Открытые системы теплоснабжения приказали долго жить
Особенности работы крупных систем централизованного теплоснабжения, подключенных к ТЭЦ. Приготовление воды необходимого качества и подогрев ее на ТЭЦ с последующим разбором горячей воды потребителями непосредственно из теплосети (в открытых системах).
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2017 |
Размер файла | 26,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Открытые системы теплоснабжения приказали долго жить?
В.И. Шарапов
В крупных системах централизованного теплоснабжения, подключенных к ТЭЦ, применяются два способа горячего водоснабжения (ГВС) потребителей: приготовление воды необходимого качества и подогрев ее на ТЭЦ с последующим разбором горячей воды потребителями непосредственно из теплосети (в открытых системах) и подогрев водопроводной питьевой воды перед подачей потребителям сетевой водой в поверхностных теплообменниках местных тепловых пунктов (в закрытых системах).
Исторически сложилось так, что в отечественных теплофикационных системах эти два способа ГВС используются в равной мере: например, Москва располагает крупнейшей в мире закрытой системой теплоснабжения, а Санкт-Петербург - крупнейшей в мире открытой системой. Каждая из этих двух систем теплоснабжения обладает своими достоинствами и своими недостатками. Дискуссия о том, какая из этих двух систем лучше, началась с полемики патриархов теплофикации профессоров С.Ф. Копьева и Е.Я. Соколова в 40-50-е гг. прошлого века и не заканчивается до сих пор. Порядок выбора систем теплоснабжения при новом проектировании долгое время регламентировался несовершенными рекомендациями [1], в которых одним из важнейших факторов при выборе типа системы был химический состав примесей в исходной воде городского источника водоснабжения.
Закрытые системы теплоснабжения имеют более стабильный гидравлический режим благодаря относительному постоянству расхода воды в подающей и обратной магистралях. Открытые системы теплоснабжения позволяют максимально реализовать эффект комбинированной выработки электрической и тепловой энергии за счет использования низкопотенциальных источников теплоты для подогрева больших количеств подпиточной воды теплосети на ТЭЦ.
Одним из примеров рационального использования низкопотенциальной теплоты может служить Южная ТЭЦ в Санкт-Петербурге с расходом подпиточной воды теплосети в несколько тысяч тонн в час. Подогрев исходной воды перед вакуумными деаэраторами подпиточной воды на этой ТЭЦ осуществляется только отработавшим паром трех турбин Т-250-240 во встроенных пучках конденсаторов, а подогрев воды, используемой в качестве греющего агента в вакуумных деаэраторах, производится паром высокоэкономичных отопительных отборов одной из турбин в соответствии с решением [2]. Таким образом, применение открытых систем теплоснабжения в настоящее время особенно актуально в связи с постоянно повышающимися требованиями к энергетической эффективности всех отраслей отечественной экономики [3].
В разные годы, тем не менее, раздавались призывы ликвидировать существующие открытые системы теплоснабжения из-за какого-либо недостатка, например, из-за более сложного гидравлического режима этих систем или под предлогом улучшения качества ГВС. Особенно часто вопрос о ликвидации открытых систем поднимается в последнее время. Призывы эти исходят от «специалистов» и руководителей, плохо представляющих себе основы работы ТЭЦ и теплофикационных систем в целом. Особенно поразил недавний выход Федерального закона «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с принятием Федерального закона «О водоснабжении и водоотведении» [4], в котором неизвестные его авторы записали: «С 1 января 2013 г. подключение объектов капитального строительства потребителей к централизованным открытым системам теплоснабжения (горячего водоснабжения) для нужд горячего водоснабжения, осуществляемого путем отбора теплоносителя на нужды горячего водоснабжения, не допускается. С 1 января 2022 г. использование централизованных открытых систем теплоснабжения (горячего водоснабжения) для нужд горячего водоснабжения, осуществляемого путем отбора теплоносителя на нужды горячего водоснабжения, не допускается».
Закон принят якобы в связи с необходимостью внести поправки в некоторые законодательные акты после выхода Федерального закона «О водоснабжении и водоотведении» [5]. Сколько не вчитывался в этот закон, не обнаружил там требований ликвидировать открытые системы теплоснабжения (в т.ч. в статье 24 «Обеспечение качества горячей воды»). Авторы закона [4] явно перестарались. Поскольку в современную эпоху диковатого капитализма ничего спроста не делается (кроме случаев откровенной глупости), можно предположить, что инициаторы процитированных поправок руководствовались своими коммерческими интересами.
Сторонники ликвидации открытых систем даже не пытаются хотя бы ориентировочно прикинуть масштабы потерь топлива в теплоэнергетике и масштабы затрат в городских хозяйствах при переходе от открытых систем теплоснабжения к закрытым системам в половине крупных городов страны. А если бы смогли прикинуть - поняли бы абсурдность и невозможность практической реализации подобных «инноваций». Так, только на одной, уже упомянутой, Южной ТЭЦ отказ от подготовки подпиточной воды для открытой системы теплоснабжения привел бы к ежегодному перерасходу более 100 тыс. т у.т.
Одним из главных аргументов сторонников закрытых систем является якобы повышенная надежность и низкая коррозионная повреждаемость из-за герметичности этих систем и малых расходов подпиточной воды, с которой вносится дополнительное количество растворенных коррозионно-агрессивных газов.
Мой многолетний опыт исследовательской и наладочной работы в закрытых системах теплоснабжения ряда городов и опыт коллег, в частности, бывшего начальника химической службы ОАО «Мосэнерго», а затем, заведующего Отделением водно-химических проблем Всероссийского теплотехнического института (ВТИ) Б.С. Федосеева, показывает, что полную герметичность закрытых систем следует считать мифом: во всех закрытых системах из-за неплотностей подогревателей ГВС существуют огромные перетоки недеаэрированной водопроводной воды в теплосеть, приводящие к интенсивной внутренней коррозии трубопроводов теплосети [6]. В ряде случаев переток в теплосеть недеаэрированной воды делает практически бесполезной качественную деаэрацию малых количеств подпиточной воды на ТЭЦ. Именно по этой причине, как показали результаты проведенного ВТИ в начале 90-х гг. широкомасштабного обследования отечественных систем теплоснабжения, интенсивность внутренней коррозии в открытых и закрытых системах примерно одинакова. Более того, при превышении давления греющей сетевой воды над давлением нагреваемой водопроводной воды происходят нерегулируемые перетоки сетевой воды, не соответствующей нормативам качества питьевой воды [7], в трубопроводы горячей воды, подаваемой потребителям, т.е. не выполняются санитарно-гигиенические требования к ГВС [8]. Эти перетоки, по существу, регламентированы действующими правилами технической эксплуатации [9], пп. 4.12.30 которых допускает часовые потери сетевой воды для любых систем теплоснабжения в объеме 0, 25% от среднегодового объема воды в тепловых сетях. В закрытых системах значительная часть этих потерь приходится на перетоки сетевой воды через неплотности подогревателей в местные системы ГВС. В связи с этим едва ли можно говорить о повышенной санитарно-эпидемиологической безопасности таких систем.
В открытых системах, где в качестве исходной воды для приготовления подпиточной используется питьевая вода, а противонакипная и противокоррозионная обработка подпиточной воды происходит централизованно квалифицированным персоналом и под постоянным контролем, подобные недостатки практически исключены.
В связи с приведенными выше доводами совершенно неубедительным выглядит пп. 3.1.3 СанПиН [8], в котором утверждается, что с санитарно-эпидемиологических позиций наиболее надежны системы централизованного ГВС, присоединенные к закрытым системам теплоснабжения.
Все менее актуальными становятся в настоящее время и доводы о нестабильности гидравлических режимов открытых систем. Наличие большого парка современных приборов автоматического регулирования и широкое распространение их в системах теплоснабжения позволяет надежно компенсировать влияние переменных расходов воды в сетевых магистралях.
Предпринята попытка сопоставить достоинства и недостатки открытых и закрытых систем теплоснабжения (см. табл.). Из этой таблицы следует, что в современных условиях более предпочтительными являются открытые системы теплоснабжения.
Открытые системы |
Закрытые системы |
|
Преимущества 1.Высокая энергетическая эффективность благодаря использованию низкопотенциальных источников теплоты, в т.ч. отработавшего пара турбин ТЭЦ для подготовки большого количества подпиточной воды теплосети. 2.Поддержание высокого качества сетевой воды во всей системе теплоснабжения и в местных системах отопления и ГВС потребителей благодаря возможности высокоэффективной централизованной противонакипной и противокоррозионной обработки подпиточной воды на ТЭЦ. 3.Низкая стоимость местных тепловых пунктов потребителей. Недостатки 1.Более сложный гидравлический режим системы из-за разности расходов сетевой воды в подающей и обратной магистралях (недостаток преодолевается путем применения современных приборов автоматического регулирования режима). 2.Высокая стоимость оборудования для подготовки большого количества подпиточной воды теплосети на ТЭЦ. |
Преимущества 1.Стабильный гидравлический режим системы благодаря примерно одинаковому расходу сетевой воды в подающей и обратной магистралях. 2.Низкая стоимость установки для подготовки малого количества подпиточной воды теплосети на ТЭЦ. Недостатки 1.Пониженная энергетическая эффективность системы из-за ограничения возможностей использовния низкопотенциальных источников теплоты на ТЭЦ. 2.Высокая стоимость большого количества местных тепловых пунктов потребителей из-за наличия в них подогревателей ГВС. 3.Перетоки недеаэрированной водопроводной воды в теплосеть через неплотности подогревателей ГВС, приводящие к интенсивной внутренней коррозии трубопроводов теплосети. 4.Нарушения санитарно-гигиенических требований к ГВС при нерегулируемых перетоках сетевой воды, не соответствующей нормативам качества питьевой воды, в трубопроводы горячей воды, подаваемой потребителям, через неплотности подогревателей ГВС. 5.Высокая интенсивность внутренней коррозии металлических участков трубопроводов недеаэрированной горячей воды в местных системах ГВС. |
За десятки лет производственной и научной работы мне приходилось слышать много раз в различных начальственных кабинетах предложения, а то и требования о переводе действующих открытых систем в закрытые. К счастью, пока вроде бы ни в одном из городов страны ни у кого до осуществления этих требований не дошли руки. Не сомневаюсь, что процитированные выше положения закона [4] о запрете открытых систем теплоснабжения являются мертворожденными. Уверен, что и в обозримом будущем проблема выбора способа ГВС будет решаться прежде всего исходя из энергетической эффективности теплофикационных систем и с учетом качества исходной воды в источниках водоснабжения конкретных городов.
Следует также отметить, что необходимым условием для энергетически эффективной работы теплофикационных систем с открытым водоразбором является применение вакуумной деаэрации подпиточной воды теплосети. Именно использование источников низкопотенциальной теплоты, в т.ч. отработавшего пара турбин, для подогрева теплоносителей перед вакуумными деаэраторами подпиточной воды позволяет максимально реализовать эффект теплофикации на тепловых электростанциях.
Специалистами доказано, что грамотное применение вакуумных деаэраторов в открытых системах теплоснабжения обеспечивает высокое качество противокоррозионной обработки подпиточной воды, существенное повышение тепловой экономичности ТЭЦ, устранение потерь конденсата греющего пара, характерное для атмосферных деаэраторов, снижение капитальных затрат на деаэрационные установки, а также полную экологическую безопасность ГВС в открытых системах теплоснабжения [10].
Мне представляется, что положения о постепенном запрете открытых систем теплоснабжения, непонятно каким образом попавшие в закон [4], должны быть немедленно устранены. Надо гордиться опытом отечественной теплофикации. В период энергетического кризиса 70-80-х гг. вся Европа оценила этот опыт и использовала его в развитии своих систем теплоснабжения [11]. Не следует сегодня открещиваться от всего положительного, что достигнуто в отечественной теплоэнергетике и теплоснабжении. Полагаю, что инициативу в этом вопросе должно взять на себя НП «Российское теплоснабжение», которое в последнее время является наиболее авторитетной организацией по координации технической политики в области теплоснабжения.
централизованный теплоснабжение вода горячий
Выводы
1.Открытые системы теплоснабжения, в отличие от закрытых систем, позволяют максимально реализовать эффект комбинированной выработки электрической и тепловой энергии за счет использования низкопотенциальных источников теплоты для подогрева больших количеств подпиточной воды теплосети на ТЭЦ. Применение открытых систем теплоснабжения в настоящее время особенно актуально в связи с постоянно повышающимися требованиями к энергетической эффективности всех отраслей отечественной экономики.
2.В открытых системах теплоснабжения обеспечивается поддержание высокого качества сетевой воды во всей системе теплоснабжения и в местных системах отопления и ГВС потребителей благодаря возможности высокоэффективной централизованной противонакипной и противокоррозионной обработки подпиточ- ной воды на ТЭЦ.
3.Открытые системы теплоснабжения надежнее закрытых систем в санитарно-эпидемиологическом отношении благодаря исключению попадания в местные системы ГВС сетевой воды, не соответствующей критериям качества питьевой воды, через неплотности подогревателей ГВС.
Литература
1.Рекомендации по выбору систем теплоснабжения (открытых, закрытых) с учетом качества водопроводной воды. М.: СПО Союзтехэнерго. 1989. 7с.
2.Патент № 1366656 (СССР). МПК F01K17/02. Тепловая электрическая станция/В.И. Шарапов//Открытия. Изобретения. 1988. № 2.
3.Федеральный закон РФ от 23.11.2009 № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
4.Федеральный закон от 07.12.2011 № 417-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с принятием Федерального закона «О водоснабжении и водоотведении».
5.Федеральный закон от 07.12.2011 № 416-ФЗ «О водоснабжении и водоотведении».
6.Шарапов В.И. О предотвращении внутренней коррозии теплосети в закрытых системах теплоснабжения // Теплоэнергетика. 1998. № 4. С. 16-19.
7.Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.4.1074-01. Питьевая вода и водоснабжение населенных мест. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. // М.: Минздрав России. 2002.
8.Санитарные правила и нормативы СанПиН 2.1.4.249609. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения. Изменение к СанПиН 2.1.4.1074-01 // Российская газета. 22.05.2009. № 4916.
9.Правила технической эксплуатации электрических станций и сетей Российской Федерации. Утверждены приказом Минэнерго РФ от 19.06. 2003. № 229.
10.Шарапов В.И. Актуальные проблемы использования вакуумных деаэраторов в открытых системах теплоснабжения // Теплоэнергетика. 1994. № 8. С. 53-57.
11.Шарапов В.И., Ротов П.В. О путях преодоления кризиса в работе систем теплоснабжения // Проблемы энергетики. Известия вузов. 2000. № 5-6. С. 3-8.
Размещено на Allbest.ru
...Подобные документы
Эффективность водяных систем теплоснабжения. Виды потребления горячей воды. Особенности расчета паропроводов и конденсатопроводов. Подбор насосов в водяных тепловых сетях. Основные направления борьбы с внутренней коррозией в системах теплоснабжения.
шпаргалка [1,9 M], добавлен 21.05.2012Потери тепла, их основные причины и факторы. Классификация и типы систем теплоснабжения, их характеристика и функциональные особенности: централизованные и децентрализованные, однотрубные, двухтрубные и бифилярные. Способы циркуляции воды в теплосети.
научная работа [1,3 M], добавлен 12.05.2014Параметры наружного воздуха. Расчет нагрузок потребителей теплоты. Выбор системы теплоснабжения. Определение расходов сетевой воды. Построение пьезометрического графика. Температурный график регулирования закрытой независимой системы теплоснабжения.
курсовая работа [321,4 K], добавлен 23.05.2014Исследование надежности системы теплоснабжения средних городов России. Рассмотрение взаимосвязи инженерных систем энергетического комплекса. Характеристика структуры системы теплоснабжения города Вологды. Изучение и анализ статистики по тепловым сетям.
дипломная работа [1,4 M], добавлен 10.07.2017Проектирование системы теплоснабжения с использованием теплового насоса (отопление и горячее водоснабжение). Теплотехнический расчет системы. Расчет системы теплового насоса, теплопередающая поверхность конденсатора и производительность хладагента.
контрольная работа [158,3 K], добавлен 04.03.2012Характеристика теплового хозяйства предприятия. Расчет тепловых нагрузок и подбор теплогенераторов пара и горячей воды, вспомогательного теплотехнического оборудования. Себестоимость теплоэнергии. Расчет теплоизоляционных конструкций наружных проводов.
курсовая работа [267,0 K], добавлен 23.02.2015Рассмотрение значения качественных характеристик воды для обеспечения безаварийной и экономичной работы котельных установок. Принципы выбора эффективных схем, необходимого оборудования и реагентов для грязеотделения, фильтрации и химического смягчения.
курсовая работа [79,0 K], добавлен 16.05.2011Анализ существующей системы энергетики Санкт-Петербурга. Тепловые сети. Сравнительный анализ вариантов развития системы теплоснабжения. Обоснование способов прокладки теплопроводов. Выбор оборудования и строительных конструкций системы теплоснабжения.
дипломная работа [476,5 K], добавлен 12.11.2014Описание систем теплоснабжения исследуемых помещений. Оборудование, используемое для аудита систем теплоснабжения, результаты измерений. Анализ результатов исследования и план энергосберегающих мероприятий. Финансовый анализ энергосберегающих мероприятий.
дипломная работа [93,3 K], добавлен 26.06.2010Расчёт технологической и отопительной нагрузок энергоисточника. Тепловая нагрузка вентиляции общественных и производственных зданий, годовые расходы теплоты. Технико-экономическое сравнение при выборе источников теплоснабжения, расход сетевой воды.
курсовая работа [215,1 K], добавлен 16.02.2011Описание технологической схемы водогрейной котельной с закрытой системой теплоснабжения. Энергобаланс системы за выбранный промежуток времени. Расчет потоков греющей воды, параметров потока после смешения и действия насосов. Тепловой баланс котла.
курсовая работа [386,0 K], добавлен 27.05.2012Тепловая нагрузка жилого района, график подачи теплоты, годовой запас условного топлива. Выбор вида теплоносителей и их параметров, системы теплоснабжения, метода регулирования. Расход сетевой воды по объектам и в сумме. Выбор необходимого оборудования.
курсовая работа [3,2 M], добавлен 12.01.2014Исследование и проектирование геотермальных установок, а также системы отопления, работающих на геотермальных источниках теплоснабжения. Расчет коэффициента эффективности для различных систем геотермального теплоснабжения. Подбор отопительных приборов.
контрольная работа [139,6 K], добавлен 19.02.2011Расчет нагрузок отопления, вентиляции и горячего водоснабжения зданий жилого микрорайона. Гидравлический и тепловой расчет сети, блочно-модульной котельной для теплоснабжения, газоснабжения. Выбор источника теплоснабжения и оборудования ГРУ и ГРПШ.
курсовая работа [1,1 M], добавлен 12.03.2013Исследование возможности и целесообразности утилизации теплоты, отводимой кристаллизатором и роликами. Рассмотрение и характеристика основных способов получения горячей воды в кристаллизаторе и роликах при существующей геометрии охлаждаемых каналов.
дипломная работа [1,4 M], добавлен 10.07.2017Подготовка к отопительному периоду. Режимы теплоснабжения для условий возможного дефицита тепловой мощности источников тепла, повышение надежности системы. Давления для гидравлических испытаний, графики проведения аварийно-восстановительных работ.
реферат [65,6 K], добавлен 01.03.2011Производственно-технологические потребители пара, горячей воды. Отпуск теплоты по сетевой воде. Выбор паровых турбин. Расчетные, годовые и средние тепловые нагрузки. Построение графика нагрузки по продолжительности. Выбор основного оборудования ТЭЦ.
курсовая работа [223,4 K], добавлен 09.06.2015Способы регулирования температуры воды в электрических водонагревателях. Методы интенсификации тепломассообмена. Расчет проточной части котла, максимальной мощности теплоотдачи конвектора. Разработка экономичного режима работы электродного котла в Matlab.
магистерская работа [2,5 M], добавлен 20.03.2017Влияние систем регенеративного подогрева питательной воды на экономичность паротурбинных установок. Системы топливоснабжения мазутной ТЭЦ; основные свойства и сжигание мазута. Устройство и технологическая схема мазутного хозяйства: резервуары, станции.
контрольная работа [1,1 M], добавлен 03.05.2014Определение массы и объёма воды, вытекающей из крана за разные промежутки времени. Расчет количества теплоты, необходимого для нагрева воды с использованием различных энергоресурсов. Оценка материальных потерь частного потребителя воды и электроэнергии.
научная работа [130,8 K], добавлен 01.12.2015