финляндии базируется на трех китах: энергия, экономика и окружающая среда. Устойчивое и безопасное энергоснабжение, конкурентоспособные цены на энергию и минимизация негативного воздействия на окружающую среду, в соответствии с международными обязательствами. Основным и самым важным фактором, влияющим на энергетическую политику, является международное сотрудничество в области снижения выбросов парникового газа. Среди других факторов, влияющих на энергетическую политику, нужно выделить необходимость предотвращения экологических катастроф и адаптирование экономической активности к принципам устойчивого развития.

Когенерация всегда играла основную роль в энергетической политике Финляндии и останется важнейшей ее частью и в будущем. Комбинированный цикл является эффективным способом производства тепла и электроэнергии. Он способствует развитию местных возобновляемых источников энергии. Все эти моменты означают только одно -- ТЭЦ является огромным вкладом в снижение выбросов парниковых газов.

В соответствии с решением Правительства, для бесперебойного и безопасного энергоснабжения, необходимо обеспечить производство энергии, основываясь на нескольких видах топлива, поставляемого из различных источников. Целью является создание в будущем гибкой, децентрализованной и сбалансированной энергетической системы. Со своей стороны, Правительство продолжает обеспечить все условия для создания подобной системы, и фокусируется на энергии, произведенной в своей стране, другими словами на возобновляемых энергетических ресурсах и биотопливе.

Правительство, и в будущем, продолжит поддерживать комбинированный цикл производства тепла и электричества. Предпосылкой решений, касательно источников энергии является то, что потребление тепла должно быть с наибольшей эффективностью связано с процессом когенерации. Достаточное внимание, также, должно быть уделено техническому и экономическому аспектам. Высокий статус процесса когенерации определен тем, что общая эффективность источников энергии является важным фактором в области выделенных квот на вредные выбросы. Инвестируя в постоянное развитие технологии, возможно во всеоружии подойти к моменту в будущем, когда обязательства по снижению выбросов парниковых газов, станут очень жесткими. Кроме технологии, развитие сосредотачивается на всей цепочке эксплуатации, доставки и торговли. Возобновляемые источники энергии и энергоэффективность, остаются важными секторами. Постоянные и интенсивные инвестиции послужат разработке и внедрению в жизнь новых, экономичных решений для процесса когенерации, промышленного производства энергии, малой энергетики и эффективного использования энергии.

Правительственные инвестиции, в основном, будут направлены в проекты, внедряющие новые энергетические технологии, с одной стороны, и связанные с особыми технологическими рисками, связанными с демонстрационным характером этих проектов.

Высокоэффективная технология комбинированного цикла

Компания Helsinki Energy

Благодаря своей передовой технологии сжигания газа, ТЭЦ района Vuosaari в Хельсинки, являются одними из самых эффективных и чистых. На них применяется технология комбинированного цикла, при которой скомбинировано два процесса -- газовая и паровая турбины. Если сравнивать традиционную схему производства энергии с технологией комбинированного цикла, то во втором случае, мы имеем более высокую эффективность в производстве электричества и, соответственно более высокий выход электроэнергии, в пропорции к производимой тепловой энергии.

В процессе комбинированного цикла, ТЭЦ Vuosaari достигает КПД, превышающий 90 процентов, т. е. теряется менее 10 процентов произведенной энергии. Если мы говорим о потерях энергии, то это чаще всего, тепловые потери. Тепло теряется с дымовыми газами, охлаждающей жидкостью, а также, самом процессе производства.

Производство электроэнергии - 630 МВт

Производство тепла - 580 МВт

Топливо - природный газ 650-800 миллионов м3/г

Малые ТЭЦ с процессом газификации

тепло электроэнергия когенерация финляндия

Компания Kokemдen Lampo Oy

Первые малые ТЭЦ, работающие по технологии Novel, газификации топлива в слое, были построены в 2004 году. Станция оборудована полной технологической цепочкой газоочистки, состоящей из установки реформинга газа, фильтра и кислотно-щелочного скруббера для удаления остатков азотных соединений. Для производства электричества используются три газовые турбины по 0.6 мВт и один газовый котел для регенерации тепла.

Газификатор Novel является новой разработкой, принцип его действия основан на подаче топлива под давлением, такой способ дает возможность использования волокнистого биотоплива с низкой объемной плотностью. В газификаторе может использоваться широкий спектр отходов биологического происхождения с влажностью от 0 до 55 процентов и размером частиц от опилок до крупной щепы.

Производство электроэнергии - 1.8 МВт

Производство тепла - 4.3 МВт

Тепловая мощность топливосушилки 429 кВт

Емкость топливохранилища - 7.2 МВт

Комплексный подход для достижения рентабельности

Компания Vapo Oy

Постройка ТЭЦ, расширение и модернизация производства топливных гранул в Ilomantsi были завершены в ноябре 2005 года. ТЭЦ была оборудована котлом для сжигания в «кипящим слое». Модернизация производства топливных гранул заключалась в постройке нового приемника для сырья, сушилки, третьей линии для производства гранул, системы конвейеров и бункера. ТЭЦ, производство гранул и сушилка управляются из одной диспетчерской. В качестве топлива используются фрезерный торф и древесина. Потребление топлива, примерно 75 ГВт в год.

ТЭЦ

Емкость топливохранилища - 23 МВт

Производство тепла для теплоснабж. - 8 МВт

От каменного угля к биотопливу

Компания Porvoon Energia Oy

ТЭЦ Tolkkinen была переведена с каменного угля на биомассу. Компания, хотела убить двух зайцев одним выстрелом - снизить потребление угля и снизить нагрузку на окружающую среду. Котел с цепной колосниковой решёткой был заменен котлом с «кипящем слоем» в 2000 году. Это предоставило хорошую возможность использовать различные типы древесины и древесных отходов в качестве топлива. Одновременно, были модернизированы системы подачи воздуха, отсоса дымовых газов, сбора золы, подачи топлива, контрольные приборы и автоматика. Скруббер для утилизации отходящего тепла, который сможет поднять эффективность станции на более чем 7 МВт, будет достроен в 2006 году.

Емкость топливохранилища - 54 МВт

Производство пара - 46 МВт

Производство электроэнергии 7 МВт

Производство тепла - 25 МВт

Энергия для ЦБК и системы теплоснабжения

Компания Kymin Voima Oy

ТЭЦ Kymin Voima находится в собственности компаний Pohjolan Voima Oy и Kouvolan Seudun Sahko Oy. Она расположена на ЦБК компании UPM Kymi, на ТЭЦ используется технология сжигания топлива в «кипящем слое». Она производит энергию, как для технологического процесса, так и для систем централизованного теплоснабжения городов Kouvola и Kuusankoski. В качестве топлива используются: древесная кора, рубочные отходы, шламы, торф, газ и мазут. Потребление топлива составляет примерно 2,100 ГВт/год.

Производство электроэнергии - 76 МВт

Технологический пар - 125 MWth

Пр-во технологического тепла - 15 MWth

Производство тепла для теплоснабж. - 40 MWth

ТЭЦ Forssa сжигает только древесину

Компания Vapo Oy

Forssa Bio Power Plant - первая в Финляндии ТЭЦ (1996 год), в системе централизованного теплоснабжения, использующая в качестве топлива только древесину. Для промышленных нужд древесное топливо, широко использовалось и до этого. Процесс сжигания происходит в «кипящем слое». Эта технология позволяет применять практически все остальные доступные виды топлива. Основным видом топлива, являются отходы деревообрабатывающей промышленности. Например опилки и кора, вместе с рубочными отходами и отходами строительства. При сжигании древесины не происходит выбросов серы, а выбросы окислов азота незначительны.

Производство электроэнергии - 17 МВт

Производство тепла для теплоснабж. - 48 МВт

Гибкая технология

Компания Oy Ahlholmens Kraft Ab

ТЭЦ AK2 принадлежит компании Oy Ahlholmens Kraft Ab. Теплоисточник гибок в эксплуатации, поэтому вне зависимости от объемов выработки электричества, тепло производится в том количестве, которое необходимо в данный момент. КПД установки при производстве тепла, составляет более 80%, поэтому, производство не наносит ущерба окружающей среде. Тепло поставляется в город Pietarsaari и на ЦБК компании UPM.

Основными видами топлива являются уголь и различные виды биотоплива. Такие как: древесная кора, щепа, другие отходы лесной промышленности и торф.

Производство электроэнергии - 240 МВт

Технологический пар - 100 МВт

Производство тепла для теплоснабж. - 60 МВт

Размещено на Allbest.ru

...

Подобные документы

  • История рождения энергетики. Виды электростанций и их характеристика: тепловая и гидроэлектрическая. Альтернативные источники энергии. Передача электроэнергии и трансформаторы. Особенности использования электроэнергетики в производстве, науке и быту.

    презентация [51,7 K], добавлен 18.01.2011

  • Экономический аспект энергетики. Изучение ее воздействия на природу и окружающую человека среду. Разработка новых альтернативных и энергосберегающих технологий для выработки тепла и электроэнергии. Комбинированное производство технологической продукции.

    презентация [3,2 M], добавлен 12.03.2015

  • Общее понятие теплофикации и когенерации. Условия эффективности использования газа в процессе теплофикации. Устройство теплофикационного прибора. Возникновение идеи централизованного теплоснабжения. Принцип работы и области применения теплового насоса.

    реферат [26,0 K], добавлен 16.09.2010

  • Централизованное теплоснабжение промышленного района: расчет тепловых потоков на отопление, вентиляцию и горячее водоснабжение жилых районов и промышленного предприятия, гидравлический расчет всех трубопроводов и тепловой нагрузки на отопление.

    методичка [1,2 M], добавлен 13.05.2008

  • Сущность когенерации как комбинированного производства электроэнергии и тепла. Принципы работы паровых, поршневых и газовых турбин, используемых в энергосистемах. Преимущества и недостатки двигателей. Оценка тепловых потерь. Применение при теплофикации.

    курсовая работа [669,7 K], добавлен 14.12.2014

  • История теплового аккумулирования энергии. Классификация аккумуляторов тепла. Аккумулирование энергии в атомной энергетике. Хемотермические энергоаккумулирующие системы. Водоаммиачные регуляторы мощности. Аккумуляция тепла в калориферных установках.

    реферат [1,5 M], добавлен 14.05.2014

  • История использования и современные методы генерации электроэнергии из энергии ветра. Перспективы развития ветроэнергетики в мире, экономические и экологические аспекты, себестоимость электроэнергии. Проект "Джунгарские ворота" в Казахстане, его цель.

    реферат [835,1 K], добавлен 01.03.2011

  • Анализ энергетических показателей теплоэлектростанции. Расход тепла, раздельная и комбинированная выработка электроэнергии и тепла. Применение метода энергобалансов, сущность эксергетического метода. Пропорциональный метод разнесения затрат на топливо.

    презентация [945,1 K], добавлен 08.02.2014

  • Описания ветроэнергетики, специализирующейся на преобразовании кинетической энергии воздушных масс в атмосфере в любую форму энергии, удобную для использования в народном хозяйстве. Изучение современных методов генерации электроэнергии из энергии ветра.

    презентация [2,0 M], добавлен 18.12.2011

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Преимущества использования вечных, возобновляемых источников энергии – текущей воды и ветра, океанских приливов, тепла земных недр, Солнца. Получение электроэнергии из мусора. Будущее водородной энергетики, минусы использования ее в качестве топлива.

    реферат [28,3 K], добавлен 10.11.2014

  • Доля альтернативных источников энергии в структуре потребления РФ. Производство биогаза из органических отходов. Технический потенциал малой гидроэнергетики. Использование низкопотенциальных геотермальных источников тепла в сочетании с теплонасосами.

    курсовая работа [2,7 M], добавлен 20.08.2014

  • Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат [999,0 K], добавлен 22.12.2010

  • Солнечные электростанции как один из источников преобразования электроэнергии, принципы и закономерности их функционирования, внутреннее устройство и элементы. Порядок преобразования солнечной энергии в электрическую. Оценка энергетической эффективности.

    презентация [540,5 K], добавлен 22.10.2014

  • Генерация электроэнергии как ее производство посредством преобразования из других видов энергии, с помощью специальных технических устройств. Отличительные признаки, приемы и эффективность промышленной и альтернативной энергетики. Типы электростанций.

    презентация [2,0 M], добавлен 11.11.2013

  • Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат [536,4 K], добавлен 07.05.2009

  • Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.

    презентация [316,3 K], добавлен 22.12.2011

  • Централизованное и децентрализованное теплоснабжение. Автоматизация индивидуальных тепловых пунктов. Температурный график воды в подающем трубопроводе системы отопления. Примерная схема теплового контроля и автоматики теплового пункта потребителя.

    реферат [345,3 K], добавлен 26.08.2013

  • Определение годового и часового расхода тепла на отопление и на горячее водоснабжение. Определение потерь в наружных тепловых сетях, когенерации. График центрального качественного регулирования тепла. Выбор и расчет теплообменников, котлов и насосов.

    дипломная работа [147,1 K], добавлен 21.06.2014

  • Распространение солнечной энергии на Земле. Способы получения электричества и тепла из солнечного излучения. Проблемы эксплуатации промышленных ветрогенераторов. Энергия Мирового океана и геотермальная энергия. Физические свойства и получение водорода.

    реферат [1,0 M], добавлен 01.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.