Потери давления в сети. Сужающие устройства

Характеристика различных типов сужающих устройств и их элементов – конфузоров и диффузоров. Краткие характеристики наиболее популярных расходомерных устройств. Формулы для определения коэффициентов гидравлических сопротивлений, пути и способы их снижения.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 169,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Потери давления в сети. Сужающие устройства

С.Б. Горунович

ВВЕДЕНИЕ

конфузор диффузор гидравлический расходомерный

В настоящее время все чаще и чаще, для нужд учета количества воды и тепла, производится установка расходомерных устройств на сетях тепло и водоснабжения. При этом известно, что весомую часть суммарных, невосполнимых потерь при транспортировке составляют потери в местных сопротивлениях трубопроводов при передаче жидких и газообразных сред. Местные сопротивления приводят к потерям давления (напора) и, как результат, к снижению расходов у потребителей.

Некоторые расходомерные устройства являются сильными местными сопротивлениями (например - диафрагма). Случается, что при установке расходомерных устройств необходимо создать сужение существующего трубопровода с целью обеспечения достаточной скорости жидкости для эффективной работы расходомерного устройства. Следовательно, учет местных сопротивлений сужений, диафрагм, а также диффузоров и конфузоров (плавных расширений и сужений) в гидравлических расчетах сетей является актуальной задачей.

Местные потери полного давления возникают при местном нарушении нормального течения, отрыве потока от стенок, вихреобразовании и интенсивном турбулентном перемешивании потока в местах изменения конфигурации трубопровода или при встрече или обтекании препятствий (вход жидкости (газа) в трубопровод; расширение, сужение, изгиб и разветвление потока; протекание жидкости (газа) через отверстия, решетки, дроссельные устройства; фильтрация через пористые тела и т.д.). Эти явления усиливают обмен количеством движения между частицами движущейся жидкости (т. е. трение), повышая диссипацию энергии. К местным потерям давления относятся также потери динамического давления при выходе жидкости (газа) из сети в другой объем или окружающую среду [4].

Для оценки местных сопротивлений в современных гидравлических расчетах оперируют безразмерным коэффициентом гидравлического сопротивления, весьма удобным тем, что в динамически подобных потоках, при которых соблюдаются геометрическое подобие участков и равенство чисел Рейнольдса (и других критериев подобия, если они существенны) он имеет одно и то же значение независимо от вида жидкости (газа), а также от скорости потока (по крайней мере до чисел Маха=0, 8-0, 9) и поперечных размеров рассчитываемых участков [4]. Коэффициент гидравлического сопротивления представляет собой отношение потерянной на данном участке полной энергии (мощности) к кинетической энергии (мощности) в принятом сечении [4].

ДИАФРАГМА

Достаточно широко распространенным прибором для измерения расхода является диафрагма (расходомерная шайба), обычно выполняемая в виде плоского кольца с круглым отверстием в центре, устанавливаемого между фланцами трубопровода, см. рис.1.

На рисунках использованы следующие обозначения величин: w - скорость потока, F - площадь сечения, произведение величин wF - расход, D - диаметр, L - длина. Индексы показывают принадлежность к сечениям.

Края отверстия диафрагмы чаще всего имеют входные кромки под углом 45 град. Форма диафрагмы, конструктивные элементы расходомерного узла с диафрагмой регламентируются нормами (ГОСТ 8.586.2-2005).

Следует иметь в виду, что являясь простым и эффективным инструментом для измерения расхода, диафрагма имеет и свои отрицательные стороны, а именно, создает значимое сопротивление потоку.

Источники [4], [6] предлагают следующую формулу для определения коэффициента сопротивления диафрагмы, расчетная схема которой приведена на рис.1:

. (1)

Формула справедлива для тонких диафрагм с острыми краями при , где DГ=4F00, П0 - периметр, а также при Re > 105. Структура формулы наглядно показывает вероятность быстрого роста коэффициента сопротивления с ростом отношения F1/F0.

В ГОСТ 8.586.2-2005 приведена более сложная зависимость для определения коэффициента сопротивления, учитывающая влияние некоторых конструктивных факторов, а так же числа Рейнольдса. По моему мнению, для расчетов инженерных сетей формула (1) остается более удобной, ввиду своей простоты и компактности. При этом при больших числах Рейнольдса (Re > 105) конструктивные факторы, учтенные в ГОСТ, оказывают слабое влияние на результат.

ДИФФУЗОРЫ

Плавные расширения коробов и трубопроводов при переходе от меньшего к большему сечениям носят названия диффузоров. Основными геометрическими характеристиками диффузоров с прямыми стенками являются угол расширения , степень расширения nn1=F1/F0 и относительная длина lд/D0, см. рис.2. Возрастание коэффициента сопротивления диффузора заданной длины, с дальнейшим увеличением угла расширения, вызывается усиливающим турбулентным перемешиванием потока, отрывом пограничного слоя от стенки диффузора и связанным с этим сильным вихреобразованием [4].

В общем случае коэффициент сопротивления диффузора, установленного внутри сети, зависит от условий входа, от числа Рейнольдса, от относительной скорости [4]. Однако в инженерной практике, при относительных больших числах Рейнольдса и турбулентном течении, вышеперечисленными факторами пренебрегают.

Для инженерных расчетов для определения коэффициента сопротивления диффузора источники [1], [4], [5], [6] рекомендуют формулу:

. (2)

При равномерном профиле скорости во входном сечении и больших числах Рейнольдса (Re> 2x105) коэффициент (полноты удара) для конических диффузоров с углами расширения [4]:

. (3)

Если проанализировать зависимость величины коэффициента сопротивления диффузора от угла расширения , то можно условно выделить три зоны:

а) относительно низких значений коэффициента сопротивления;

б) зона быстрого роста ;

в) зона высоких значений коэффициента сопротивлений .

Очевидно, что для снижения сопротивления диффузора следует придерживаться правила: . Если по конструктивным, либо по каким-либо другим причинам не удается выдержать угол диффузора меньше 60 град., можно вообще отказаться от диффузора без ущерба для пропускной способности.

Что касается влияния числа Рейнольдса на величину коэффициента, к этому вопросу необходимо подходить более осторожно.

Существуют ссылки на рекомендуемые скорости сред в следующих источниках:

а) в СНиП 2.04.02-84 «Водоснабжение. Наружные сети и сооружения» рекомендуемые скорости для трубопроводов насосных станций - 0, 6 - 4 м/с;

б) в справочном пособии «Водяные тепловые сети» [2] - 0, 5 - 3 м/с;

в) в учебном пособии «Системы вентиляции» [3] - 0, 7 - 20 м/с.

Нетрудно установить, что при минимальных скоростях и диаметрах (при температуре 20 град.) числа Рейнольдса могут принимать минимальные значения для воды - 0, 13х105, для воздуха - 0, 03х105. При этом необходимо учесть, что со снижением чисел Рейнольдса до Re=0, 5x105-1x105 в зоне а) (при ) коэффициент сопротивления возрастает в 2 и более раз.

Условия протекания в коротких диффузорах (с большими углами расширения) могут быть значительно улучшены, а сопротивление уменьшено, если предупредить в них отрыв потока или вихреобразование [4]. Примеры конструктивных решений, способствующих снижению коэффициента сопротивления, приведены на рис.3. Согласно [4] коэффициент сопротивления диффузора при этом может быть снижен на 35 - 40%.

Более подробно способы снижения сопротивления рассмотрены в фундаментальном труде И. Е. Идельчика [4].

КОНФУЗОРЫ

Переход от большего сечения к меньшему, через плавно сужающийся участок - конфузор, также сопровождается сравнительно большими невосполнимыми потерями полного давления. Коэффициент сопротивления конфузора с прямолинейными образующими также зависит от угла сужения , степени сужения n0=F0/F1 и относительной длины l0/D0, а при малых числах Рейнольдса также и от числа Рейнольдса, см. рис.4.

Для инженерных расчетов общий коэффициент сопротивления конфузоров удобно представить в виде [4], [6]:

, (4)

где , (в градусах).

В пределах общий коэффициент сопротивления конфузора с прямолинейными образующими имеет минимум, который, по крайней мере при Re > 105 остается практически постоянным и равным 0, 05 [4].

Сопротивление конфузоров можно значительно уменьшить, осуществив плавный переход от большего сечения к меньшему, с помощью криволинейных образующих (по дуге окружности или другой кривой), а также скруглив прямолинейные стенки конфузоров на выходе в прямой участок, см. рис.6.

КОНФУЗОРНО-ДИФФУЗОРНЫЙ ПЕРЕХОД

Известно, что сопротивления, расположенные рядом, оказывают взаимное влияние друг на друга.

В источниках [4], [6] приведены формулы для определения коэффициента сопротивления круглых конфузорно-диффузорных переходов, см. рис.5. Для перехода с криволинейным конфузором (Rк=(0, 5 -1, 0)Do):

, (5)

для перехода с прямолинейным конфузором:

. (6)

Значения коэффициентов приводятся в диаграмме 5-25 в источнике [4] в диапазоне значений , , для Re > 2х105, для различных F1/F0, k2 = 0, 66+0, 35(lo/Do). После подстановки численных данных можно обнаружить, что с ростом F1/F0 коэффициенты сопротивления меняются от минимальных значений 0, 033 (0, 035) до максимальных - 0, 403 (0, 463). В скобках указаны результаты для перехода с прямолинейным конфузором.

Согласно опытам [4] оптимальные параметры переходов получаются при и . Оптимальный радиус скругления - Rк=(0, 5 - 1, 0)Do.

С ростом отношения lo/Do (при увеличении расстояния между конфузором и диффузором) сопротивление перехода растет и, в конечном счете (при lo/Do>5), становится равным сумме сопротивлений соответственно конфузора и диффузора.

В ГОСТ 8.586.4 - 2005 приведены конструктивные размеры и технические характеристики конфузорно-диффузорного перехода, используемого в качестве стандартного сужающего устройства для измерения расхода. Основные конструктивные размеры вышеупомянутого перехода, называемого в ГОСТе трубой Вентури - угол конуса конфузора ; длина горловины , угол конуса диффузора .

В целом, его конструктивные характеристики соответствуют оптимальным размерам, рекомендуемым в [4] для снижения гидравлического сопротивления, хотя угол конуса конфузора несколько меньше. В ГОСТ 8.586.4 - 2005 приведена несложная формула для определения коэффициента сопротивления, структура которой сходна с (6), с таблицами поправочных коэффициентов.

ИЗГОТОВЛЕНИЕ. СТАНДАРТЫ

Конфузоры и диффузоры для трубопроводов называют, как правило, концентрическими переходами или просто переходами. Конструктивно диффузоры от конфузоров не различают. Существует множество стандартов изготовления переходов для различных отраслей промышленности. В энергетике часто используются переходы по ОСТ 34-42-700-85 (на тепловых электростанциях), для инженерных водяных сетей - по ГОСТ 17378-2001. Для трубопроводов небольшого диаметра (до Ду40) можно встретить переходы по ОСТ 34.210-73, особенностью которых является то, что они вытачиваются из прутка необходимого диаметра, см. рис.7. Достаточно широко используются также переходы по ОСТ 34.211-73, выполненные из развертки листа необходимой толщины, см. рис.8, а также лепестковые переходы по ОСТ 34.212-73, см. рис.9.

Естественно, что по умолчанию сужение (например, для установки расходомерного устройства) выполняется с помощью стандартных концентрических переходов (если форма переходов не регламентируется другими нормативами).

Использование стандартных деталей трубопровода имеет свои плюсы: облегчает этапы проектирования и монтажа, "снимает" вопросы прочности, оптимальной формы, размеров и т.д. С другой стороны форма стандартных деталей часто не учитывает специфику работы изделия. Анализируя конструкцию стандартных переходов, можно прийти к выводу, что угол конуса последних, как правило, не оптимален. Например, угол конуса переходов по ОСТ 34-42-700-85 колеблется в районе 20 градусов. К тому же стандарты не учитывают различия между конфузорами и диффузорами, хотя, как показано выше, диффузоры и конфузоры по-разному реагируют на движение в них жидких и газообразных сред.

Широко распространенной практикой также является выполнение переходов усилиями местных ремонтных организаций, а не заказ таковых у специализированных предприятий. В данном случае мы, как правило, имеем переход приближенный к стандартному, выполненный по чертежу или эскизу. Как показывает практика, большое распространение имеют переходы типа рис.7, или рис.9, позволяющие выполнить последние весьма ограниченными ресурсами. Пунктирными линиями на рис.7, рис.9 показаны формы, снижающие гидравлическое сопротивление переходов, т. е. путем внесения небольших изменений в чертежи или эскизы можно повысить эффективность будущей детали.

Если существует возможность снизить угол расширения (сужения) диффузора (конфузора) до оптимальных значений, приведенных выше, ею также целесообразно воспользоваться. Например, для изготовления трубы Вентури необходимо отклониться от ОСТов для удовлетворения требований ГОСТа для стандартных сужающих устройств. Для ответственных трубопроводов, подлежащих регистрации в органах РОСТЕХНАДЗОРА необходимо будет также выполнить расчет нестандартных переходов на прочность по РД 10-249-98.

При значительном сужении, гидравлически оптимальный переход позволит минимизировать коэффициент местного гидравлического сопротивления, который может иметь значимое влияние на потери в трубопроводе и, соответственно, на величину расхода жидкости.

РАСХОДОМЕРНЫЕ УСТРОЙСТВА

Расходомерная шайба (диафрагма) нашла наибольшее распространение в качестве элемента для измерения расхода среды. Простота и надежность позволяют изготавливать и устанавливать диафрагмы в широком диапазоне расходов и для различных сред. Между тем, согласно (1) нет ничего более существенного из местных сопротивлений, что приводило бы к таким большим, невосполнимым потерям давления. Так, например, при отношении площади сечения трубопровода к площади сечения отверстия диафрагмы равное двум, коэффициент гидравлического сопротивления равен 4, 37! Для сравнения при такой же степени сужения коэффициент сопротивления диффузора при угле расширения находится в пределах 0, 08 - 0, 16, конфузора - 0, 012.

Сопла Вентури, трубы Вентури, форма которых более оптимальна с точки зрения гидравлических потерь представляют более сложную конструкцию сужения и распространения не получили.

Для стандартных сужающих устройств одним из основных действующих нормативных документов является сборник ГОСТ 8.586.1 - ГОСТ8.586.5 - 2005 «Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств». В этих документах перечислены основные требования к вышеупомянутым диафрагмам, соплам, соплам Вентури и трубам Вентури. Среди недостатков труб Вентури в ГОСТ 8.586.1 отмечены сложность изготовления и относительно большие размеры.

Действие расходомеров со стандартными сужающими устройствами основано на законе Бернулли - в суженном участке трубопровода снижается гидростатическое давление по сравнению с первоначальным. Разницу гидростатического давления регистрирует и преобразует в электрический сигнал другое устройство - дифманометр.

В настоящее время появилось множество более сложных электронных расходомерных устройств, работа которых основана на других физических принципах.

У вихреакустических расходомерных устройств типа МЕТРАН-300ПР, МЕТРАН-320 принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкостей при обтекании ею призмы, расположенной поперек потока. Очевидно, что такой прибор тоже имеет свои невосполнимые потери давления. Производитель гарантирует, что эти потери для трубопроводов Ду25 - 100 мм не более 0, 03 МПа, для трубопроводов Ду150 - 300 мм - не более 0, 02 МПа при номинальном расходе. (Последние данные взяты из паспорта устройства на www.metran.ru).

Работа ультразвуковых расходомерных устройств типа УРСВ «Взлет МР» основана на измерении разности времени прохождения ультразвукового сигнала по направлению потока жидкости в трубопроводе и против него. Возбуждение ультразвукового сигнала производится электроакустическими преобразователями, установленными на измерительный участок в виде наклонных к оси трубопровода штуцеров. Так как считается, что прохождение ультразвукового сигнала не препятствует движению среды, ультразвуковые расходомерные устройства не вызывают потерь давления. (Данные взяты из паспорта устройства на www.vzljot.ru).

Интерес с точки зрения снижения гидравлических потерь вызывают преобразователи расхода Бычкова (ПРБ), которые, очевидно, также используют импульс по разности гидростатических давлений в разных по диаметру сечениях. В данном устройстве переход от меньшего к большему сечениям осуществляется «плавными» (с выполнением условия безотрывности течения) диффузором и конфузором. (Информация - с www.snab.ru/arhiv/2004/index.html).

ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ

При выборе того или иного расходомерного устройства первостепенное значение, как правило, уделяется его стоимости. При этом следует учесть, что первоначальная цена прибора и затраты при дальнейшей его эксплуатации часто являются факторами противоречивыми. Например, наряду с относительной дешевизной диафрагмы, при установке последней на трубопровод с теплоносителем, необходимо также отдавать отчет в неизбежной потери части тепла в результате гидравлического сопротивления потоку, которое, возможно, придется восполнять другими устройствами (электронагревательными приборами). Напротив, ультразвуковой расходомер или труба Вентури имеют большую стоимость и не влекут за собой потерь расхода, но их установка может не окупиться за очень длительное время.

Известно, что потери напора в станционных трубопроводах с обычными скоростями движения сред (для Re > 2х105) можно оценить следующей формулой:

, (7)

где Н - потери напора, м;

w - скорость среды, м/с;

L - развернутая длина трубопровода, м;

g - ускорение свободного падения, м/с2 ;

d - расчетный диаметр трубопровода, м;

- коэффициент сопротивления трения;

- сумма коэффициентов местных сопротивлений.

Зависимость (7) принято называть гидравлической характеристикой трубопровода.

Если учесть зависимость:

,

где G - расход, м3/с, то (7) можно представить в виде:

, (8)

или:

, (9)

Где

.

В случае установки расходомерного устройства, имеющего существенное местное сопротивление, зависимость (9) очевидно примет вид:

. (10)

Если местное сопротивление характеризуется безразмерным коэффициентом сопротивления , тогда:

.(11)

Допустим, что гидравлическая система «насос - трубопровод» до установки дополнительного сопротивления работает в номинальном режиме (или в режиме близком к номинальному). Тогда:

, , (12)

где Нн - номинальный напор (по расходной характеристике насоса), м;

Gн - номинальный расход (по расходной характеристике насоса), м3/с.

Если предположить, что и после установки дополнительного сопротивления система «насос - трубопровод» сохранит работоспособность (), то из (10), используя (12), можно определить новый расход:

. (13)

Работу системы «насос-трубопровод», изменение ее характеристик можно наглядно представить на рис. 10.

Очевидно, что G1 < Gн. По разности расходов можно определить потери теплоты , если дополнительное сопротивление установлено на трубопровод с теплоисточником:

, (14)

где сВ - удельная теплоемкость теплоносителя, кДж/кг град.;

tП - температура прямой сетевой воды, град.;

tО - температура обратной сетевой воды, град.;

T- продолжительность отопительного периода;

- количество теплоты, кДж.

Зная стоимость расходомерного устройства и количества теплоты (в вашем регионе), можно ориентировочно оценить рентабельность его монтажа с точки зрения гидравлических потерь.

ПРИМЕР РАСЧЕТА

Например, необходимо установить расходомерное устройство с сужением на трубопровод 219х7 с теплоносителем - горячая вода с температурой около 100 град. Имеем следующие исходные данные:

ориентировочный (усредненный) расход GН, т/ч, м3/ч - 100 или 0, 028 м3/с;

напор НН, м - 50;

удельная теплоемкость воды (при 100 град) сВ, кДж/кг град. - 4, 22;

Ожидаемая разница температур между прямой и обратной сетевой водой, tП - tО, град. - +25;

продолжительность отопительного периода (9 мес.) T, ч - 6480.

По ГОСТ 8.586.1 необходимое сужение - 90, 3 мм.

Рассчитаем потери тепла в случае установки диафрагмы.

По формуле (1) имеем коэффициент сопротивления диафрагмы = 56, 468;

По формуле (11) коэффициент h1=2642 с25;

По формуле (13) определяем новый расход G1 =0, 027 м3/с или 98, 022 м3/ч.

Ожидаемое снижение расхода: = 1, 978 м3/ч.

По формуле (14) определим потери тепла из-за установки диафрагмы за отопительный период Т =8, 114х108 кДж или 193, 654 Гкал.

При стоимости 400 руб./Гкал потери в денежном выражении составят - 77, 46 тыс. руб.

Рассчитаем потери тепла в случае установки более дорогого расходомерного устройства современного типа - МЕТРАН-300ПР.

В каталоге по номинальному расходу (100 м3/ч) выбираем необходимый типоразмер прибора - МЕТРАН-300ПР-А-100, на который необходимо выполнить сужение - Ду100 мм. Производитель гарантирует потери давления не более 0, 03 МПа, что составит примерно 3 м напора водяного столба.

Чтобы рассчитать необходимые потери расхода воспользуемся пропорцией:

, (15)

где - потери давления, 3 м. вод. столба.

Из (15) легко определить новый расход:

.

Отсюда G1=96, 954 м3/ч и = 3, 046 м3/ч.

По формуле (14) определим потери тепла за отопительный период =1, 25х109 кДж или 298, 23 Гкал.

При стоимости 400 руб./Гкал потери в денежном выражении составят - 119, 29 тыс. руб.

Очевидно, что установка МЕТРАНа грозит еще более существенными тепловыми потерями.

В случае установки сужения типа трубы Вентури с углами сужения (расширения) 20 град, (12 град) по формулам (2) - (4) имеем (суммарный) коэффициент сопротивления менее 0, 328 и ожидаемое снижении расхода 0, 012 т/ч. Что в денежном выражении составит 0, 464 тыс. руб.

Очевидно, что большая стоимость трубы Вентури быстро окупится.

ВЫВОДЫ

1. В данной статье описаны различные типы сужающих устройств и их элементы - конфузоры и диффузоры, даны краткие характеристики наиболее популярных расходомерных устройств. Приведены формулы для определения коэффициентов гидравлических сопротивлений, показаны пути и способы их снижения.

2. Приведены формулы, примеры и доказана необходимость технико-экономического анализа при выборе расходомерных и сужающих устройств.

3. Показано, что при установке сужающих устройств на трубопроводах с теплоносителем при относительно больших расходах и небольших напорах предпочтение следует отдавать трубам Вентури или расходомерным устройствам с незначительным коэффициентом сопротивления.

ЛИТЕРАТУРА

1. Чугаев Р. Р. Гидравлика. Л.: Энергоиздат, 1982.

2. Водяные тепловые сети. Справочное пособие по проектированию / И. В. Беляйкина, В. П. Витальев, Н. К. Громов и др., Под ред. Н. К. Громова, Е. П. Шубина. М.: Энергоатомиздат, 1988.

3. Беккер А. Системы вентиляции. М.:Техносфера, 2005.

4. Идельчик И. Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992.

5. Стефанов Е. В. Вентиляция и кондиционирование. С.-Пб.: АВОК Северо-запад, 2005.

6. Справочник по расчетам гидравлических и вентиляционных систем / Под ред. А. С. Юрьева. С.-Пб.: АНО НПО «Мир и семья», 2001.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие несинусоидальных токов и напряжений. Виды устройств, дающих нелинейную нагрузку. Формулы определения полных сопротивлений и токов, значений мощности искажений. Экономические потери в результате воздействия гармоник на аппаратуру релейной защиты.

    презентация [1,8 M], добавлен 23.03.2017

  • Основные способы определения потерь коэффициента полезного действия и часового расхода топлива. Характеристика конструкции топки. Анализ горелочных устройств, предназначенных для различных типов горелок. Знакомство с классификацией топочных устройств.

    практическая работа [1,2 M], добавлен 31.10.2014

  • Характеристика обслуживаемого предприятия и оборудования цеха. Обязанности электромонтера, техника безопасности его работы. Монтаж защитного заземления металлических нетоковедущих частей электрооборудования. Измерение сопротивлений заземляющих устройств.

    курсовая работа [764,3 K], добавлен 10.06.2011

  • Анализ существующих типов закладных устройств и способов их обнаружения. Построение модели для расчета теплового поля поверхности земли. Демаскирующие признаки взрывных устройств. Тепловой вид неразрушающего контроля и теплофизическое описание дефектов.

    курсовая работа [829,7 K], добавлен 19.06.2014

  • Классификация и типы полупроводников, их характеристики и свойства. Контактные явления на границе раздела полупроводников различных типов. Изучение работы соответствующих устройств, резонанс токов и напряжений. Изучение вольтмперной характеристики диода.

    дипломная работа [608,0 K], добавлен 03.07.2015

  • Методика расчёта гидравлических сопротивлений на примере расчёта сложного трубопровода с теплообменными аппаратами, установленными в его ветвях. Определение потерь на отдельных участках трубопровода, мощности насоса, необходимой для перемещения жидкости.

    курсовая работа [158,3 K], добавлен 27.03.2015

  • Составление вариантов схемы электрической сети и выбор наиболее рациональных из них. Расчет потокораспределения, номинальных напряжений, мощности в сети. Подбор компенсирующих устройств, трансформаторов и сечений проводов воздушных линий электропередачи.

    курсовая работа [1,6 M], добавлен 24.11.2013

  • Методы расчета простых и сложных заземлителей в однородной и неоднородной среде. Обоснование необходимости определения показателей надежности при проектировании заземляющих устройств. Выбор метода контроля основных параметров заземляющих устройств.

    дипломная работа [2,9 M], добавлен 13.06.2012

  • Расчет баланса мощности и выбор компенсирующих устройств. Потери активной мощности в линиях и трансформаторах. Баланс реактивной мощности. Составление вариантов конфигурации сети с анализом каждого варианта. Потеря напряжения до точки потокораздела.

    контрольная работа [4,3 M], добавлен 01.12.2010

  • Виды, способы размещения и правила подключения источников реактивной мощности. Методы снижения потребления реактивной мощности: применение компенсирующих устройств, замена асинхронных двигателей синхронными, ограничение холостой работы двигателя.

    презентация [382,3 K], добавлен 30.10.2013

  • Проектирование кабельной линии. Расчет токов короткого замыкания, определение сопротивлений элементов сети. Выбор комплектных трансформаторных подстанций и распределительных устройств. Расчет параметров релейной защиты, селективности ее действия.

    курсовая работа [677,2 K], добавлен 01.05.2010

  • Проектирование устройств релейной защиты, предназначенных для обеспечения нормальной работы систем электроснабжения и повышения надежности электроустановок потребителей. Расчет сопротивлений элементов схемы замещения, автоматических выключателей.

    курсовая работа [2,6 M], добавлен 28.04.2014

  • Выбор метода регистрации магнитограмм. Магнитооптический эффект Керра. Материалы для магнитооптических устройств и их характеристики. Выбор и обоснование конструкции оптико-электронного устройства регистрации магнитограмм. Крепление оптических элементов.

    дипломная работа [2,0 M], добавлен 09.06.2014

  • Общая характеристика радиальных, магистральных (комбинированных) схем электроснабжения. Расчет электрических нагрузок, коэффициентов использования, средней реактивной и активной мощности. Выбор проводников, аппаратов защиты и компенсирующих устройств.

    курсовая работа [226,5 K], добавлен 17.03.2011

  • Характеристики потребителей электроэнергии. Расчет электрических нагрузок и мощности компенсирующих устройств реактивной мощности. Выбор мощности трансформаторов подстанции. Расчет заземляющего устройства подстанции и выбор распределительной сети.

    курсовая работа [702,9 K], добавлен 23.04.2021

  • Физико-химическая характеристика жидкости. Определение основных параметров потока гидравлической сети. Нахождение потерь на трение. Определение местных гидравлических сопротивлений и общих потерь. Потребляемая мощность насоса. Расчет расхода материала.

    контрольная работа [69,4 K], добавлен 14.12.2013

  • Электрическая изоляция, ее контроль. Виды заземления в зависимости от назначения. Процесс растекания электрического тока в грунте. Напряжения прикосновения и шага. Измерения сопротивлений изоляции, заземляющих устройств и удельного сопротивления грунта.

    контрольная работа [461,3 K], добавлен 30.10.2011

  • Требования к схемам питания и секционирования контактной сети, условные графически обозначения ее устройств. Принципиальные схемы питания однопутного и двухпутного участка контактной сети и их экономическая эффективность. Устройства секционирования.

    контрольная работа [2,5 M], добавлен 09.10.2010

  • Характеристика климатических условий. Расчет давления ветра на провод с обледенением. Единичные нагрузки на трос. Натяжная гирлянда изоляторов. Характеристики проводов и молниезащитных тросов. Выбор заземляющих устройств. Определение срока монтажа.

    курсовая работа [169,5 K], добавлен 31.03.2011

  • Баланс мощности в электрической системе. Определение мощности компенсирующих устройств и расчётных нагрузок. Расчёт установившихся режимов электрической системы и устройств регулирования напряжения. Технико-экономические показатели проектируемой сети.

    курсовая работа [1,4 M], добавлен 16.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.