О некоторых путях уменьшения потерь теплоты
Возможности сокращения утечек теплоты в строительных конструкциях. Огромные утечки тепловой энергии, возникающие из-за теплопроводности достаточно большой площади контакта каждой индивидуальной опоры трубы. Теплопотери в зданиях, их предотвращение.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2017 |
Размер файла | 482,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
О некоторых путях уменьшения потерь теплоты
к.т.н. В.И. Рябцев, член-кор. МАН, доцент, Курский технический университет; к.т.н. М.А. Литвиненко, инженер; А.Н. Плетнев, инженер; Г.А. Рябцев, инженер, Курские муниципальные тепловые сети
Привычное «нормальное» положение дел зачастую таит в себе возможности существенного снижения потерь теплоты.
Теплопотери в тепловых сетях
Возможности сокращения утечек теплоты в строительных конструкциях достаточно широки. А сами потери зачастую очень существенны и сохраняются до самого конца эксплуатации объекта. К таким можно отнести, например, тепловыделения неподвижных опор трубопроводов тепломагистралей. Выполненные по межведомственным нормалям эти узлы практически никак не препятствуют оттоку теплоты наружу, что наглядно видно из рис. 1. Между бетонным щитом и упорными металлическими фланцами, приваренными с помощью косынок к трубе, не предусмотрена даже простейшая изоляция. В результате чего за счет теплопроводности металла прогревается вся конструкция. А поскольку бетонный щит опирается на фундамент или защемлен в боковых стенках, то переток теплоты может продолжаться сколь угодно долго. При наружной прокладке тепломагистрали потери теплоты становятся еще больше, т. к. щит со всех сторон (пяти граней) контактирует с атмосферой. К тому же в МВН не указано техническое решение по изоляции упорного фланца, который из-за больших своих размеров всегда выступает почти наполовину выше уложенного на трубу изоляционного слоя. А отсутствие в нормалях рекомендаций о хотя бы элементарных крючьях на вертикальных плоскостях для крепления изоляционных минеральных матов создает условия для местных решений, часто недолговечных или совсем оставляющих упорный фланец без изоляции. Прокладка из теплостойкой резины с низким коэффициентом теплопроводности типа транспортерной ленты между бетоном и упорными фланцами может прервать тепловой поток, уходящий наружу.
1. Эскиз неподвижной опоры трубопровода.
Значительно больше по количеству (в пять и более раз) применяются на теплосетевых трубопроводах подвижные скользящие опоры, сконструированные по старому принципу - решение только механопрочностных вопросов, не затрагивая снижения потерь теплоты. Огромные утечки тепловой энергии возникают из-за теплопроводности достаточно большой площади контакта каждой индивидуальной опоры трубы с плоскостью скольжения, приваренной к закладной детали каждого бетонного основания. А далее теплота переходит в бетон, почву и атмосферу (рис. 2). Конвективные потери свести к минимуму для такой опоры также не получается из-за трудности всю ее заизолировать. Таким образом, сохраняются многочисленные условия перетока теплоты в атмосферу и почву. Если бы удалось снизить переход наружу теплоты, уходящей за счет теплопроводности, то потери энергии резко сократились. Такое достигается уменьшением металлического контакта с опорой. По-видимому, это получится, если применить в качестве одного из вариантов принцип известных так называемых мостовых подвижных опор-катков, допускающих перемещения конструкции по типу роликового подшипника качения и имеющих самый минимальный металлический контакт только по одной образующей цилиндра (рис. 3).
2. Термограмма промежуточной скользящей опоры трубопровода теплосети.
3. Эскиз подвижной опоры с минимальным оттоком теплоты.
Теплопотери в зданиях
Искусственно возникают хорошие условия переходу теплоты от обогревающих приборов в строительные ограждающие конструкции при применении распространенного способа крепления отопительных батарей к стене. Речь идет о забивке подвесных крюков или с помощью закладных анкерных болтов. Наличие такого металла в стене создает более легкие пути движения теплоты наружу. Даже близкое расположение к стене стояков внутренней системы отопления квартир способствует тоже усиленной теплоотдаче наружу (рис. 4). Получается, что важно очень строго оценить зазор между стояком и стеной и рекомендовать его величину строителям. А может быть, возможно стояки крепить к внутренней стене квартиры, а не к наружной. Хотя схемы поквартирного учета теплоты исключают квартирные стояки, но появляются так называемые подъездные, с которыми следует избежать упомянутой ситуации.
потеря теплота утечка
4. Схемы остывания греющей сетевой воды в 6-тиэтажом доме: а - с верхней разводкой, б - с нижней разводкой, в - со смешанной разводкой.
Общеизвестны строителям и эксплуатационникам схемы нижней или верхней разводки греющей сетевой воды внутри жилого дома. Это когда сетевая вода остывает в многоэтажном доме снизу вверх (рис. 5, а) и сверху вниз (рис. 5, б). При фактической разлаженности внутридомовой сети и частым не выдерживанием температуры подающей сетевой воды (tn) по схеме «а» может быть жарко на нижних этажах и холодно на верхних. По схеме «б» все наоборот при одной и той же температуре обратной сетевой воды (to).
Известна и смешанная схема. Последнюю важно использовать не вообще, как это делается сегодня, а целенаправленно для поддержания комфортных температур адресно по высоте всего дома внутри угловых квартир, которые отличаются повышенной теплоотдачей наружу. В целом в таких комнатах и квартирах по смешанной схеме будет усредненная довольно высокая температура греющей сетевой воды по всем этажам дома, приближающаяся к расчетной (рис. 5, в), а не такая, как указано выше по схеме «а» и «б». Это может снизить дискомфорт в угловых и неблагополучных квартирах и сократить потери от перегрева других более теплых помещений.
Таким образом, перечисленные факты подсказывают решения более эффективного использования теплоты. С другой стороны прямые потери тепловой энергии непосредственно усиливают парниковый эффект планеты и ускоряют глобальное потепление климата. Происходит переплетение экологических и экономических вопросов, обязывающее вести энергосбережение уже с гражданских позиций для сохранения окружающей нас природы и уменьшения заболеваний людей.
Размещено на Allbest.ru
...Подобные документы
Потребление тепловой и электрической энергии. Характер изменения потребления энергии. Теплосодержание материальных потоков. Расход теплоты на отопление и на вентиляцию. Потери теплоты с дымовыми газам. Тепловой эквивалент электрической энергии.
реферат [104,8 K], добавлен 22.09.2010Исследование свойств теплопроводности как физического процесса переноса тепловой энергии структурными частицами вещества в процесс их теплового движения. Общая характеристика основных видов переноса тепла. Расчет теплопроводности через плоскую стенку.
реферат [19,8 K], добавлен 24.01.2012Характеристики элементов энергетической установки судна. Расчет теплового баланса главных двигателей. Определение количества теплоты, которое может быть использовано в судовой системе утилизации теплоты. Расчет потребностей в тепловой энергии на судне.
курсовая работа [1,7 M], добавлен 01.11.2013Определение величин тепловых нагрузок района и годового расхода теплоты. Выбор тепловой мощности источника. Гидравлический расчет тепловой сети, подбор сетевых и подпиточных насосов. Расчет тепловых потерь, паровой сети, компенсаторов и усилий на опоры.
курсовая работа [458,5 K], добавлен 11.07.2012Характеристика тепловой нагрузки. Определение расчётной температуры воздуха, расходов теплоты. Гидравлический расчёт тепловой сети. Расчет тепловой изоляции. Расчет и выбор оборудования теплового пункта для одного из зданий. Экономия тепловой энергии.
курсовая работа [134,1 K], добавлен 01.02.2016Расчет идеального цикла газотурбинной установки, ее тепловой и эксергетический баланс. Тепловой расчет регенератора теплоты отработавших газов. Определение среднелогарифмической разности температурного напора, действительной длины труб и генератора.
курсовая работа [1,5 M], добавлен 05.10.2013Расчетные тепловые нагрузки района. Выбор системы регулирования отпуска теплоты. Построение графика для отпуска теплоты. Определение расчетных расходов сетевой воды. Подбор компенсаторов и расчет тепловой изоляции. Подбор сетевых и подпиточных насосов.
курсовая работа [227,7 K], добавлен 10.12.2010Оценка расчетных тепловых нагрузок, построение графиков расхода теплоты. Центральное регулирование отпуска теплоты, тепловой нагрузки на отопление. Разработка генерального плана тепловой сети. Выбор насосного оборудования системы теплоснабжения.
курсовая работа [2,5 M], добавлен 13.10.2012Капиталовложения в строительство ТЭЦ. Полезный отпуск теплоты с коллекторов станции. Годовая выработка электрической энергии. Коэффициент полезного действия станции на отпуск электроэнергии. Калькуляции себестоимости электрической энергии и теплоты.
курсовая работа [255,8 K], добавлен 08.02.2011Цели и методы изучения промышленной теплоэнергетики. Свойства рабочих тел и материалов, применяемых в низкотемпературной технике. Работа паровых компрессионных трансформаторов теплоты в нерасчётных условиях. Абсорбционные трансформаторы теплоты.
методичка [544,2 K], добавлен 23.09.2011Годовой отпуск теплоты от теплоэлектроцентрали. Производственно-технологическое и коммунально-бытовое теплопотребление. Отпуск теплоты по сетевой горячей воде. Выбор основного оборудования и расчет показателей тепловой экономичности теплоэлектроцентрали.
курсовая работа [1,6 M], добавлен 23.06.2014Преобразование тепловой энергии в механическую турбинными и поршневыми двигателями. Кривошипный механизм поршневых двигателей внутреннего сгорания. Схема газотурбинной установки. Расчет цикла с регенерацией теплоты и параметров необратимого цикла.
курсовая работа [201,3 K], добавлен 20.11.2012Определение массовой, объемной и мольной теплоемкость газовой смеси. Расчет конвективного коэффициента теплоотдачи и конвективного теплового потока от трубы к воздуху в гараже. Расчет по формуле Д.И. Менделеева низшей и высшей теплоты сгорания топлива.
контрольная работа [117,3 K], добавлен 11.01.2015Понятие и внутреннее устройство простейшей тепловой трубы, принцип ее действия и взаимосвязь элементов. Теплопередача при пленочном кипении, путем теплопроводности, конвекции и излучения через пленку пара. Предпосылки и причины температурного перепада.
реферат [603,0 K], добавлен 08.03.2015Понятие и методика измерения механического эквивалента теплоты как работы, совершение которой позволяет изменить внутреннюю энергию тела на столько же, на сколько ее изменяет передача этому телу количества теплоты 1 ккал. Формирование закона Джоуля.
презентация [678,8 K], добавлен 27.01.2015Определение тепловых нагрузок для каждого потребителя теплоты. Вычисление годового расхода теплоты для всех потребителей (графическим и расчетным способом). Гидравлический расчет водяной тепловой сети. Выбор оборудования и принципиальной схемы котельной.
курсовая работа [1,3 M], добавлен 23.08.2014Исследование возможности и целесообразности утилизации теплоты, отводимой кристаллизатором и роликами. Рассмотрение и характеристика основных способов получения горячей воды в кристаллизаторе и роликах при существующей геометрии охлаждаемых каналов.
дипломная работа [1,4 M], добавлен 10.07.2017Общая характеристика исследуемого здания, расчет мощности его отопления, водопотребление и системы электроснабжения. Эксплуатация, обслуживание здания, контроль над потреблением энергоресурсов. Оценка потерь тепловой энергии и направления их уменьшения.
дипломная работа [3,2 M], добавлен 29.03.2014Способы расчета расхода теплоты на горячее водоснабжение. Показатели технологического теплопотребления. Определение расхода теплоты на отопление и на вентиляцию зданий. Построение годового графика тепловой нагрузки предприятия автомобильного транспорта.
курсовая работа [266,7 K], добавлен 09.02.2011Полезный отпуск теплоты с коллекторов станции ТЭЦ, эксплуатационные издержки. Выработка и отпуск электрической энергии с шин станции. Расход условного топлива при однотипном оборудовании. Структура затрат и себестоимости электрической и тепловой энергии.
курсовая работа [35,1 K], добавлен 09.11.2011