Бестопливные установки для производства электроэнергии, теплоты и холода на базе детандер-генераторных агрегатов

Характеристика бестопливного оборудования для выработки электроэнергии, теплоты и холода на базе детандер-генераторных агрегатов, подогрев природного газа в которых осуществляется за счет низкопотенциальной теплоты при помощи теплонасосных установок.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 42,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Бестопливные установки для производства электроэнергии, теплоты и холода на базе детандер-генераторных агрегатов

В.С. Агабабов, Московский энергетический институт (технический университет)

Аннотация. В статье рассматриваются бестопливные установки для производства электроэнергии, теплоты и холода на базе детандер-генераторных агрегатов, подогрев газа в которых осуществляется за счет низкопотенциальной теплоты с помощью теплонасосных установок.

За последние 15-20 лет в большинстве промышленно развитых стран созданы и внедрены достаточно совершенные установки для преобразования энергии органического топлива в электрическую энергию и теплоту. Дальнейшее повышение технико-экономических показателей таких установок требует поиска новых, нетрадиционных методов, применение которых позволило бы существенно повысить технико-экономические показатели работы энергетического оборудования и одновременно улучшить его экологические показатели.

Одной из возможностей решения этой проблемы на промышленных предприятиях, использующих в качестве топлива природный газ, является применение детандер-генераторных агрегатов (ДГА).

Детандер-генераторный агрегат представляет собой устройство, в котором энергия потока транспортируемого природного газа преобразуется сначала в механическую энергию в детандере, а затем в электрическую энергию в генераторе. Существует также принципиальная возможность получения одновременно с электроэнергией теплоты различных температурных уровней (высокотемпературной для обогрева и низкотемпературной для создания холодильных установок и систем кондиционирования), образующейся при работе ДГА. Основными составными частями ДГА являются детандер, электрический генератор, теплообменники подогрева газа, регулирующая и запорная арматура, система КИП и автоматики.

ДГА используются в системе газоснабжения на станциях технологического понижении давления газа (газораспределительных станциях - ГРС и газорегуляторных пунктах - ГРП). Обычно понижение давления газа на ГРС и ГРП осуществляется за счет дросселирования газового потока.

Анализ работы находящихся в эксплуатации детандер-генераторных агрегатов и технических решений, предложенных для усовершенствования существующих установок, показал, что ДГА, хотя и позволяют, используя технологические перепады давления транспортируемого природного газа, получать электроэнергию со значительно более высокой тепловой экономичностью, чем традиционные паротурбинные и газотурбинные установки, но обеспечение их работы требует сжигания топлива. Это приводит, хотя и к меньшему, но, все-таки, загрязнению окружающего воздушного бассейна. В 1999 году был предложен и запатентован способ работы детандерной установки, позволяющий обеспечить работу ДГА без сжигания топлива, а также устройство для осуществления предложенного способа [1]. Суть предложенного способа заключена в том, что подогрев газа перед детандером производится с помощью теплонасосной установки (ТНУ), использующей часть энергии, вырабатываемой электрогенератором ДГА, для обеспечения своей работы. При таком техническом решении для обеспечения нормальной работы ДГА используется лишь низкопотенциальная энергия и не требуется сжигания топлива. В качестве источника низкопотенциальной энергии при этом могут быть использованы вторичные энергетические ресурсы и/или теплота окружающей среды.

Также бестопливной является установка, для подогрева газа перед детандером в которой используется сочетание воздушного компрессора и воздушной турбины (т.н. воздушный тепловой насос). На это техническое решение также был получен патент [2].

В обеих установках для обеспечения работы теплового насоса и воздушного теплового насоса для обеспечения их работы используется электроэнергия, выработанная генератором ДГА, что уменьшает полезную электрическую мощность установок, т.е. мощность, которая может быть передана потребителю.

Необходимо отметить, что устройство детандер-генераторного агрегата и принцип его работы позволяют создать бестопливную установку за счет выбора соответствующего режима работы при подогреве газа только после детандера. Однако при этом газ на выходе из детандера имел бы недопустимо низкие по условиям эксплуатации температуры (минус 80 - минус 100 С), что заставляло бы дросселировать газ перед детандером, теряя значительную часть потенциала давления. Поэтому установки такого типа, скорее всего, не найдут широкого применения и в данной статье рассматриваться не будут. В данной статье будут рассмотрены установки на базе ДГА, в которых подогрев газа производится перед детандером за счет теплоты, имеющей настолько низкую температуру, что она не может непосредственно использоваться для подогрева газа до необходимой по условиям эксплуатации температуры (+ 80 - + 100 С). Потенциал такой теплоты должен быть повышен с помощью трансформирующих установок.

На сегодняшний день разработаны два варианта бестопливных установок на базе детандер-генераторных агрегатов. В состав первой входят ДГА и традиционный тепловой насос (ТН), в котором в качестве рабочего тела применяются хладагенты (вещества с низкой температурой кипения). Во второй установке применяется т.н. воздушный тепловой насос (ВТН), в котором в качестве рабочего тела используется атмосферный воздух. Каждый из вариантов установки имеет как свои преимущества, так и свой недостатки. Однако оба варианта установок являются по своей сути бестопливными, т.е. для обеспечения их работы не требуется сжигания топлива.

В том случае, когда будет рассматриваться установка, в которой рабочим телом теплового насоса является хладагент, будет употребляться термин «тепловой насос». Для теплового насоса, в котором в качестве рабочего тела используется воздух, будет применяться термин «воздушный тепловой насос».

Принципы работы традиционного ТН и ВТН одинаковы. В то же время различия свойств применяемых в них рабочих тел определяет различные возможности и направления их использования.

Принципиальная схема установки, в которой для подогрева транспортируемого газа перед детандером используется тепловой насос, приведена на рисунке 1. Установка работает следующим образом. Газ высокого давления поступает в теплообменник 5, греющей средой в котором является хладагент контура теплонасосной установки. ТНУ повышает уровень температуры теплоты, полученной от низкопотенциального источника в испарителе 9. Нагретый в теплообменнике 5 газ высокого давления подается в детандер 2. После расширения в детандере, газ направляется в трубопровод низкого давления 4, а механическая работа, полученная в детандере, преобразуется в электрическую энергию в электрогенераторе 1. Часть электроэнергии, выработанной генератором, должна быть израсходована на технологический подогрев газа перед детандером посредством ТНУ. Оставшаяся электроэнергия может быть полезно использована для отпуска внешнему потребителю или производства дополнительной теплоты с помощью той же теплонасосной установки. Дополнительно выработанная теплота может быть использована для подогрева газа в теплообменнике 5. (Дополнительный подогрев газа перед его использованием в топках котлов или печей, как известно, позволяет снизить расход топлива).

Рисунок 1. Принципиальная схема ДГА с подогревом газа перед детандером с помощью теплонасосной установки

Основным преимуществом рассматриваемой ДГУ является то, что для обеспечения ее работы не требуется сжигания топлива, достаточно использовать лишь низкопотенциальную энергию либо окружающей среды, либо вторичных энергетических ресурсов.

Еще более широкие возможности использования оставшейся от обеспечения технологического подогрева газа электроэнергии дает установка, схема которой приведена на рисунке 2.

Рисунок 2. Принципиальная схема ДГА с основным и дополнительным подогревами газа перед детандером и подогревом постороннего потока с помощью теплонасосной установки

Установка содержит кинематически соединенный с генератором 1 детандер 2, подключенный входным патрубком к трубопроводу 3 высокого давления, выходным патрубком - к трубопроводу 4 низкого давления (детандер подключается параллельно дросселирующему устройству 5 газопровода), теплообменник 6 подогрева газа высокого давления, первое теплонасосное устройство (ТНУ-1), в состав которого входят компрессор 7 с электродвигателем 8, регенеративный подогреватель хладагента 9, дроссель 10, испаритель 11, второе теплонасосное устройство (ТНУ-2), в состав которого входят компрессор 12 с электродвигателем 13, регенеративный подогреватель хладагента 14, дроссель 15, испаритель 16, насос 17 для перекачки агента от низкопотенциального источника теплоты (НИТ), электрическую связь 18 электрогенератора 1 с внешней электрической сетью с выключателем 19, с электрическую связь 20 электрогенератора 1 с электродвигателем 8, электрическую связь 21 электрогенератора 1 с электродвигателем 13 с выключателем 22, теплообменник 23 подогрева какой-либо жидкости или какого-либо газа, поступающего в него по трубопроводу 24, соединенный по греющей среде с выходным патрубком компрессора 12 трубопроводом с регулятором 25 и задвижкой 26, при этом выходной патрубок компрессора 7 ТНУ-1 соединен с теплообменником 6 трубопроводом с задвижкой 27 и регулятором 28, а с испарителем 16 ТНУ-2 - трубопроводом с задвижкой 29, входной по греющей среде патрубок регенеративного теплообменника 9 ТНУ-1 соединен с выходным по греющей среде патрубком теплообменника 6 трубопроводом с задвижкой 30, а с выходным по греющей среде патрубком испарителя 16 ТНУ-2 - трубопроводом с задвижкой 31, выходной патрубок компрессора 12 ТНУ-2 соединен с теплообменником 6 трубопроводом с задвижкой 32 и регулятором 28, входной по греющей среде патрубок регенеративного теплообменника 14 ТНУ-2 соединен с выходным по греющей среде патрубком теплообменника 6 трубопроводом с задвижкой 33, а с выходным патрубком по греющей среде теплообменника 23 трубопроводом с задвижкой 34, входной по греющей среде патрубок испарителя 16 ТНУ-2 соединен с выходным патрубком насоса 17 перекачки агента от низкопотенциального источника теплоты трубопроводом с задвижкой 35, а выходной по греющей среде патрубок испарителя 16 ТНУ-2 соединен с выходным по греющей среде патрубком испарителя 11 ТНУ-1 трубопроводом с задвижкой 36.

Установка позволяет кроме электроэнергии получать еще и теплоту для внешнего потребителя и может работать в нескольких режимах

1) В режиме с отпуском максимально возможного количества электроэнергии внешнему потребителю.

2) В режиме с отпуском максимально возможного количества теплоты внешнему потребителю.

3) В режиме с отпуском электроэнергии и теплоты внешним потребителям.

4) В режиме с максимально возможным подогревом газа.

5) В режиме с подогревом газа и отпуском теплоты внешним потребителям.

Данный режим отличается от режима с максимально возможным подогревом газа тем, что часть хладагента после компрессора 12 ТНУ-2 используется и для подогрева потока жидкости в теплообменнике 23. Регулирование количества теплоты, отбираемой для подогрева жидкости, производится регулятором 25.

Принцип работы установок для производства электроэнергии на базе детандер-генераторного агрегата, воздушного компрессора и воздушной турбины принципиально не отличается от принципа работы установок, описанных выше, в которых для подогрева газа в ДГА используется традиционная теплонасосная установка. Это определяется тем, что применяемое в таких установках сочетание воздушного компрессора и воздушной турбины представляет собой воздушный тепловой насос. В качестве источника низкопотенциальной теплоты в таком устройстве используется низкопотенциальная теплота атмосферного воздуха. Для обеспечения работы таких установок также не требуется сжигание топлива, т.к. подогрев газа в ДГА производится за счет низкопотенциального источника теплоты, в данном случае - теплоты окружающей среды.

Необходимо отметить, что установки для производства электроэнергии на базе детандер-генераторного агрегата, воздушного компрессора и воздушной турбины были разработаны в сотрудничестве с работниками ООО «Калужский турбинный завод».

Принципиальная схема установки для производства электроэнергии на базе детандер-генераторного агрегата и воздушного теплового насоса представлена на рисунке 3.

бестопливный агрегат электроэнергия детандер

Рисунок 3. Установка для производства электроэнергии на базе детандер-генераторного агрегата и воздушного теплового насоса

Установка работает следующим образом. Газ, подаваемый по трубопроводу 1 к детандеру 3, подогревается в теплообменнике 2, в котором в качестве греющего теплоносителя используется нагретый в результате сжатия в компрессоре 6 воздух. После детандера газ по трубопроводу 5 поступает в трубопровод низкого давления. Привод воздушного компрессора 6 осуществляется электродвигателем 8. При этом степень сжатия воздушного компрессора 6 выбирается таким образом, чтобы температура воздуха на выходе компрессора была больше требуемой температуры подогрева газа. После теплообменника 2 охлажденный воздух по воздухопроводу 10 подается на вход воздушной турбины 7. В турбине воздух расширяется с производством механической работы, при этом воздух охлаждается. После воздушной турбины холодный воздух по воздуховоду 12 сбрасывается в атмосферу. Воздушный компрессор 6, воздушная турбина 7 и электродвигатель 8 связаны кинематически. Установленный в линии воздуховода 12 теплообменник-утилизатор холода 13 соединяется по контуру хладагента 14 с потребителем холода 15. Одна часть электрической энергии, вырабатываемой электрогенератором 4, связанным кинематически с детандером 3, по электрической связи 16 направляется в сеть, другая часть этой электроэнергии по электрической связи 17 направляется на электродвигатель 8. Использование механической работы воздушной турбины 7 для привода компрессора 7 позволяет снизить мощность, потребляемую электродвигателем 8. Из описания работы установки ясно, что на ней можно получать также и холод.

Представленные в статье установки не находят пока практического применения, т.к. по экономическим показателям проигрывают установкам с подогревом газа высокопотенциальной теплотой, получаемой при сжигании топлива. Однако можно предположить, что по мере повышения цен на энергоносители, и в первую очередь - на газ, экономические показатели бестопливных установок на базе ДГА и тепловых насосов позволят организовать их широкое внедрение в промышленности.

Список литературы

1. Агабабов В.С. Способ работы детандерной установки и устройство для его осуществления // Патент на изобретение № 2150641. Россия. Бюл. № 16. 10.06.2000 г.. Приоритет от 15.06.99.

2. Детандер-генераторная установка / Ю.М. Архаров, А.Ю. Архарова, В.С. Агабабов, А.В. Корягин // Патент на пол. мод. №39937 РФ, МПК 7 F 25 В 11/02, F 01К 27/00 по заявке №2004110563/22 от 08.04.2004 Опубл. 20.08.2004 Бюлл. №1

Размещено на Allbest.ru

...

Подобные документы

  • Цели и методы изучения промышленной теплоэнергетики. Свойства рабочих тел и материалов, применяемых в низкотемпературной технике. Работа паровых компрессионных трансформаторов теплоты в нерасчётных условиях. Абсорбционные трансформаторы теплоты.

    методичка [544,2 K], добавлен 23.09.2011

  • Определение мощности судовой электростанции табличным методом, выбор генераторных агрегатов и преобразователей электроэнергии. Разработка структурной однолинейной электрической схемы генерирования и распределение электроэнергии. Выбор аккумуляторов.

    курсовая работа [1,2 M], добавлен 02.06.2009

  • Исследование возможности и целесообразности утилизации теплоты, отводимой кристаллизатором и роликами. Рассмотрение и характеристика основных способов получения горячей воды в кристаллизаторе и роликах при существующей геометрии охлаждаемых каналов.

    дипломная работа [1,4 M], добавлен 10.07.2017

  • Определение плотности и теплоты сгорания природного газа. Анализ основных параметров системы газоснабжения. Расчёт расхода теплоты на горячее водоснабжение. Локальный сметный расчет на внутренний и наружный газопровод. Оптимизация процессов горения.

    дипломная работа [370,5 K], добавлен 20.03.2017

  • Капиталовложения в строительство ТЭЦ. Полезный отпуск теплоты с коллекторов станции. Годовая выработка электрической энергии. Коэффициент полезного действия станции на отпуск электроэнергии. Калькуляции себестоимости электрической энергии и теплоты.

    курсовая работа [255,8 K], добавлен 08.02.2011

  • Применение и использование реакции деления атомных ядер для выработки теплоты и производства электроэнергии. История создания первого ядерного реактора, предназначение устройства для организации управляемой самоподдерживающейся цепной реакции деления.

    презентация [921,7 K], добавлен 08.12.2014

  • Обоснование выбора рода тока и рабочего напряжения электрической станции проекта. Выбор типа, числа и мощности генераторных агрегатов. Выбор устройств автоматизации проектируемой электрической станции. Разработка схемы распределения электроэнергии.

    курсовая работа [4,9 M], добавлен 17.02.2015

  • Определение внутреннего КПД газотурбинной установки с регенерацией теплоты по заданным параметрам. Расчет теоретической мощности привода компрессора при изотермическом, адиабатном и политропном сжатии. Себестоимость теплоты, вырабатываемой в котельной.

    контрольная работа [79,9 K], добавлен 09.01.2011

  • Понятие и методика измерения механического эквивалента теплоты как работы, совершение которой позволяет изменить внутреннюю энергию тела на столько же, на сколько ее изменяет передача этому телу количества теплоты 1 ккал. Формирование закона Джоуля.

    презентация [678,8 K], добавлен 27.01.2015

  • Определение показателя политропы, начальных и конечных параметров, изменения энтропии для данного газа. Расчет параметров рабочего тела в характерных точках идеального цикла поршневого двигателя внутреннего сгорания с изохорно-изобарным подводом теплоты.

    контрольная работа [1,1 M], добавлен 03.12.2011

  • Определение технологической нормы расхода электроэнергии, годовой потребности в аммиаке на пополнение систем охлаждения, норм расхода воды для отвода теплоты в конденсаторах и водоохлаждающих устройствах холодильной установки. Причины перерасхода энергии.

    курсовая работа [532,1 K], добавлен 18.11.2014

  • Рост потребления газа в городах. Определение низшей теплоты сгорания и плотности газа, численности населения. Расчет годового потребления газа. Потребление газа коммунальными и общественными предприятиями. Размещение газорегуляторных пунктов и установок.

    курсовая работа [878,9 K], добавлен 28.12.2011

  • Источники высокопотенциальной теплоты на геотермальной электростанции и особенности геотермального теплоносителя. Технологический процесс получения электроэнергии на ГеоЭС, особенности оборудования. Перспективы развития геотермальной энергетики в России.

    контрольная работа [27,2 K], добавлен 23.08.2013

  • Характеристики элементов энергетической установки судна. Расчет теплового баланса главных двигателей. Определение количества теплоты, которое может быть использовано в судовой системе утилизации теплоты. Расчет потребностей в тепловой энергии на судне.

    курсовая работа [1,7 M], добавлен 01.11.2013

  • Определение тепловых нагрузок для каждого потребителя теплоты. Вычисление годового расхода теплоты для всех потребителей (графическим и расчетным способом). Гидравлический расчет водяной тепловой сети. Выбор оборудования и принципиальной схемы котельной.

    курсовая работа [1,3 M], добавлен 23.08.2014

  • Годовой отпуск теплоты от теплоэлектроцентрали. Производственно-технологическое и коммунально-бытовое теплопотребление. Отпуск теплоты по сетевой горячей воде. Выбор основного оборудования и расчет показателей тепловой экономичности теплоэлектроцентрали.

    курсовая работа [1,6 M], добавлен 23.06.2014

  • Оценка расчетных тепловых нагрузок, построение графиков расхода теплоты. Центральное регулирование отпуска теплоты, тепловой нагрузки на отопление. Разработка генерального плана тепловой сети. Выбор насосного оборудования системы теплоснабжения.

    курсовая работа [2,5 M], добавлен 13.10.2012

  • Расчет идеального цикла газотурбинной установки, ее тепловой и эксергетический баланс. Тепловой расчет регенератора теплоты отработавших газов. Определение среднелогарифмической разности температурного напора, действительной длины труб и генератора.

    курсовая работа [1,5 M], добавлен 05.10.2013

  • Определение среднегодовых технико-экономических показателей ТЭЦ. Расход условного топлива на отпуск электроэнергии при однотипном оборудовании. Калькуляция себестоимости электрической энергии и теплоты. Расчёт сетевого графика капитального ремонта котла.

    курсовая работа [112,8 K], добавлен 07.08.2013

  • Определение сметной стоимости строительства ТЭЦ. Сметно-финансовый расчет капитальных вложений в сооружение тепловой электростанции. Режим работы ТЭЦ, расчет выработки электроэнергии и потребности в топливе. Расход электроэнергии на собственные нужды ТЭЦ.

    курсовая работа [85,5 K], добавлен 09.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.