Методы разработки нефтяных месторождений на примере ОАО "Сургутнефтегаз"

Краткая характеристика геологического строения разрабатываемых месторождений ОАО "Сургутнефтегаз". Геолого-физические характеристики продуктивных пластов и свойств их нефтей на Западно-Сургутском месторождении. Методы исследования добывающих скважин.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 28.01.2017
Размер файла 408,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

Нефть была, есть и в обозримом будущем останется ведущим ресурсом мировой экономики, самым ценным и востребованным ресурсом на планете на сегодняшний день. За контроль над месторождениями нефти борются все ведущие страны мира. Из-за неё свергают правительства и начинают войны. Она определяет внешнюю и внутреннюю политику всех стран. Колебание цены на нефть сказывается сразу на всех секторах экономики. Именно поэтому комплексная характеристика роли нефти в мировом хозяйстве является как никогда актуальной в современном мире. Также нефть является ведущим мировым энергетическим ресурсом, уверенно лидируя и занимая в структуре энергопотребления более 1/3.

Россия обладает одним из самых больших в мире потенциалов топливно-энергетических ресурсов. На 13% территории Земли, в стране, где проживает менее 3% населения мира, сосредоточено около 13% всех мировых разведанных запасов нефти и 34% запасов природного газа. Ежегодное производство первичных энергоресурсов в России составляет более 12% от общего мирового производства.

Сегодня топливно-энергетический комплекс (ТЭК) является одним из важнейших, устойчиво работающих и динамично развивающихся производственных комплексов российской экономики. На его долю приходится около четверти производства валового внутреннего продукта, трети объема промышленного производства, около половины доходов федерального бюджета, экспорта и валютных поступлений страны.

В 2011 году добыча нефти в РФ составила 511,432 млн тонн (объём добычи нефти на шельфе составил 13 млн т, а газа - 57 млрд куб. м), что на 1,23% выше, чем в 2010. Экспорт нефти сократился на 2,4% по данным Росстата, или на 6.4% по данным ФТС, но доходы от экспорта выросли со 129 до 171,7 млрд. долларов.

В 2012 году добыча нефти в РФ составила 516 млн тонн. За сутки примерно выкачивается примерно 10,5 млн баррелей. Экспорт нефти составил 239,6 млн тонн, это 0,8% ниже уровня 2011 года. Средняя цена в 2012 году составила 110,4 $/барр

В настоящее время все месторождения находятся на поздней стадии разработки. Поэтому используются методы поддержания пластового давления и методы заводнения, к этим методам относится нестационарное заводнение.

месторождение сургутский нефть скважина

1. ГЕОЛОГИЧЕСКИЙ РАЗДЕЛ

1.1 Краткая характеристика геологического строения разрабатываемых месторождений ОАО «Сургутнефтегаз»

На территории работ ОАО «Сургутнефтегаз» преобладают пластовые сводовые и литологически экранированные типы залежей. Реже встречаются массивные, тектонически экранированные и структурно литологические. В районе деятельности ОАО «Сургутнефтегаз» в Западной Сибири коллекторы практически всех выявленных залежей представлены песчаниками и алевролитами (пласты АС4-Ю. БС1-4, БС10-11. БС14-23, ЮС1- 4) преимущественно с поровым, терригенным, трещинно-поровым типом коллектора, кроме пласта ЮС0, представленного битуминозными аргиллитами с трещинным и трещинно-кавернозным типом коллектора.

Характеризуются значительными изменениями фильтрационно-емкостных свойств как по площади так и по разрезу. На Рогожниковском месторождении пласты ВК1, ЮК2-3 и ЮК4 также представлены песчаниками, алевролитами и алевролитовыми глинами с прослоями угля.

Пласты ЮК0, ЮК1 представлены битумизированными и карбонатизированными глубоководными отложениями с высокой расчлененностью и сильной литологической неоднородностью по разрезу. Отложения представлены вулканогенными эффузивными образованиями кислого редко - среднего состава с подчиненными прослоями терригенных отложений с терригенным, поровым типом коллектора. На Талаканском месторождении Восточной Сибири продуктивный пласт О1 представлен известковистыми доломитами и доломитизированными известняками с небольшими долями ангидритов с высокойзональной и послойной неоднородностью, большой расчлененностью исложной структурой трещинно-кавернозно-порового коллектора.

Коллектор продуктивного пласта В10 Алинского месторождения представлен переслаиванием песчаников разнозернистых кварцевых с глинистымцементом, алевролитов, аргиллитов и гравелитистых песчаников с поровым типом коллектора. 

Коллекторы пласта P2ul и P1kl Ненецкого месторождения (НАО) представлены песчаниками с карбонатно-глинистым цементом, пласта Р1к2 - известняками глинистыми с прослойками мергелей, пласта P1a-s - водорослеорганогенными известняками. Все продуктивные пласты неоднородны, что оказывает существенное влияние на распределение запасов нефти и газа, на характер фильтрации жидкостей и газа и, соответственно, на обоснование технологий разработки залежей.

Характеристика пластовых флюидов Восточной Сибири

К настоящему времени промышленная эксплуатация месторождений и поисковые работы ведутся в Республике Саха (Якутия). В качестве особенностей изученных месторождений следует отметить аномально низкие пластовые температуры (11-17 оС) и низкие пластовые давления. Пластовые нефти в условиях залегания имеют относительно высокую степень газонасыщенности: газовый фактор дифференциального разгазирования колеблется от 60 м3/т до 100 м3/т, соответственно, с ростом газосодержания давление насыщения увеличивается от 6,9 МПа до 9,9 МПа, вязкость нефти при пластовых давлении и температуре изменяется от 2,4 мПа*с до 6,6 мПа*с.

Дегазированная нефть в поверхностных (стандартных) условиях имеет плотность в диапазоне 831-862 кг/м3 (в среднем 842 кг/м3,т. е. легкая по технологической классификации), характеризуется как маловязкая (вязкость при 20 оС колеблется от 8,4 до 36 мПа*с при среднем значении 12,8 мПа*с), преимущественно малосернистая (содержание серы от 0,10 до 0,72% при среднем значении 0,49% масс.),парафинистая (содержание парафина от 0,50 до 4,04% при среднем значении 2,0% масс. ), преимущественно малосмолистая (содержание силикагелевых смол от 2,89 до 21,90% при среднем значении 7,5%масс.), выход светлых фракций до 350 оС - около 48-50%.

По результатам рентгенофлюоресцентного анализа содержание ванадия и никеля в нефти не превышает 5 г/т. Особенностью дегазированной нефти осинского горизонта Талаканского месторождения является присутствие в ее составе легкокипящих серосодержащих компонентов. Растворенный (нефтяной) газметанового типа (концентрация метана 58-78% объемных) с низким содержанием не углеродных компонентов (двуокись углерода, азот - в среднем не более 2% объемных), сероводород в составе газа отсутствует (или присутствует в следовых количествах - значительно ниже 20 мг/м3).

Содержание гелия в растворенном газе редко превосходит пороговое значение - 0,005% объема. Пластовые воды карбонатных отложений представлены рассолами с минерализацией около 400 г/л. В солевом составе преобладают хлориды кальция и хлориды натрия. Плотность воды в поверхностных (стандартных) условиях составляет 1240-1300 кг/м3, средняя плотность в условиях пласта около 1280 кг/м3.

Средняя газонасыщенность пластовых вод составляет в среднем 0,36 м3/м3. Состав водорастворенного газа преимущественно метановый, с высоким содержанием тяжелых углеводородов. Вязкость воды в условиях пласта и на поверхности аномально высокая (2,2-2,9 мПа*с) в связи с высокой минерализацией и низкой пластовой температурой.

Рисунок 1. Обзорная карта месторождений ОАО «Сургутнефтегаз»

1.2 Геолого-физические характеристики продуктивных пластов и свойств их нефтей на Западно-Сургутском месторождении

В разрезе Западно-Сургутского нефтяного месторождения обнаружено более 20 самостоятельных залежей нефти, которые содержатся в терригенных коллекторах средней - верхней юры (пласты ЮС2, ЮС1) и нижнего мела (БС1-2, БС4, БС10-12, АС9). Первоочередными объектами разработки являются залежи в пластах группы БС, к которым приурочены основные запасы нефти месторождения. Общий этаж нефтеносности составляет около 1000 м. Диапазон нефтегазопроявлений по разрезу составляет 870 м. Пласты-коллекторы изменчивы по площади и разрезу, что определило присутствие как пластово-сводовых, так и литологически экранированных залежей. В юго-восточной части месторождения основным объектом разработки, для которого предусматривается система ППД, является пласт БС10 (Восточная залежь).

Залежи пластов АС9, ЮС1 и ЮС2 - новые объекты, установленные в процессе доразведки и эксплутационного бурения. В пластах АС9 и ЮС1 залежи небольших размеров с несущественными запасами, приурочены к сводовой части структуры.

Залежь пласта ЮС21, характеризующегося чрезвычайно сложным строением: резкой литологической изменчивостью состава пород по площади и по разрезу, колебаниями толщин и широким диапазоном изменения дебитов нефти - от 47,7 до 0,4 м3/сут, находится в стадии доразведки и опытно-промышленной эксплуатации.

Пласт ЮС22 нефтеносен лишь локально. Залежи располагаются в повышенных участках. Поэтому для объекта ЮС22 региональная нефтеносность верхнего пласта ЮС21 является характерным коррелятивным признаком его выделения на Западно-Сургутском месторождении.

Самыми крупными как по размерам, так и по величине запасов нефти, являются залежи пластов БС10, БС1, БС2-3. Суммарные балансовые запасы нефти, содержавшейся в этих пластах, составляют 92% запасов месторождения, извлекаемые - 97%.

Пласт БС10 представляет собой сложнопостроенное геологическое образование, состоящее из серии песчано-алевролитовых пластов, переслаивающихся с глинистыми породами.

Основная залежь пласта БС10 распространена по всей площади месторождения и имеет размеры 25х10 км, при высоте залежи 110 м. ВНК находится на а. о. -2275,0-2315,0 м. Тип залежи - структурно-литологический. В юго-восточной части площади выделяется самостоятельная Восточная залежь. Она находится в пределах пойменной части р. Оби и городской черты города Сургута. Залежь имеет размеры 9х8 км, высоту 72 м, ВНК находится на а. о. -2332,0 м. Тип залежи - структурно-литологический. В северной и восточной частях залежи коллектора замещаются на более плотные породы.

Пласт БС102 включает в себя 2 самостоятельные залежи, которые территориально и по разрезу гидродинамически разобщены.

Нефтяная залежь пласта АС9 расположена в центральной части структуры. ВНК проводится на абсолютной отметке - 1875 м. Залежь литологически экранирована. Размеры - 1х0,6 км. Средняя эффективная нефтенасыщенная толщина - 3,6 м., коэффициент нефтенасыщения -0,43.

Пласт БС1 разделяется на БС1-1 и БС1-2. Пласт БС11 имеет две залежи нефти с самостоятельными уровнями ВНК. Основная залежь прослеживается по всей площади структуры и имеет размеры 22х6,7-7,5 км. Нефтенасыщенная толщина колеблется в пределах от 1,0 до 13,4 м. Водонефтяная зона занимает 29% площади всей залежи, ВНК на абсолютной отметке - 2014 м.

В северо-западной части структуры по результатам бурения выявлена самостоятельная залежь нефти с размерами 1,5х0,75 км. Средняя эффективная нефтенасыщенная толщина составляет 4,6 м. ВНК проводится по абсолютной отметке - 2022 м. Водонефтяная зона занимает 69% залежи. Обе залежи пластовые сводовые с активной связью с законтурными водами.

Залежь пласта БС12 по площади развита в центральной и северной частях месторождения и имеет размеры 14,2х4,25 км. Нефтенасыщенная толщина составляет в среднем 1,5 м. Пласт неоднороден, имеет сложные контуры нефтеносности и замещения продуктивных пород. Уровень ВНК - 2014 м.

В пласте БС2-3 имеется две залежи с единым уровнем ВНК, проводимый по абсолютной отметке - 2014 м. Размеры основной залежи 12,5х5,0 км. Залежь пластовая сводовая, водоплавающая. Толщина в среднем составляет 9,2 м. Размеры самостоятельной залежи 2,5х1,0 км., средняя нефтенасыщенная толщина - 3,1 м. Коэффициент нефтенасыщения обеих залежей принят 0,54.

Залежь пласта БС4 приурочена к северному куполу, осложняющему структуру. Размеры залежи 2,25х1,75 км., высота 14 м., толщина - 4,4 м. Залежь относится к типу пластовых сводовых, водоплавающих.

Пласт БС10 имеет три залежи. Основная залежь распространена по всей площади структуры и имеет размеры 27,8х12,0 км. ВНК постепенно погружается от абсолютной отметки - 2278 м. на севере, до - 2326 м. на юго-западе. Водонефтяная зона занимает 29%. Эффективная нефтенасыщенная толщина изменяется от 2-3 до 30 м.

В северной части площади выявлена самостоятельная залежь с уровнем ВНК - 2255,9 м. Водонефтяная зона занимает 6,0%. Размеры залежи 4,75х3,75 км. Средняя эффективная нефтенасыщенная толщина составляет 1,8 м.

Восточная залежь пласта БС10 (третья) является пластовой сводовой. Положение ВНК не выявлено. Пласт БС10 представляет собой сложное сочетание трех типов пород-песчаников, алевролитов и глин, которое сочетается в их слоистом чередовании по разрезу и взаимном замещении по простиранию. Слоисто-зональная неоднородность этого пласта прежде всего подчеркивается изменчивостью литолого-коллекторских параметров пород, в частности гранулометрического состава, пористости и проницаемости. Коллекторы характеризуются как мелкозернистые, глинистые. По вещественному составу относятся к классу полимиктовых.

2. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

2.2 Методы исследования добывающих скважин

Изучение продуктивных пластов на всех стадиях промышленной разведки и разработки залежей осуществляют в основном лабораторными, промыслово-геофизическими и гидродинамическими методами.

Лабораторные методы.

К лабораторным относят методы, основанные на прямых измерениях физико-химических, механических, электрических и других свойств образцов горных пород и проб пластовых жидкостей (газов), отбираемых в процессе бурения и эксплуатации. При этих методах исследования определяются следующие параметры: пористость, проницаемость пород, вязкость и плотность нефти. Эти методы применяются при подсчете запасов нефти и составлении проектов разработки месторождений нефти и газа.

Промыслово-геофизические методы.

К промыслово-геофизическим относят методы, основанные на изучении электрических, радиоактивных и других свойств горных пород с помощью приборов, спускаемых в скважину на кабеле.

По результатам геофизических исследований можно определить толщину пласта, пористость, проницаемость, нефтенасыщенность и др. Для этого данные промысловых измерений сопоставляют с результатами лабораторных испытаний образцов горных пород и проб пластовых жидкостей (газов). Поэтому такие методы исследования относят к косвенным методам изучения свойств продуктивных пластов.

Гидродинамические методы

К гидродинамическим методам относят методы, основанные на косвенном определении некоторых важных свойств продуктивных пластов по данным прямых измерений дебитов скважин и забойных давлений при установившихся и неустановившихся процессах фильтрации жидкостей и газов в пласте.

В основу этих методов положены формулы гидродинамики, описывающие связь между дебитами, давлениями и характеристиками продуктивных пластов (проницаемость, гидропроводность др.).

Гидродинамические исследования осуществляют с помощью глубинных манометров и расходомеров, спускаемых в скважину на кабеле (проволоке), а также с помощью приборов, установленных на устье скважины.

В отличие от лабораторных и промыслово-геофизических методов при гидродинамических исследованиях определяют средние значения свойств продуктивных пластов на значительном расстоянии от стенок скважин или между ними.

В нефтепромысловой практике применяют следующие основные методы гидродинамических исследований:

- установившихся отборов;

- восстановления давления;

- взаимодействия скважин (гидропрослушивание);

- термодинамические.

Исследования газовых скважин также проводят при стационарных (установившихся) и нестационарных режимах фильтрации газов. В последнем случае используют следующие методы:

- восстановления забойного давления после остановки скважины;

- стабилизации забойного давления и дебита при пуске скважин.

По данным, полученным в результате исследования газовых скважин, оценивают изменение параметров пласта в процессе эксплуатации скважин.

2.2 Исследования профилей приемистости и излива нагнетательных скважин

Геофизические и гидродинамические исследования водонагнетательных скважин проводятся с целью решения следующих задач нефтепромысловой геологии:

-определения профиля приемистости перфорированных пластов;

-определения гидродинамических параметров: пластового и забойных давлений, коэффициента приемистости, осредненного значения коэффициента гидропроводности пласта в районе исследуемой скважины (метод установившихся режимов нагнетания) или на участке между двумя исследуемыми скважинами (методами восстановления давления;

-обоснования технического состояния скважины: целостность обсадной колонны НКТ, герметичность затрубного пространства, состояние забоя;

-исследования для целей капитального ремонта;

-исследования при вводе скважины в эксплуатацию или при переходе на другой объект нагнетания;

работы с опробователями пластов на трубах.

2. По заявке заказчика (НГДУ, УБР, УПНП и КРС) исследования в скважинах проводятся в период ее эксплуатации, до ремонтных работ, в период их проведения и после завершения,

Состав комплекса геофизических исследований в зависимости от категории скважины, условий проведения измерений и решаемых задач регламентируется настоящим руководством.

При необходимости решения нескольких задач в одной скважине перечень необходимых геофизических исследований представляет собой комбинацию из комплексов, применение которых рекомендуется настоящим руководством для решения каждой из поставленных задач.

Методы исследований, применение которых необходимо для решения конкретных задач, подразделяются на основные и дополнительные. Эффективность и целесообразность применения дополнительных методов для каждого района должны быть установлены путем проведения специальных опытно-методических работ. Комплексы методов могут уточняться в зависимости от конкретных геолого-технических условий, наличия аппаратуры и особенностей разработки отдельных нефтяных месторождений, а также поставленных задач по "взаимно согласованному плану между геофизической и промыслово-геологической службами.

Промыслово-геофизические исследования в скважинах проводятся согласно заявке заказчика. Порядок приема и выполнения заявок должен соответствовать "Основным условиям производства промыслово-геофизических и прострелочно-взрывных работ в нефтяных скважинах" РД 39-4-784-82 (Уфа. 1982).

Готовность скважин к промыслово-геофизическим исследованиям согласно требованиям разделов 4 и 12 "Правил безопасности в нефтегазодобывающей промышленности", а также настоящего документа оформляется актом. За подготовку скважины и достоверность указанных в заявке сведений о техническом состоянии скважины, расходе жидкости, давлении на устье отвечает заказчик.

Геофизические исследования, не предусмотренные настоящим документом (кислотные обработки, ТГХВ, ТХО и др.),проводятся по специальному плану, составленному подрядчиком и заказчиком, в котором определяется необходимое оборудование, участие бригады ПРС и КРС в процессе проведения исследований и комплекс измерений.

Приемистость водонагнетательных скважин измеряется счетчиками или расходомерами диафрагменного типа, турбинными, электромагнитными и другими приборами, установленными на кустовых насосных станциях (КНС) в соответствии с инструкциями по эксплуатации этих приборов.

Основным технологическим требованием к системе контроля приемистости является обеспечение возможности раздельного измерения приемистости каждой нагнетательной скважины.

Водонагнетательная система должна иметь индивидуальный водовод от кустовой насосной станции (КНС), индивидуальную систему измерения расхода. Последнее условие соблюдается не везде, поэтому для измерения суммарного расхода воды в нагнетательных скважинах, не оборудованных средствами индивидуального измерения расхода, его можно производить скважинным расходомером в насосно-компрессорных трубах (НКТ); допускается располагать расходомер в манифольдной линии, помещая его через фланец, устанавливаемый специально для этой цели. Диаметр эксплуатационной колонны водонагнетательных скважин 5-6", применяемые насосно-компрессорные трубы преимущественно 2,5"; для обеспечения беспрепятственного пропуска и извлечения скважинных приборов башмак НКТ образуется направляющей воронкой.

Технологические операции по подготовке водонагнетательных скважин к исследованию профилей приемистости приборами прямого измерения (расходомерами) и по проведению самих исследований, коррекция полученных профилей и их интерпретация производятся в соответствии с действующими методическими документами по применению потокометрических скважинных измерений при послойном определении характера экспуатируемого разреза.

При исследованиях должны выполняться следующие основные требования:

- до начала исследований должен быть проведен замер приемистости скважины;

- путем сопоставления замеренной приемистости на поверхности и суммарной приемистости, измеренной глубинным прибором, при его установке над верхними перфорационными отверстиями должен быть определен поправочный коэффициент, учитывающий неполную пакеровку прибора и возможное несоответствие скважинных условий условием градуировки прибора;

- исследование должно проводиться при установившемся режиме нагнетания (режим можно считать установившимся, если за 30 мин показания прибора, установленного над верхними перфорационными отверстиями, расход воды изменяется не более чем на 3% );

- результаты измерений должны быть проведены точно по глубинам.

По результатам точечных замеров расхода воды для каждого режима строятся обычные профили приемистости, где показания расходомера даются в имп/мин. При определение расхода в мЗ/сут. используются градуировочные графики расходомеров, полученные до и после скважинных исследований. Для количественных определений расхождение между осредненными графиками предварительного и повторного градуирования должно быть не больше приведенной погрешности прибора. В таких случаях для интерпретации используется усредненный график. По данным градуировки на профиль приемистости наносится шкала расхода в мЗ/сут с указанием порога срабатывания прибора.

Значение расходов считываются в не перфорированных интервалах колонны, а по отдельным пластам определяются как разность расходов, полученных выше и ниже перфорированных интервалов.

2.3 Методика промысловых исследований и построение профилей приемистости нагнетательных скважин

При решении большинства задач используются интегральные профили поглощения воды (приемистости) в нагнетательных скважинах и притока продукции в эксплуатационных скважинах. Кроме того, применяются кривые восстановления и затухания расхода в отдельных точках соответственно после открытия и закрытия скважины. Эти два вида первичных диаграмм, получаемых с помощью скважинных расходомеров, используются для решения многочисленных задач, возникающих в нефтепромысловой практике.

По своему назначению и техническим характеристикам приборы для измерения расходов жидкостей в стволе можно разделить на расходомеры, предназначенные для исследования: а) нагнетательных скважин, не оборудованных насосно-компрессорными трубами (НКТ); б) нагнетательных скважин, оборудованных НКТ; в) эксплуатационных фонтарирующих скважин; г) эксплуатационных компрессорных скважин (оборудованных газлифтным оборудованием) и т.д.

Беспакерные расходомеры измеряют, в принципе, осредненное значение скорости потока в скважине, т.е. с их помощью строится приближенная кривая изменения скорости потока в стволе скважины.

Беспакерные большегабаритные расходомеры дают более близкие к истине результаты, чем малогабаритные приборы. Это связано с тем, что через чувствительный элемент малогабаритных расходомеров проходит меньшая часть общего потока жидкости и гидравлическое сопротивление измерительного тракта их больше, чем у большегабаритных приборов.

Малогабаритные расходомеры больше искажают эпюру скоростей в стволе скважины, чем приборы большего диаметра.

Приборы с неуправляемым пакером используются в настоящее время для исследования нагнетательных скважин и в перспективе могут быть использованы при исследовании скважин с ЭПН( с электропогружными насосами). При надежной работе пакерующего устройства эти приборы измеряют истинный объемный расход жидкости, т.к. через их чувствительный элемент в принципе проходит весь измеряемый поток жидкости.

Расходомеры с управляющим пакерующим устройством в зависимости от конструкции самого прибора и степени раскрытия пакера могут работать в различных режимах, а именно: а) через чувствительный элемент проходит весь измеряемый поток ( прибор с абсолютным пакером); б) через чувствительный элемент проходит определенная известная доля измеряемого потока ( прибор с калиброванным отверстием на пакере); в) часть потока жидкости проходит через чувствительный элемент прибора, а часть через кольцевое пространство между пакером и обсадной колонной скважины (прибор снабжен пакером, не перекрывающим полностью колонну скважины или у прибора пакер раскрыт частично).

Из краткого перечисления режимов работы отдельных видов скважинных расходомеров видно, что не во всех случаях через измерительный преобразователь проходит весь измеряемый поток. Это связано со многими специфическими условиями исследования действующих скважин.

Как же решаются проблемы расходометрии в действующих скважинах?

Необходимость в пакере одни авторы объясняют тем, что в этом случае можно получить достаточную точность измерения, абсолютный пакер (без утечек) обеспечит прохождение всего потока измеряемой жидкости через чувствительный элемент. Другие авторы отрицают необходимость абсолютного пакера и для повышения чувствительности прибора предлагают специальную насадку, увеличивающую долю прохождения жидкости через чувствительный элемент. Правильное решение данного вопроса может быть получено только при учете всего комплекса факторов, влияющих на характеристики и работоспособность приборов с теми или иными чувствительными элементами.

В скважинных расходомерах нашли применение в основном три вида чувствительных элементов: а) гидродинамическая турбинка (вертушка); б) поплавково-пружинное устройство; в) заторможенная турбинка на струной подвеске.

Чтобы выявить, как влияют основные факторы на работоспособность приборов с учетом специфики чувствительных элементов, на специальном гидравлическом стенде (рис1) были сняты их статические характеристики.

Подача жидкости на рабочую колонну стенда 6 осуществляется из напорного бака 1. Напорный бак наполняется с помощью центробежного насоса 2. Постоянство уровня напорного столба H поддерживается благодаря переливному устройству 3. Измерение расхода производится с помощью мерных емкостей 5. Регулировка расхода осуществляется игольчатым клапаном 4. Гидравлическая схема обвязки позволяет изменять направление потока жидкости в рабочей колонне стенда. Чувствительные элементы 7 устанавливались в трубке 8. А с помощью клапана 9 регулировалось сечение обводного канала. Отсчет показаний поплавково-пружинного устройства (в) и заторможенной турбинки (г) производился визуально, а гидродинамической турбинки (б) - с помощью магнитоэлектрического преобразователя. В качестве рабочей жидкости использовалась водопроводная вода с температурой 130С.

Статическая характеристика гидродинамической турбинки (рис 2, а) для жидкостей с малой вязкостью согласуется с классическим уравнением прямой, проходящей через начало координат.

Определенная степень пропуска пакера приводит к пропорциональному изменению угла наклона графика, которое может быть определено по одному контрольному замеру.

Статические характеристики поплавково-пружинного устройства (рис.2, б) и заторможенной турбинки на струнной подвеске (рис.2, в) выражаются соответсвенно степенными функциями

Для нормальной работы прибора с заторможенной турбинкой уменьешение коэффициента пакеровки практически недопустимо. Уменьшение коэффициента резко изменяет характеристику прибора и снижает его чувствительность.

Поплавково-пружинное устройство по сравнению с заторможенной турбинкой менее чувствительно к утечкам в пакере. Однако при наличии утечки нижний предел измерения сдвигается в сторону больших расходов и резко ухудшается порог чувствительности.

Рассмотрим, как влияют отклонения в диаметре обсадной колонны скважины на показания приборов с перечисленными чувствигельными элементами. Известно, что диаметр труб обсадной колонны скважины имеет некоторые отклонения от номинальных значений. Например, трубы одного номинального значения наружного диаметра имеют колебания внутреннего диаметра в пределах 148,0-155,2 мм (номинальный диаметр 150 мм)

2.4 Методика промысловых исследований и построение профилей продуктивности нефтяных скважин

Традиционные методы гидродинамических исследований, такие как методы восстановления давления и установившихся отборов в большинстве случаев неприменимы для исследований малодебитных скважин, вскрывающих низкопроницаемые коллектора Приобского месторождения. Причиной этого является невозможность соблюдения технологий исследований указанными методами, в частности, невозможность создания нескольких пли хотя бы одного устойчивого режима работы добывающей скважины.

Согласно технологии центра «Информпласт» (ВНИИнефть) в течение достаточно длительного промежутка времени (2-З суток и более) производится наблюдение за режимом работы скважины. В процессе работы скважины регистрируется во времени изменение следующих параметров: забойных давления и температуры, буферного и затрубного давлений на устье скважины, а также дебита скважины на замерной установке на поверхности. Измерения на забое скважины производятся дистанционными приборами, что позволяет в процессе временных измерений определять режим работы скважины. Затем, в зависимости от режима работы выбираются методы и технология дальнейших исследований данной скважины.

 Большинство скважин на месторождении, эксплуатирующихся фонтанным способом, являются периодически фонтанирующими. В аналогичном режиме работают и многие скважины, оборудованные погружными насосами. В процессе исследований определяются средние значения времени фонтанирования; времени подъема уровня до устья с момента прекращения фонтанирования; забойного давления, при котором начинается фонтани-рование и забойного давления, при котором начинается подъем уровня. Все эти характеристики периодического фонтанирования необходимо знать при обработке регистрируемой впоследствии кривой восстановления давления (КВД). Они необходимы для воссоздания истории работы скважины в последние несколько суток перед закрытием ее на КВД.

Если скважина работает в режиме периодического фонтанирования, то производится оценка участков роста давления после прекращения фонтанирования. Если на этих участках происходит рост уровня в скважине, длина участков достаточно продолжительна (не менее 10-15 часов), амплитуда изменения давления достаточно велика (не менее 15-20 ат) и кривые достаточно гладкие, то эти участки роста давления могут быть использованы для обработки по методу прослеживания уровня.

 Если же эти участки роста давления не соответствуют указанным выше условиям, то для исследований скважины методом прослеживания уровня необходимо использовать компрессирование скважины. Бывают случаи, когда по каким-либо причинам невозможно использовать компрессор. Если при этом в скважине имеется высокое затрубное давление порядка 30-40 ат, то снижение уровня в стволе скважины для проведения исследований методом прослеживания уровня можно получить в результате разрядки затрубного пространства в линию.

После завершения исследований методом прослеживания уровня при периодическом фонтанировании проводится исследование методом восстановления давления. При постоянном фонтанировании согласно обычной технологии скважина закрывается на КВД после последнего режима исследований методом "установившихся" отборов. При периодическом фонтанировании скважина закрывается на КВД после подъема уровня до устья скважины, т.е. перед началом ее фонтанирования.

Так как условия, при которых проводятся измерения параметров в скважинах, существенно отличаются от условий работы измерительных приборов общепромышленного назначения, приборы для глубинных измерений следует рассматривать как отдельную группу средств измерительной техники.

Наиболее существенными являются следующие особенности работы глубинных приборов.

1. Измерения проводятся на значительном удалении от места наблюдения за показаниями приборов: глубина спуска прибора в скважину достигает 7000 м.

2. Прибор (снаряд) эксплуатируется в измеряемой, среде и подвергается действию окружающего давления, температуры и коррозионных жидкостей. В связи с увеличением глубин бурения, а также с необходимостью контроля различных процессов по интенсификации добычи нефти и газа, давление окружающей среды может достигать 1000-1500 кгЧс/см2, а температура до 300-400° С.

3. Прибор спускается на проволоке или кабеле в затрубное пространство или в трубы диаметром 37-63 мм.

4. При спуске прибора в скважину через трубы на него действует выталкивающая сила тем большая, чем выше скорость встречного потока жидкости или газа и меньше проходное сечение между внутренней стенкой трубы и корпусом прибора. В отдельных случаях спуск глубинного прибора в действующие скважины представляет сложную техническую задачу.

5. Во время спуска и подъема прибор подвергается ударам, а во время работы, например, в скважине, оборудованной установками погружных электронасосов, и действию вибрационных нагрузок.

6. Время пребывания прибора в месте измерения в зависимости от вида проводимых исследований и способа эксплуатации скважин составляет от нескольких часов до нескольких месяцев.

7. Среда, в которой находится прибор, как правило, представляет собою многофазную жидкость, содержащую нефть, газ, воду и механические включения (песок, шлам и т. д.) с различными физико-химическими свойствами (плотность, вязкость, наличие солей и т. д.).

В соответствии с указанными выше особыми условиями работы к конструкции глубинных приборов предъявляется ряд требований. Вследствие воздействия на них встречного потока жидкости или газа и необходимости спуска в геометрически ограниченное пространство наружный диаметр корпуса приборов в основном не должен превышать 32-36 мм, а при спуске через 37-мм трубы или в затрубное пространство - 20-25 мм. Длина его также ограничена: обычно не превышает 2000 мм, так как увеличение ее сверх этого предела значительно осложняет операции, связанные с подготовкой прибора к спуску в фонтанные скважины. Кроме того, должна быть обеспечена полная герметичность внутренней полости прибора от внешнего давления. Особые требования предъявляются также к устройствам, расположенным в глубинном приборе и эксплуатируемым в условиях повышенной температуры, ударов и вибраций.

По способу получения измерительной информации глубинные приборы делятся на:

а) автономные, результаты измерения которых можно получить только после извлечения их из скважины;

б) дистанционные, обеспечивающие передачу сигнала измерительной информации по кабелю.

Выпускаемые промышленностью автономные (самопишущие) скважинные манометры широко используют для исследования добывающих и нагнетательных скважин, а также для испытаний с помощью трубных испытателей пластов.

Манометр типа МГН-2 с многовитковой трубчатой пружиной, принципиальная схема которого приведена на рис. 10.2, а, предназначен для измерения давления в добывающих скважинах.Давление в скважине через отверстие в корпусе 9 передается жидкости заполняющей внутреннюю полость разделительного и манометрической трубчатой пружине (геликсу) 8. Под действием измеряемого давления свободный конец геликса поворачивает ось 7, на которой жестко крепится пластинчатая пружина с пишущим пером 6. Перо чертит на бланке, вставленном в каретку 5, линию, длина которой пропорциональна измеренному давлению.

2.5 Оборудования, применяемые для исследования

При измерениях в скважинах глубиной свыше 1500 м применяют только механизированные глубинные лебедки. Для спуска приборов в скважины (с избыточным давлением на устье) на фонтанной арматуре должен быть установлен лубрикатор 1 (рис. 9.1), представляющий собой полый цилиндр и имеющий в верхнем торце сальник для прохода проволоки или кабеля, манометр 2 и кран 4 для сообщения лубрикатора с атмосферой. К корпусу крепится направляющий и оттяжные ролики 3 для прохода проволоки или кабеля 5.

Рис. 9.1 Оборудование фонтанной скважины для глубинных измерений

Установка с лебедкой располагается примерно в 25-40 м от устья. Установку ставят таким образом, чтобы вал барабана лебедей был перпендикулярен направлению движения проволоки от скважины до середины барабана.

Для подготовки глубинного прибора 6 к спуску конец проволоки от лебедки 7 пропускают через сальник лубрикатора, вывинтив его предварительно из корпуса.

Закрепив конец проволоки в подвесной части прибора, его помещают в корпус лубрикатора и

завинчивают сальник. Сальник затягивают так, чтобы надежно уплотнить проволоку, но при этом обеспечить возможность движения ее через сальник.

Лебедка Азинмаш-8 (Азинмаш-8А и Азинмаш-8Б) монтируется на автомашине ГАЗ-66.

Она предназначена для спуска и подъема в скважину измерительных приборов на глубину до 6000 м (глу- бинные манометры, термометры), а также для измерения глубины скважин и уровня жидкости в них. Привод ее осуществляется от коробки передач автомашины через карданный вал и узел цепной передачи. Для ручного подъема приборов предназначена рукоятка, смонтированная на барабане лебедки.

3. РАСЧЕТНО-ПРАКТИЧЕСКИЙ РАЗДЕЛ

По результатам исследований строят графики зависимости дебита скважины от забойного давления Рзаб или от депрессии (Рпл -Рзаб ), называемые индикаторными диаграммами (ИД).

Индикаторные диаграммы (ИД) добывающих скважин располагаются ниже оси абсцисс, а водонагнетательных - выше этой оси.

Обе индикаторные диаграммы (Q = f(Рзаб ) и Q = f(DR)) строят в тех случаях, когда скважины эксплуатируются при сравнительно больших депрессиях (более 0,5…1,0 МПа). Ошибки измерений при этом обычно не приводят к большому разбросу точек при построении ИД в координатах Q = f(Рзаб ) (тем более для Q = f(DR)).

При малых депрессиях (порядка 0,2…0,3 МПа) разброс точек может быть настолько большим, что индикаторную диаграмму в координатах Q = f(Рзаб ) построить не удается. В этих случаях на каждом режиме следует измерять и Рзаб , и Рпл , а индикаторную диаграмму строить в координатах Q = f(DR). Депрессия, определяемая на каждом режиме, имеет меньшую относительную ошибку, чем Рзаб , т.к. при измерениях за один спуск прибора абсолютные ошибки Рпл и Рзаб примерно одинаковы и поэтому на разность DR=Рпл -Рзаб почти не влияют. Либо используют не глубинные манометры, а глубинные дифференциальные манометры.

Если процесс фильтрации жидкости в пласте подчиняется линейному закону, т. е. индикаторная линия имеет вид прямой, зависимость дебита гидродинамически совершенной скважины от депрессии на забое описывается формулой Дюпюи

(5.8)

где Q - объемный дебит скважины в пластовых условиях; Рпл - среднее давление на круговом контуре радиуса Rк.

Рис. 5.2 Индикаторная диаграмма Q=f(Рзаб)

Считается, что давление на забое через некоторое время после остановки скважины становится примерно равным среднему пластовому давлению, установившемуся на круговом контуре с радиусом, равным половине среднего расстояния между исследуемой скважиной и соседними, ее окружающими.

Индикаторная диаграмма Q=f(Рзаб ) предназначена для оценки величины пластового давления, которое можно определить путем продолжения индикаторной линии до пересечения с осью ординат (Рис. 5.2). Это соответствует нулевому дебиту, т. е. скважина не работает и Рзаб ® Рпл =Рк.

Индикаторная диаграмма Q=f(DR) строит-ся для определения коэффициента продуктивности скважин К.

(5.9)

В пределах справедливости линейного зако-на фильтрации жидкости, т. е. при линейной зависимости Q=f(DR),коэффициент продуктивности является величиной постоянной иРис. 5.3 Индикаторная диаграмма Q = f(DR)

численно равен тангенсу угла наклона индикаторной линии к оси дебитов (оси абсцисс). По коэффициенту продуктивности скважин, определенному методом установившихся отборов, можно вычислить также другие параметры пласта.

(5.10)

Откуда коэффициент гидропроводности

(5.11)

И проницаемость пласта в призабойной зоне

(5.12)

Приведенные выше формулы справедливы для случая исследования гидродинамически совершенной скважины (вскрывшей пласт на всю его толщину и имеющей открыты забой) и измеряемые величны (дебит, динамическая вязкость и др.) приведены к пластовым условиям.

Реальные индикаторные диаграммы не всегда получаются прямолинейными (Рис 5.4). Искривление индикаторной диаграммы характеризует характер фильтрации жидкости в призабойной зоне пласта.

Рис. 5.4. Индикаторные кривые при фильтрации по пласту однофазной жидкости: 1 - установившаяся фильтрация по линейному закону Дарси; 2- неустановившаяся фильтрация или фильтрация с нарушением линейного закона Дарси при больших Q ; 3 - нелинейный закон фильтрации.

Искривление индикаторной линии в сторону оси DP (рис. 5.4, кривая 2) означает увеличение фильтрационных сопротивлений по сравнению со случаем фильтрации по закону Дарси. Это объясняется тремя причинами:

1. Превышение скорости фильтрации в ПЗП критических скоростей при котрых линейный закон Дарси нарушается (V>Vкр )

2. Образованием вокруг скважины области двухфазной (нефть+газ) фильтрации при Рзаб< Рнас. Чем меньше Рзаб , тем больше радиус этой области.

3. Изменения проницаемости и раскрытости микротрещин в породе при изменении внутрипластового давления вследствие изменения Рзаб.

Искривление ИД в сторону оси Q (рис. 5.4, кривая 3) объясняется двумя причинами:

1) некачественные измерения при проведении исследований;

2)неодновременным вступлением в работу отдельных прослоев или пропластков.

Продуктивные пласты, как правило, неоднородны. Глубинные дебитограммы для них:

Площадь заштрихованного прямоугольника прямо пропорциональна дебиту каждого пропластка. С уменьшением Рзаб (т.е. с ростом DP=Рпл -Рзаб ) растет работающая толщина пласта (hэф. ), откуда по формуле Дюпюи растет Q (рис 5.4, кривая 3). Ошибка в определении пластового давления может привести к искривлению начального участка индикаторной диаграммы, построенной в координатах Q=f(DR).

Рис. 5.5. Индикаторная диаграмма: 2 - замеренное пластовое давление соответствует фактическому; 1, 3 - замеренное пластовое давление соответственно завышено и занижено против фактического.

Очевидно, если замеренное пластовое давление окажется выше фактического, то построенная индикаторная диаграмма (рис. 5.5, кривая 1) будет располагаться ниже фактической. При этом фактические точки будут располагаться параллельно, но выше построенных по замеренным значениям. Экстраполяция в начало координат создает видимость искривления индикаторной кривой к оси депрессии.

Если замеренное пластовое давление окажется ниже фактического, то индикаторная диаграмма в своем начальном участке при экстраполяции его в начало координат может стать выпуклой к оси дебитов (рис. 5.5, кривая 3 ). Это может привести исследователя к выводу, что вся кривая имеет выпуклый к оси дебитов вид. Для случая искривления индикаторной линии в сторону оси депрессий (Рис. 5.6, а) при нарушении линейного закона фильтрации скорость фильтрации вблизи перфорационных отверстий становится настолько большой, что числа Рейнольдса превышают критические. Уравнение индикаторной линии записывают в виде:

, (5.15)

а саму индикаторную диаграмму индикаторную линию для ее спрямления изображают в координатах

(5.16)

где а и b - постоянные численные коэффициенты.

Получим индикаторную прямую в координатах Др/Q=f(Q) отсекающую на оси ординат отрезок, равный а , с тангенсом угла наклона к оси Q , равным b (рис. 5.6, б). В этом случае коэффициент продуктивности К является величиной переменной, зависящей от дебита скважины.

Рис. 5.6 Индикаторная диаграмма при нелинейном законе фильтрации: а - ИД в координатах Др - Q; б - ИД в координатах Др /Q - Q.

Отрезок а , отсекаемый на оси ординат может быть выражен как

, (5.17)

где , (с1 и с2 - фильтрационные сопротивления, обусловленные несовершенст-вом скважины по степени и характеру вскрытия).

По отрезку а , отсекаемому на оси Др/Q , находятся гидропроводность и проницаемость пласта

;(5.18)

(5.19)

Коэффициент b зависит от конструкции забоя скважины.

3.1 Расчет параметров призабойной зоны и коэффициента продуктивности

Скважина эксплуатирует пласт толщиной 8,2 м. Результаты исследования ее приводятся в таблице. Давление насыщения нефти газом равно 140·105 Па, следовательно скважина эксплуатировалась при фильтрации по пласту двухфазного потока (нефть и газ).

Для определения параметров пласта можно использовать следующие величины:

R k =200 м, rc = 0,124 м; при перфорации для 10 отверстий на 1 м c1 = c = 10.

Свойства нефти и газа при р нас : = 1,5 мПа·с; = 0,016 мПа·с, =1,25 и = 0,85 г/см3 .

Таблица 1. Результаты исследования скважины при установившихся режимах работы

Режим

Q ж , т/сут

Q н , т/сут

Газовый фактор

Давление, Па

мз /т

м3 /м3

р пл

р заб

1

2

3

4

20,0

26,0

32,0

38,1

17,1

21,9

28,7

32,1

901

753

663

664

766

640

564

565

81 · 105

81 · 105

81 ·105

81 ·105

71,5 · 105

69,0 ·105

65,8 · 105

60,7 · 105

Значения произведения при средних значениях давлений (между пластовым и забойным)на режимах приводятся в табл. 2.

Таблица 2 Значения при различных режимах работы скважины

Наименование

Режим

1

2

3

4

Средние давления Па

Произведение , мПа·с

76,2·105

2,29

75,0·105

2,31

73,4·105

2,32

70,8·105

2,34

В рассматриваемом случае

Следовательно, для расчетов Н необходимо использовать первые зависимости Н (р) табл. 5.2 для = 0,005. Из вспомогательного графика на рис. 6.3 вытекает, что все точки в координатах Г(р) располагаются в области р*< 15. Поэтому расчеты надо проводить по формуле (5.39) при а == 0,375.

По данным табл. 6.3, исходя из граф 9 и 5, строится индикаторная кривая по скважине в координатах Q ж , (рис. 6.4).

Рис. 6.4 Индикаторная кривая по скважине, построенная в координатах Q ж ,

По прямолинейному участку кривой определен коэффициент

м3 /(с·Па).

Проницаемость призабойной зоны пласта рассчитывается по формуле (5.42)

м2 = 0,603 Д.

Гидродинамические исследования скважин направлены на решение следующих задач:

* измерение дебитов (приемистости) скважин и определение природы флюидов и их физических свойств;

* измерение и регистрация во времени забойных и пластовых давлений, температур, скоростей потоков и плотности флюидов с помощью глубинных приборов (датчиков) и комплексов;

* определение (оценка) МПФС и параметров пластов -гидропроводности в призабойной и удаленных зонах пласта, скин-фактора, коэффициентов продуктивности (фильтрационных сопротивлений) скважин; пространственного распределения коллекторов, типа пласта коллектора (его деформационных свойств), положения экранов, сбросов и границ (зон пласта), взаимодействия скважин; распределения давления в пласте, типов фильтрационных потоков и законов фильтрации в пласте и других параметров - по результатам обработки и интерпретации данных измерений и регистрации давлений и дебитов различными типами и видами ГДИС,

* оценка полученных результатов, т.е. проверка на адекватной МПФС, и исходных замеренных данных.

ЗАКЛЮЧЕНИЕ

За последние годы были разработаны дистанционные высокоточные глубинные электронные манометры с пьезокварцевыми датчиками давления и глубинные комплексы с соответствующим компьютерным обеспечением (так называемые электронные манометры второго поколения) Применение таких манометров и комплексов позволяет использовать при анализе новые процедуры, резко улучшающие качество интерпретации фактических данных и количественно определяемых параметров продуктивных пластов. Особо остро стоят эти вопросы при разработке сложно построенных месторождений, при бурении, эксплуатации и исследовании горизонтальных скважин.

В общем комплексе проблем разработки месторождений углеводородов важное место занимает начальная и текущая информация о параметрах пласта - сведения о продуктивных пластах, их строении и коллекторных свойствах, насыщающих флюидах, геолого-промысловых условиях, добывных возможностях скважин и др. Объем такой информации о параметрах пласта весьма обширен.

Источниками сведений о параметрах пласта служат как прямые, так и косвенные методы, основанные на интерпретации результатов исследований скважин геолого-геофизических исследований, лабораторных изучений образцов породы (кернов, шлама) и проб пластовых флюидов при различных термобарических условиях (исследования РVТ, изучаемой физикой пласта), данных бурения скважин и специального моделирования процессов фильтрации ГДИС. Обработка и интерпретация результатов ГДИС связана с решением прямых и обратных задач подземной гидромеханики. Учитывая, что обратные задачи подземной гидромеханики не всегда имеют единственные решения, существенно отметить комплексный характер интерпретации данных ГДИС с широким использованием геолого-геофизических данных и результатов лабораторных исследований РVT.

СПИСОК ЛИТЕРАТУРЫ

Журнал «Нефтяное хозяйство» №1, апрель 2007 г.;

Покрепин Б.В., Разработка нефтяных и газовых месторождений, 2004 г.

http://www.ngpedia.ru/

http://otherreferats.allbest.ru/geology/

https://yandex.ru/

Размещено на Allbest.ru

...

Подобные документы

  • Крупнейшая российская нефтяная компания: обустройство и разработка нефтяных и нефтегазовых месторождений. Предложения по улучшению работы предприятия, выбор измерительных трансформаторов напряжения, техника безопасности электроустановок, их заземление.

    дипломная работа [981,8 K], добавлен 13.05.2012

  • Газогидродинамические методы исследования газоконденсатных скважин при стационарных и нестационарных режимах фильтрации. Обработка индикаторных линий с учетом реальных свойств газа. Оборудование для газогидродинамических исследований газовых скважин.

    курсовая работа [251,6 K], добавлен 02.03.2015

  • Понятие и классификация энергетических ресурсов. Первичная и вторичная энергия. Стадии энергетического производства. Средняя структура потребления ресурсов. Основные виды твердого топлива. Газ нефтяных месторождений. Искусственные горючие, твердые газы.

    презентация [97,4 K], добавлен 14.08.2013

  • Общая характеристика некоторых физических методов исследования строения молекул: рентгеноэлектронной и инфракрасной спектроскопии, дифракционных методов. Особенности полуэмпирических, неэмпирических и кванто-механических методов исследования вещества.

    курсовая работа [510,7 K], добавлен 06.02.2013

  • Рассмотрение основных уравнений нелинейно-упругого режима. Анализ методики обработки индикаторных линий. Способы обработки КВД при фильтрации газа в неограниченном пласте. Особенности методов проектирования и разработки нефтяных и газовых месторождений.

    курсовая работа [2,9 M], добавлен 06.11.2012

  • Формирование вероятностной модели нагрузки, генерирующей части, энергосистемы. Расчет и анализ коэффициентов бездефицитной работы и готовности энергосистемы, вычисление показателей. Оценка надежной работоспособности распределительного устройства.

    курсовая работа [2,7 M], добавлен 05.12.2014

  • Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии.

    презентация [607,1 K], добавлен 28.05.2013

  • Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.

    реферат [855,2 K], добавлен 11.08.2014

  • Моделирование различных режимов электрических сетей нефтяных месторождений Южного Васюгана ОАО "Томскнефть". Расчет режима максимальных и минимальных нагрузок энергосистемы. Качество электрической энергии и влияние его на потери в электроустановках.

    дипломная работа [2,5 M], добавлен 25.11.2014

  • История нефтедобывающего предприятия "Сургут-нефтегаз". Методы добычи нефти и газа. Технические мероприятия для воздействия на призабойную зону пласта. Состав оборудования и способы бурения. Виды подземного ремонта скважин. Повышение нефтеотдачи пластов.

    отчет по практике [5,2 M], добавлен 26.04.2015

  • Электрические методы исследования электрофизических и фотоэлектрических свойств полупроводников. Метод нестационарной спектроскопии глубоких уровней, фотопроводимость. Шумовые свойства фоторезисторов при совместном действии напряжения и фоновой засветки.

    дипломная работа [1,1 M], добавлен 02.10.2015

  • Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук. Хирургическое применение ультразвука. Эффект Доплера, применение для неинвазивного измерения скорости кровотока. Вибрации, физические характеристики.

    контрольная работа [57,9 K], добавлен 25.02.2011

  • Источники инфракрасного, ультрафиолетового и оптического излучений, методы их обнаружения и измерения, определение оптических свойств и применение. Лазеры и лазерные световые пучки. Поляризационные и энергетические характеристики световых пучков.

    курсовая работа [587,2 K], добавлен 20.09.2013

  • Методы получения монокристаллов. Структурные характеристики материала. Эпитаксиальные методы выращивания слоев GaAs. Особенности процесса молекулярно-лучевой эпитаксии. Строение, физические свойства пленок арсенида галлия и его основное применение.

    презентация [2,8 M], добавлен 26.10.2014

  • Сравнительный анализ солнечной и геотермальной энергетики. Экономическое обоснование разработки геотермальных месторождений. Реструктуризация энергетики Камчатской области и Курильских островов. Использование солнечной энергии, типы гелиоэлектростанций.

    реферат [2,3 M], добавлен 14.12.2012

  • Природа звука, физические характеристики и основы звуковых методов исследования в клинике. Частный случай механических колебаний и волн. Звуковой удар и кратковременное звуковое воздействие. Звуковые измерения: ультразвук, инфразвук, вибрация и ощущения.

    реферат [24,5 K], добавлен 09.11.2011

  • Сканирующие зондовые методы исследования и атомного дизайна. Основные методы и приборы для исследования размеров зерен и их распределения в нанокристаллическом образце. Гранулометрия и классификация наночастиц. Ближнепольная оптическая микроскопия.

    реферат [1,1 M], добавлен 13.06.2010

  • Что такое задача, классы, виды и этапы решения задач. Сущность эвристического подхода в решении задач по физике. Понятие эвристики и эвристического обучения. Характеристика эвристических методов (педагогические приемы и методы на основе эвристик).

    курсовая работа [44,6 K], добавлен 17.10.2006

  • Анализ качественного и количественного состава поверхности. Первичный и вторичный фотоэффекты, структура спектров. Компенсация статической зарядки исследуемой поверхности. Принципы работы сканирующих зондовых микроскопов. Формирование СЗМ изображений.

    учебное пособие [4,5 M], добавлен 14.03.2011

  • Математическая зависимость, связывающая физические параметры, характеризующие явление теплопроводности внутри объема. Феноменологический и статистический методы исследования процессов тепло- и массообмена. Модель сплошной среды, температурное поле.

    презентация [559,8 K], добавлен 15.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.